
Timeloop: A Systematic Approach to DNN
Accelerator Evaluation

Angshuman Parashar∗ Priyanka Raina∗‡ Yakun Sophia Shao∗ Yu-Hsin Chen∗

Victor A. Ying† Anurag Mukkara† Rangharajan Venkatesan∗ Brucek Khailany∗

Stephen W. Keckler∗ Joel Emer∗†

∗NVIDIA †Massachusetts Institute of Technology ‡Stanford University

Abstract—This paper presents Timeloop, an infrastructure for
evaluating and exploring the architecture design space of deep
neural network (DNN) accelerators. Timeloop uses a concise and
unified representation of the key architecture and implementation
attributes of DNN accelerators to describe a broad space of
hardware topologies. It can then emulate those topologies to
generate an accurate projection of performance and energy
efficiency for a DNN workload through a mapper that finds the
best way to schedule operations and stage data on the specified
architecture. This enables fair comparisons across different archi-
tectures and makes DNN accelerator design more systematic. This
paper describes Timeloop’s underlying models and algorithms in
detail and shows results from case studies enabled by Timeloop,
which provide interesting insights into the current state of DNN
architecture design. In particular, they reveal that dataflow and
memory hierarchy co-design plays a critical role in optimizing
energy efficiency. Also, there is currently still not a single
architecture that achieves the best performance and energy
efficiency across a diverse set of workloads due to flexibility
and efficiency trade-offs. These results provide inspiration into
possible directions for DNN accelerator research.

Index Terms—modeling; accelerator architecture; deep neural
networks; neural network dataflows

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as a key
approach for solving complex problems across a wide range
of domains, including image recognition [21], speech pro-
cessing [3], [14], [16], natural language processing [9], lan-
guage translation [11], and autonomous navigation [23]. To
provide high performance and energy efficiency to this class of
compute-intensive algorithms, many DNN hardware accelera-
tors have been proposed [1], [2], [5], [6], [12], [13], [15], [18],
[25], [29], [33], [35], [39]. While they share similar hardware
constructs such as a specialized memory hierarchy [30] and an
array of multiply-accumulate units (MACs), they differ widely
in their underlying dataflows, which define how operations are
allowed to be partitioned and scheduled for computation, and
how data can be staged in the memory hierarchy [7]. Dataflows
have been shown to have a significant impact on performance
and energy efficiency due to the resulting differences in data
reuse and hardware utilization [6], [19], [22], [25], [31].

The vast number of possible dataflows and the accom-
panying choices of hardware implementation have created a
large architecture design space. In addition, for a given DNN
layer, i.e., a workload, a flexible architecture may permit many

different ways of scheduling operations and staging data on
the same architecture, which we call different mappings [7],
resulting in widely varying performance and energy efficiency.
This results in a requirement to search for a good mapping
within the space of valid mappings, i.e., the mapspace, to fairly
characterize the architecture. The need to do this search for
each workload compounds the complexity of exploring the
architecture design space. Prior work on DNN accelerators
have dealt with this problem only within the scope of their
specific designs [6], [13], [22], [26], [27], [32], [35]–[37].
Tools for broader design space exploration [19], [27], [34],
[38] also struggle with challenges such as separation of the
architecture design space from the mapspace, enumeration of
mappings in the mapspace and quality of performance and
energy efficiency evaluation, making it difficult to explore and
compare a wide range of architectures.

To address these challenges, we propose Timeloop, an
infrastructure for evaluating and exploring the architecture
design space of DNN accelerators. Timeloop has two main
components: a model to provide performance, area and energy
projections and a mapper to construct and search through the
mapspace of any given workload on the targeted architecture.

To perform an analysis using Timeloop, a user describes an
architecture’s organization in a highly configurable template
with abstractions for compute units (with configurable preci-
sion), memories (in a configurable multilevel hierarchy), and
communication links. Architectural constraints, including the
dataflow and additional hardware attributes such as utilization
and bandwidth limitations, can be further imposed to define
the mapspace. Given a workload and an architecture specifi-
cation (i.e., organization and constraints), Timeloop’s mapper
systematically constructs the mapspace, evaluates the quality
of each mapping in the mapspace with its embedded cost
model, and searches through the mapspace iteratively for an
optimal mapping. This search is feasible thanks to the model’s
speed (by exploiting the regular structure of DNN workloads)
and accuracy (for energy and performance), which has been
validated against existing designs.

Timeloop makes the following key contributions:

1) Timeloop provides a concise and unified way of de-
scribing the key attributes of a diverse class of DNN
architectures and their implementation features as the



input to a fast and accurate analytical model. This allows
for the exploration of a wide range of architectures.

2) Timeloop is the first infrastructure to effectively combine
the exploration of a large design space with a mapper
that allows for finding the optimal mapping of any
workload on the targeted architecture. This enables fair
comparisons between different architectures and makes
the DNN accelerator design more systematic and less of
an art.

3) Timeloop enables a number of studies that provide inter-
esting insights into the current state of DNN accelerator
architecture design. These studies point out the pros
and cons of various representative architectures in the
literature and provide inspiration for future research into
the design of DNN accelerators.

We expect to release Timeloop under an open-source license
and welcome contributions from the community.

II. MOTIVATION

The architectural design of DNN accelerators tends to be
more of an art than science due to the large design space and
the lack of a systematic approach to explore it. To explore
such a design space, we have observed a unique symbiosis
between the need for a model that can describe and emulate
a wide variety of architectures and the need for a mapper that
can optimally configure the accelerator to get a fair character-
ization of the performance and energy efficiency of a specific
workload. In this section, we will describe the symbiosis that
Timeloop exploits to make it an effective infrastructure for
exploring the design space of DNN accelerators.

A model needs a mapper. Unlike traditional architectures
that use an ISA as the hardware/software interface, each DNN
accelerator uniquely exposes many configurable settings in the
hardware, and its behavior is critically dependent on those
settings. Therefore, instead of using pre-compiled binaries or
traces, running a DNN workload on an accelerator involves
finding a mapping (and corresponding set of configuration
settings), which dictates the scheduling of operations and data
movement, to maximize performance and energy efficiency.

To obtain a fair characterization of the hardware, it is impor-
tant to select a good mapping. Figure 1 shows a distribution of
the energy efficiency of various mappings for the convolutional
layer VGG conv3 2 on a 1024-MAC architecture similar to
NVDLA [28]. The 480k mappings shown here are all within
5% of the peak performance, but vary nearly 19× in energy
efficiency. Only one mapping is energy-optimal and 9 others
are within 1% of the optimal mapping. The variations arise due
to different tiling and scheduling alternatives represented by
the mappings, with the more efficient mappings making better
use of buffer capacity, network multicast and loop ordering to
maximize reuse. However, the optimal mapping can and will
likely change across workloads; an optimal mapping for one
architecture may also be a poor (or even invalid) choice on
another architecture. Therefore, mapping is an essential step
in evaluating a DNN workload on an architecture. We show in

N
um

be
r o

f m
ap

pi
ng

s

16000

0

14000

12000

10000

8000

6000

4000

2000

20 40 60 80
Energy/MAC (relative to multiplier energy)

Fig. 1. Histogram of the energy efficiency of various mappings of
VGG conv3 2 on an example architecture.

Section V how Timeloop systematically constructs a mapspace
and walks through the mappings in it.

A mapper needs a model. A mapper enumerates the
mapspace and then iteratively searches through the space for
the optimal mapping. Thus, it needs a cost function to deter-
mine whether one mapping is better than another. This cost
function must be fast enough to evaluate to allow the mapper to
explore a large mapspace in a reasonable amount of time, but
it must also be accurate, i.e., it must be representative of the
actual behavior of the mapping on the architecture, otherwise
the mapper will give misleading results. For example, while
DRAM accesses consume a lot of energy, accesses to on-
chip buffers are often just as expensive. In Figure 1, 6,582
mappings have the same minimum DRAM accesses, but vary
11× in energy efficiency. Even though the actual optimal
mapping in this example does have the minimum number of
DRAM accesses, it is not guaranteed to be this case across all
architectures and technologies. As another example, we show
in Section VIII-B that cost ratio changes due to technology
trends lead to different optimal mappings, and that the optimal
mapping in one technology may be sub-optimal in another.

III. PRIOR WORK

There is an abundance of excellent recent work on DNN
accelerators [6], [13], [22], [26], [27], [32], [35]–[37]. Across
these works, a large component of the mapping is fixed in
hardware with a limited set of loop unrolling (parallelism),
loop tiling and ordering (data reuse) choices exposed to a
search algorithm. Thus, they do provide mappers, but the
respective mapspace as well as architectural model are closely
tied to the specific attributes of each design and, therefore, are
unsuitable for broader design space exploration or competitive
assessment.

A general framework for studying a broad range of designs
must be able to describe the organization of each design,
automatically generate the complete mapspace for any de-
scribed architecture, and find efficient mappings within the
space. Otherwise, a comparison between competing architec-
tures is meaningless. A few recent proposals have attempted
this challenging task [19], [27], [34], [38]. Unfortunately, we
believe some of them suffer from inadequate architectural cost
models [31], [34], [38], with simplistic hardware templates
and/or inability to infer different forms of spatial or temporal



Fig. 2. Timeloop tool-flow.

reuse. Others fail to comprehend the complete size and scope
of the mapspace and/or obfuscate the separation between the
architecture design space and mapspace [19], [27]. Finally, re-
cent work on sophisticated compilers for DNN workloads [4],
[31] have built-in cost models, though the objective of those
models is simply to provide enough fidelity to guide the opti-
mizer rather than to provide accurate energy and performance
projections for architecture design-space exploration.

Timeloop provides a rich and general template that is capa-
ble of representing DNN accelerators in a large design space,
and it automatically constructs the complete mapspace for any
specified architecture. We show that popular dataflows such as
output-stationary or weight-stationary [6], [8] are but specific
instances of a larger set of constraints that can be imposed on
the mapspace, limiting the computation schedules and operand
reuse patterns that the architecture can exploit. For each work-
load, Timeloop automatically searches for optimal mappings
within these constraints, ultimately providing performance,
energy and area characterizations using a detailed architectural
cost model. Thus, it aims to serve as a super-set of many of
these prior approaches, and as a robust tool for rapid early-
stage design space exploration and competitive evaluation of
DNN accelerator architectures.

IV. TIMELOOP OVERVIEW

Timeloop’s operation consists of creating a mapspace for a
given workload on an architecture, exploring that mapspace to
find the optimal mapping, and reporting the performance and
energy metrics of that optimal mapping. Timeloop needs the
following inputs to generate a mapspace:

1) The shape and parameterization of a workload, e.g., the
dimensions of the input, output, and weight tensors used
in a DNN layer, and the set of operations needed to
compute the layer.

2) A specification of the architecture’s hardware organiza-
tion (arithmetic units, memories and networks).

3) The constraints that the architecture imposes on ways
in which the computation can be partitioned across the
hardware substrate and scheduled over time.

Once the mapspace is constructed, Timeloop evaluates the
performance and energy efficiency of a set of mappings within
the space. This evaluation does not rely on a cycle-accurate
simulator; instead, Timeloop exploits the fact that computation
and data-movement patterns in DNN computations are largely

1 for r=[0:R):
2 for s=[0:S):
3 for p=[0:P):
4 for q=[0:Q):
5 for c=[0:C):
6 for k=[0:K):
7 for n=[0:N):
8 Output[p][q][k][n] +=
9 Weight[r][s][k][c] * Input[p+r][q+s][c][n];

Fig. 3. Convolutional layer 7D loop nest.

deterministic, enabling it to compute throughput and access
counts analytically for an architecture. The model determines
the counts of various activities, including arithmetic opera-
tions, memory accesses and network transfers, including the
multi-casting of data from a producer to multiple consumers,
and forwarding of data between units. These access counts
are used to determine performance. Combined with the energy
cost per access from the energy model, they are also used to
determine the energy consumption of the workload.

Figure 2 shows an overview of Timeloop. The infrastructure
is split into two main components, the mapper and the model,
with a mapping serving as the interface between the two.
We describe the mapper in Section V along with the input
specifications used to configure Timeloop to represent different
architectures and workloads. In Section VI, we describe how
the model evaluates each mapping.

V. TIMELOOP INPUTS AND MAPPER

A. Workload Specification

Timeloop’s workload format is similar to the form of a
single DNN layer. To evaluate a complete network, one can
invoke Timeloop sequentially on each layer and accumulate
the results. Each layer has tremendous reuse opportunities, and
we leave exploration of cross-layer reuse to future work. In
this paper, we focus our evaluation efforts on convolutional
(CONV) layers shown in Figure 3. These layers can be
described as a 7D nested loop over weight tensor’s height
and width (R, S), output tensor’s height and width (P, Q),
number of input channels (C), number of output channels
(K), and number of inputs or batch size (N). Matrix-matrix
multiplications can be expressed as convolutions by setting R,
S, P and Q to 1, and matrix-vector multiplications can also
be expressed by setting R, S, P, Q and N to 1. Therefore,
Timeloop also supports fully-connected (FC) layers and re-
current neural network (RNN) layers since they are essentially
matrix-vector multiplications. CONV and FC layers account
for a majority of the computation in DNNs (e.g., 99.25% in
ResNet50 [17] inference on ImageNet). In general, Timeloop
can analyze any workload that can be described as a deep
loop nest with fixed base and bounds, with operand indexing
expressions that are a linear composition of loop indices and
body iterations that may be freely re-ordered.

From the nested loop in Figure 3, we see that loops
have constant base and bound. Convolution operand tensors
(i.e., weights and inputs) and result tensors (i.e., outputs) are
indexed using linear combinations of loop indices, and all loop



arch = {
arithmetic = {

instances = 256;
word-bits = 16;

};
storage = ({

name = "RFile";
entries = 256;
instances = 256;
meshX = 16;
word-bits = 16; },

{
name = "GBuf";
sizeKB = 128;
instances = 1;
word-bits = 16;

}, {
name = "DRAM";
technology = "DRAM";
instances = 1;
word-bits = 16;

} ); };

Fig. 4. Eyeriss [6] organization described in Timeloop. In addition to this
organization spec, mapspace constraints (in Section V-D) are required to
capture Eyeriss’ row-stationary dataflow.

iterations are commutative. Each iteration of the loop body is a
MAC operation, which we refer to as a point in the operation
space of a workload. This space consists of all the integer
lattice points enclosed by the 7D hyper-rectangle defined by
the loop bounds. These dimensions also define 4D hyper-
rectangles for each of the operand and result tensors, which we
call dataspaces: the C∗K ∗R∗S weight tensor, the N ∗K ∗P∗Q
output tensor, and the N ∗C ∗ (P+R− 1) ∗ (Q+ S− 1) input
tensor. Given a set of points in the operation space, Timeloop
can determine the set of operands and results for those points
by projecting the 7D operation points into the 4D dataspace
dimensions.

B. Architecture Specification

To describe an architecture in Timeloop, one must specify
(a) the hardware organization, i.e., the topology of intercon-
nected compute and storage units, and (b) mapspace con-
straints that limit the set of mappings allowed by the hardware.
We describe the organization specification in this section, and
cover mapspace constraints in Section V-D.

Timeloop uses an organization template that is sufficiently
parameterizable to model a variety of architectures of interest.
The template is a hierarchical tree of storage elements with
a set of arithmetic units (such as MACs) at the leaves and a
backing store (such as DRAM) holding all of the workload’s
data at the root. Timeloop supports an arbitrary number
of memory levels. For each memory level, the number of
instances, entries per instance, bits in each entry, bandwidth,
and various other microarchitectural attributes can be specified.

Interconnection network topology is automatically inferred
from the storage hierarchy specification; additional micro-
architectural properties can be explicitly specified. Inter-level
networks are either point-to-point or fan-out/fan-in networks
capable of multi-casting operands and/or spatially reducing
partial sums (using adder trees) — abilities that have a signif-
icant impact on energy efficiency [24]. Intra-level networks
connect peer-instances within a level and may be used to
forward operands and partial sums between neighbors, eliding
expensive accesses to a larger parent storage.

Figure 4 shows the organization of Eyeriss [6] specified in
the Timeloop format. The configuration uses 256 PEs (each
with a MAC unit and a private 256-entry register file), a single
shared 128KB global buffer, and a backing DRAM. In addition
to this organization specification, we also need to model the

1 // === 1D Convolution Workload ===
2 for r=[0:R):
3 for p=[0:P):
4 Output[p] += Weight[r] * Input[r+p];
5
6 // === Mapping ===
7 // DRAM
8 for r3=[0:R3):
9 for p3=[0:P3):

10 // GBuf
11 for r2=[0:R2):
12 for p2=[0:P2):
13 // Spatial: GBuf->RFile
14 parallel_for r1=[0:R1):
15 parallel_for p1=[0:P1):
16 // RFile
17 for r0=[0:R0):
18 for p0=[0:P0):
19 p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
20 r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
21 Output[p] += Weight[r] * Input[r+p];

1

Weights

Inputs

R

W=P+R-1

r

p

Fig. 5. Example mapping of a 1D convolution onto the Eyeriss organization.
Inset: the projections defined by this workload from the operation space to
the input and weight dataspaces.

row-stationary dataflow enforced by the architecture. This is
done by using mapspace constraints described in Section V-D.
To understand mapspace constraints, we must first understand
the structure of a mapping in Timeloop.

C. Mappings

A mapping describes the way in which the operation space
and the associated dataspaces are split into tiles (chunks)
at each level of the memory hierarchy and among multiple
memory instances at each level. We use a loop nest based
mapping representation which can describe all facets of a
mapping in a single unified format. Figure 5 shows a 1D
convolution workload with input activation of size P and filter
size R followed by an example mapping onto the Eyeriss
organization from Figure 4. To construct the mapping, the 1D
convolution loop nest is split into a number of sections (called
tiling levels) equal to the the number of storage hierarchy
levels, plus the number of levels with spatial fanouts. Each
tiling level has a loop corresponding to each dimension in the
original workload (though the bound may be 1). The product
of all the loop bounds belonging to a dimension must be equal
to the final (optionally padded) value of the dimension, e.g.,
P = P0∗P1∗P2∗P3 and R = R0∗R1∗R2∗R3.

Using the mapping in Figure 5 as an example, we see:
(1) Loop bounds at each tiling level determine the size of the

tile for each dataspace held at that level, e.g., each RFile owns
an R0∗P0-sized operation space tile, which projects onto R0,
(P0+R0− 1), and P0-sized weight, input, and output tiles,
respectively. Size of the dataspace tiles is constrained by the
size of the buffer at each level.

(2) parallel_for loops represent spatial partitioning of
tiles across instances of a level, e.g., the parallel_for
loops above distribute the (R0 ∗ R1) ∗ (P0 ∗ P1) operation
space (and the dataspace projections thereof) across (R1∗P1)
instances of the RFile. This specific mapping results in repli-
cation of some input data (called a halo) between adjacent
RFile instances.



constraints = ({
type = "spatial";
target = "GBuf->RFile";
factors = "S0 P1 R1 N1";
permutation = "SC.QK";},

{ type = "temporal";
target = "RFile";
factors = "R0 S1 Q1";
permutation = "RCP";});

Fig. 6. Row-stationary dataflow used in Eyeriss [6] described as a set of
Timeloop mapspace constraints.

(3) Ordering of loops within a tiling level determines the
sequence in which sub-tiles will be delivered from that level to
an inner level during execution, e.g., the GBuf owns an (R0∗
R1 ∗R2) ∗ (P0 ∗P1 ∗P2)-sized operation space tile. Iterating
over the p3 loop at DRAM results in interesting changes in
each GBuff dataspace tile: the weights remain stationary, the
outputs get replaced each iteration, and the inputs display an
overlapping sliding-window pattern, which means the DRAM
only needs to supply the portion of the tile that is not already
present in the GBuf. Inferring these dataspace changes (or
deltas) is a primary function of Timeloop’s access-count model
described in Section VI-A.

This representation produces a strictly inclusive tile hierar-
chy, which may not be optimal. When a dataspace has less
reuse at a level, allowing it to bypass that level opens up
the capacity to other dataspaces, enabling larger tile sizes and
potentially resulting in a more optimal mapping. Our mapping
specification includes a directive (not shown for brevity) for
specifying which dataspaces are allowed to reside at each level.

The approach used for this 1D convolution example can be
easily extended to a higher-dimensional space, such as a 7D
CNN layer. This unified mapping representation allows us to
reason about the space of possible mappings (or mapspace)
for an architecture in a structured, programmatic manner.

D. Mapspace Constraints

By default, Timeloop assumes that a specified hardware
organization is fully flexible, i.e., networks and state machines
in the hardware are fully programmable, which gives a mapper
complete flexibility in partitioning and scheduling arithmetic
operations and data movement across the hardware resources.
To keep hardware designs simple and efficient, most real
architectures are constrained in various ways and only sup-
port a subset of the complete mapspace. We model these
using mapspace constraints, a generalization of the concept of
dataflows [6] introduced in prior work. To explain Timeloop’s
constraints, we augment the Eyeriss architecture specification
from Section V-B with a list of constraints in Figure 6. Each
constraint targets a single tiling level in the mapping.

Factors in a constraint fix values for loop bounds in the
mapping (recall mapping in Figure 5). An un-specified factor
gives Timeloop’s mapper full flexibility in determining an
optimal value. Permutations specify loop ordering within a
tiling level. Left un-specified (or partially specified), they give
Timeloop flexibility to reorder loops.

When applied to a spatial tiling level (parallel_for),
these directives affect the partitioning of the workload space
across a hardware spatial dimension. In Figure 6, the S0
P1 R1 N1 factors disallow parallelism along the P, R and

N dimensions and force unrolling along the S (filter height)
dimension. The SC.QK permutation constraint forces S and C
to be unrolled on the physical X-axis of the mesh of hardware
PEs, and Q and K on the Y-axis.

When applied to a temporal tiling level (for), these
directives affect tile sizes and data access patterns at that level.
In Figure 6, the R0 S1 Q1 factors force each PE to exhaust
the entire R (filter-width) dimension as a temporal loop, and
allow it to only map one row of filters and one row of output
activations. Additionally, level bypass constraints (not shown
in the example) dictate whether a level must compulsorily store
or bypass a tensor, or whether the mapper is free to explore
various alternatives.

Together, the constraints in Figure 6 are sufficient to model
a row-stationary dataflow. Once the constraints are set up,
Timeloop automatically infers and exploits the various spatio-
temporal reuse opportunities described in [6].

E. Mapspace Construction and Search

A mapspace is the set of all legal mappings of a workload
onto an architecture. All mappings in a mapspace have the
same number of tiling levels, but differ in (a) the values as-
signed to the loop bounds at each level and (b) the permutation
of loops within each level. To construct the mapspace, we
must enumerate all possible factorizations of each workload
dimension across levels (we call this the IndexFactorization
sub-space), all possible permutations of loops within a level
(the LoopPermutation sub-space), and all level bypassing al-
ternatives (the LevelBypass sub-space). The Cartesian product
of these sub-spaces gives us an unconstrained mapspace,
which can be quite large due to combinatorial explosion, e.g.,
for a 7D CNN on a 4-tiling-level architecture the size is
(7!)4× (24)3× size of the Cartesian product of the co-factor
sets for each of the 7 loop bounds. While there are ways
to prune this space, e.g., permutations do not matter for the
innermost tiling level, and for factors that are 1, the space is
still large.

User-specified constraints are accommodated into the
mapspace, shrinking the sizes of the underlying sub-spaces. A
mapping sampled from the mapspace is therefore guaranteed
to obey those constraints. Hardware resource constraints, e.g.,
whether a set of tensor tiles at a level fit into the size
of memory at that level, are checked once a mapping is
sampled from the mapspace, and the mapping is rejected if
the constraints cannot be met.

A search routine samples a mapping from the pruned-
and-constrained mapspace, evaluates it using the architecture
model (described next in Section VI), and chooses the next
mapping to evaluate based on some heuristic. For our experi-
ments, we currently employ either an exhaustive linear search
(for small mapspaces) or a random sampling based heuristic
(for large mapspaces). More sophisticated search heuristics
are planned for future work. For most experiments, we use
energy-delay product as the goodness metric, though any of
the statistics provided by the model can be trivially used for
this purpose.



VI. TIMELOOP MODEL

Timeloop’s architecture model evaluates a mapping by first
analyzing hierarchical tiles of data that represent the mapping
and measuring the transfer of data between them to obtain tile-
access counts. Next, these tile-access counts are used to derive
the access counts to hardware components, which combined
with the energy per access model give performance and energy.
The technology model also provides an area estimate based on
the architecture specification.

A. Tile Analysis

As explained in Section V-C, loop bounds at each tiling level
determine the tile for the operation space, and in turn for each
dataspace held at that level. To compute tile-access counts, we
must determine the volumes of data that must move between
the tiles over space and time to execute the schedule dictated
by the mapping. To perform this analysis, Timeloop uses a
data structure called a point set to track tiles of operation and
operand/result spaces at each time step and at each instance
of a hardware unit (such as a multiplier or a buffer instance).

Consider two consecutive iterations i and i+1 at any loop in
a mapping (from Figure 5). At each iteration, we can determine
the point sets required by the complete sub-nest underneath
this loop. We call the set-difference between these point sets
a delta (see Figure 7). The size of this delta has different
connotations for spatial and temporal loops.

1

tile i

tile i+1

delta

Fig. 7. The delta for tile
i+1 are points in tile i+
1 that are not in tile i.

For a temporal (for) loop, an empty
delta indicates perfect reuse over time
(stationarity), requiring no additional
data movement. A non-empty delta—
indicating no reuse or partial reuse
(such as in a sliding-window pattern)—
represents the incremental data that
must be transferred between levels.

For a spatial (parallel_for)
loop, the deltas represent overlaps between data held at
adjacent hardware instances (represented by the iterations i
and i+ 1). An empty delta at the same time step indicates a
multicasting opportunity, while an empty delta at consecutive
time steps between adjacent hardware instances indicates a
forwarding opportunity (such as in a systolic array).

To compute all tile access counts, we need to measure and
accumulate deltas over all space (all hardware units) and time
(the complete execution of the mapping). A naı̈ve but robust
way to do this is to effectively simulate the execution of the
entire loop nest on the architecture. Sadly, this is unacceptably
slow. Fortunately, DNN workloads index into operand and
result tensors in a very regular way, and in most cases with
each loop index variable showing up only once in the indexing
expressions for each tensor. This allows for two optimizations.
First, Timeloop only needs to compute the tiles for the first,
second and last iterations of each loop. The deltas between
other iterations will be of the same shape and size as between
the first and second iterations, so the access costs of these
other iterations can be algebraically extrapolated. Second, each

tile shape is an axis-aligned hyper-rectangle within the tensor,
which allows for easy delta calculation.

B. Microarchitecture Model

Because of the regular computation and data movement
patterns exhibited by DNN layers, buffer accesses and network
transfers can usually be statically scheduled, largely avoiding
irregular and disruptive bank and network conflicts. Therefore,
given a set of tile-access counts, performance can be projected
using a throughput/bandwidth based approach, and energy can
be estimated using linear transformations of the tile-access
counts. The first transformation step is to determine access
counts for various microarchitectural structures.

Multiplier accesses are the accesses of the innermost tile of
the operation space.

Buffer accesses and network ingresses are linear functions
of data transfer counts between levels obtained from tile anal-
ysis. SRAM buffers can have various aspect ratios and bank
configurations, and can be ganged together as vectors for area
and energy-efficiency; these configurable micro-architectural
parameters are factored into the access count calculations.
Partial sums require a read, a write and a temporal accumu-
lation operation. Some architectures may elide the first zero-
read, and may support local accumulation at some buffers.
Network activity includes traffic between levels (including fan-
out and multi-cast traffic), as well as traffic between storage
instances at the same level (if they forward data to each other).
Multi-cast signatures from the tile analysis stage are used to
determine the spatial locations of child instances targeted by a
specific parent→child data transfer. The architectural topology
determines the number of hops required for the data to be
routed to the destinations. Spatial reduction of output tensors
is also derived from network activity.

Address generators are adders surrounded by state machines
used by accelerators to generate read and write addresses for
storage elements. The number of invocations to these is equal
to the number of accesses to the storage element. The bit-
width of the adders is log2 of the number of vector entries in
the storage element; this is used by the energy model.

C. Technology-Specific Area/Energy Models

Timeloop supports several user-extensible technology mod-
els for area and energy modeling. The nominal TSMC 16nm
FinFET-based model used in most of our case studies (except
where noted otherwise) has the following components:

(1) A Memory Model supports the modeling of memory
with different sizes, aspect ratios, number of ports and banks.
It also supports different memory implementations, including
DRAM, SRAM and register files. The SRAM and register-
file component is based on a database of area and energy-per-
access costs that is created by generating and measuring a large
variety of memory structures with different parameters using
an internal memory compiler in TSMC 16nm. The DRAM
model is based on average pJ/bit access costs and supports
LPDDR4, HBM, DDR4 and GDDR5 technologies.



TABLE I
VALIDATED DNN ACCELERATOR ARCHITECTURES.

NVDLA-derived [28] Eyeriss [8]

Dataflow Weight Stationary Row Stationary

Reduction Spatial Reduction Temporal Reduction

Memory Hierarchy Distributed and Partitioned Buffer Centralized L2 Buffer

Interconnect N/A Multicast/Unicast

Technology 16 nm 65 nm

(2) An Arithmetic Model supports modeling of MACs with
different bit-widths. It is also based on a database of area and
energy per access costs created by synthesizing and measuring
various multiplier and adder designs for different bit-widths
in TSMC 16nm. For bit-widths not in the database, Timeloop
scales energy per access either quadratically (for multipliers)
or linearly (for adders).

(3) A Wire/Network Model supports the modeling of on-
chip networks with different bit-widths. To model the wire
energy consumed for a network hop, area estimates are used to
determine the wire distance between the two ends of the hop.
This distance is multiplied with a fJ/bit/mm value measured
in TSMC 16nm to determine the per-hop energy.

D. Estimating Performance and Energy

Performance is estimated by calculating the number of
cycles it would take for each hardware component to complete
the workload in isolation. For multipliers, required cycles
are equal to the number of MACs in the workload divided
by the number of multipliers. For communication interfaces,
required cycles are equal to the amount of data flowing through
that interface divided by its bandwidth. Buffers, networks and
arithmetic units are modeled to be operating in a pipeline.
Thus, the overall latency is the maximum of isolated execution
cycles across all buffers, networks, and arithmetic units in
the hardware. This model, which assumes negligible pipeline
stalls, is reasonable for architectures that use double-buffering
or more sophisticated techniques like buffets [30].

Energy consumption is estimated by multiplying the hard-
ware component access count with the energy per access
from the energy model, taking sparsity into account. The
total energy consumed by the mapping is the sum of energy
consumed by all the components.

E. Extensibility beyond regular workloads/architectures

While our throughput-based performance model and linear
energy model are adequate for regular DNN architectures,
we believe that our approach of separating a high-level tile
analysis from a low-level microarchitecture model allows
for extensibility to more complex architectures as well. Tile
analysis produces a compact representation of a mappings
data access patterns, which can be fed into a non-linear
modeling backend if desired, e.g., one with a stochastic model
of network conflicts/congestion, or even a full simulation of a
network serving those accesses.

Fig. 8. Energy validation results for NVDLA-derived architecture.

VII. TIMELOOP VALIDATION

We validate Timeloop across a wide range of workloads
with two state-of-the-art DNN accelerators for which accurate
performance and energy characterizations are available.

A. Architectures

To demonstrate Timeloop’s ability to flexibly evaluate di-
verse DNN architectures, we validate Timeloop against two
representative DNN accelerator architectures that are notably
different in scale, organization, dataflow and technology. The
architectures’ key attributes are summarized in Table I.

1) NVDLA-derived Architecture: NVDLA is an open-
source hardware accelerator design for automotive applica-
tions [28]. To better understand the design trade-offs in
DNN accelerators, we designed an in-house, NVDLA-derived
architecture in RTL. Similar to NVDLA, it also deploys a
weight-stationary dataflow with spatial reduction. However,
it features a distributed and partitioned weight and input
L1 buffer for better local reuse. We use a detailed in-house
simulator designed to accurately model this specific architec-
ture to derive reference performance and energy numbers for
validation against Timeloop.

2) Eyeriss Architecture: Eyeriss is one of the first efficient
and flexible DNN accelerators [6]. As shown in Table I, it
proposes a novel row-stationary dataflow with both a temporal
reduction datapath, a centralized L2 buffer, and a flexible
network that supports both multicast and unicast. In addition,
Eyeriss was designed using a 65nm technology. To validate
Timeloop against Eyeriss results, we use the 65nm model from
Table IV in [6].

B. Workloads

We validate Timeloop using DNN kernels from the Deep-
Bench benchmark suite [10] augmented with additional syn-
thetic DNN kernels with representative configurations. The
DeepBench suite includes 107 DNN workloads capturing com-
putation in convolution, matrix-matrix multiply, and matrix-
vector multiply of different dimensions, all of which are
commonly used in modern neural networks, e.g., computer
vision and speech recognition.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

A
cc
u
ra
cy

Workload

Fig. 9. Performance validation results for NVDLA-derived architecture.

C. Validation Results

Figure 8 shows energy validation results for Timeloop
against our NVDLA-derived baseline. The bar on the left
shows the energy breakdown from Timeloop, and the bar
on the left represents the baseline energy. All the energy is
normalized to the total baseline energy. The X-axis represents
different workloads from DeepBench. We show a subset
of DeepBench workloads in Figure 8 for brevity, though
Timeloop accurately captures the energy behavior of the
accelerator across the entire benchmark suite, with projections
for all 107 workloads within 8% of the baseline.

Figure 9 shows performance validation results for Timeloop
against our NVDLA-derived baseline architecture. The X-
axis represents a range of synthetic workloads and the Y-axis
plots accuracy measured as the cycles reported by Timeloop
divided by reference cycles. Accuracy ranges from 78% to
99% with a mean of 95% across all workloads. Recall that
Timeloop uses a throughput based performance model that
assumes minimal pipeline disruptions from fills and drains.
Despite this assumption, accuracy is high (90% to 99%) on
all but six outlier workloads, in this case because the hardware
uses buffets [30], which provides efficient overlap of compute
and data-transfers with minimal additional storage. This can
also achieved via double-buffering but at the cost of twice the
amount of storage.

The lower accuracy (78% to 88%) for six outlier workloads
is a consequence of sub-optimal data layout and transfer orders
in the hardware. For example, in one case, the sequence of
addresses used by the hardware address-generator filling the
Input Buffer was different from the sequence used by the
address-generator reading from the buffer, causing unexpected
pipeline stalls. We belatedly realized that these are sub-
optimal configurations of the hardware, and believe that better
configurations would show better correlation with Timeloop’s
projections.

Figure 10 shows results for the validation experiment
against the Eyeriss architecture. Specifically, our objective
here is to recreate the experiment and results in Figure 10
of the Eyeriss paper [6], with AlexNet [21] as the workload.
The architecture’s organization and mapspace constraints were

CONV1 CONV2 CONV3 CONV4 CONV50.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
En

er
gy

1e10
RF
Buffer+Array
DRAM
ALU

(a) Data from [6]

CONV1 CONV2 CONV3 CONV4 CONV50.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
En

er
gy

1e10
RF
Buffer+Array
DRAM
ALU

(b) Timeloop Model

Fig. 10. Normalized energy for AlexNet layers on a 256-PE Eyeriss [6]
architecture employing a row-stationary dataflow.

previously described as examples in Sections V-B and V-D
respectively. We see that Timeloop’s estimation tracks quite
closely with the energy reported from the prior study.

VIII. CASE STUDIES

This section demonstrates Timeloop’s power and flexibil-
ity by evaluating a variety of distinct architectures such as
NVDLA [28], Eyeriss [6] and DianNao [5] over a range of
applications. We first show how designers can use Timeloop to
quickly analyze different application behaviors on a given ar-
chitecture and quantify its performance and energy efficiency.
We then present a sampling of case studies that DNN acceler-
ator designers can conduct with Timeloop, e.g., understanding
the impact of technology scaling on the mapping strategy,
optimizing the energy efficiency through tailoring the memory
hierarchy for the dataflow, and systematically comparing and
quantifying the differences between existing DNN accelerator
architectures.

A. Case Study: Workload Characterization

We first demonstrate how DNN accelerator designers can
use Timeloop to characterize an architecture over a suite of
workloads and derive a host of insightful statistics. Specifi-
cally, we use Timeloop to evaluate all DeepBench workloads
running on the NVDLA architecture. Figure 11 shows a
detailed characterization of each workload with its optimal
mapping found using Timeloop. The Y-axis on the left shows
the normalized total energy over the MAC energy, while
the one on the right shows the algorithmic reuse of each
benchmark, defined as the number of MACs divided by the
minimum number of DRAM accesses, i.e., the total size of
inputs, weights and outputs. We also show the MAC utilization
on the top where we achieve close-to-1 utilization in most of
cases except the ones with shallow input (C < 64) and output
(K < 16) channels as NVDLA spatially maps C and K to its
MACs. We observe that energy is dominated by DRAM for
workloads with low reuse. On the contrary, workloads with
high reuse are more affected by the efficiency of on-chip
components. This study shows how Timeloop allows DNN
accelerator designers to quickly evaluate a DNN accelerator
across a wide range of application without having to write
RTL or even a C++ model.



0

100

200

300

400

500

600

700

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
67 21 94 51 91 86 56 58 32 48 10
5

10
6 88 36 97 33 14 87 20 53 92 77 54 31 2 96 80 7 83 84 10
1

10
0 27 37 8 46 19 11 50 68 4 65 12 52 35 66 22 69 18 70 17 71 72

10 59 15 78 42 7510247 49 39 57 8910490 29 81 40 2610344 76 93 45 38 0 1 79 95 99 82 85 98 34 30 13 55 9 25 41 60 5 3 73 43 28 74 16 61 24 62 23 63 64

Re
us

e 
(M

AC
/M

em
or

y 
Ac

ce
ss

es
)

N
or

m
al

iz
ed

 E
ne

rg
y 

pe
r 

M
AC

DeepBench Workload Index

MAC Registers Accumulation Buffer Weight Input Buffer DRAM Reuse

0

1
MAC Utilization

10 59 15 78 42 75 10
2 47 49 39 57 89 10
4 90 29 81 40 26 10
3 44 76 93 45 38 0 1 79 95 99 82 85 98 34 30 13 55 9 25 41 60 5 3 73 43 28 74 16 61 24 62 23 63 64

62.2

55.3

48.4

41.5

34.6

27.6

20.7

13.8

6.9

0

Fig. 11. Energy/MAC breakdown for DeepBench workloads sorted by algorithmic reuse.

B. Case Study: Impact of Technology

Technology differences change the relative energy and area
costs of different components, e.g., arithmetic and memory,
which may in turn change the optimal mapping of a workload
on an architecture. This study evaluates Timeloop’s Eyeriss
configuration with different technology models and highlights
the importance of a mapper in the evaluation of DNN architec-
tures. Specifically, we compare energy efficiency and different
mapping choices using both Eyeriss’ original 65nm energy
model and our 16nm energy model.

Figure 12(a) shows the energy breakdown of Eyeriss archi-
tecture running AlexNet layers with 65nm and 16nm models.
Energy is normalized to the total energy of each layer. In
both configurations, we use the same optimal mapping from
65nm (65map). We see that technology change causes a
re-distribution of energy between hardware components. In
addition, we see that the optimality of mappings does not
trivially carry over across different technologies—the optimal
mapping for 65nm is sub-optimal for the 16nm model, as
illustrated in Figure 12(b). We can reduce the overall energy
up to 22% by re-evaluating the mapspace with the 16nm model
and finding the optimal mapping for that technology (16map).

0
1E+10

2E+10
3E+10

4E+10
5E+10

6E+10
7E+10

CO
NV

1-
65

m
ap

CO
NV

1-
16

m
ap

CO
NV

2-
65

m
ap

CO
NV

2-
16

m
ap

CO
NV

3-
65

m
ap

CO
NV

3-
16

m
ap

CO
NV

4-
65

m
ap

CO
NV

4-
16

m
ap

CO
NV

5-
65

m
ap

CO
NV

5-
16

m
ap

N
or

m
al

ize
d 

En
er

gy

MAC DRAM Buffer + Array RF

0%

20%

40%

60%

80%

100%

CO
NV

1-
65

nm
CO

NV
1-

16
nm

CO
NV

2-
65

nm
CO

NV
2-

16
nm

CO
NV

3-
65

nm
CO

NV
3-

16
nm

CO
NV

4-
65

nm
CO

NV
4-

16
nm

CO
NV

5-
65

nm
CO

NV
5-

16
nm

En
er

gy
 B

re
ak

do
w

n

MAC DRAM Buffer + Array RF
Both using 65map Both using 16nm

(a) (b)

Fig. 12. (a) Energy breakdown of the same mapping with different technolo-
gies, i.e., 65nm and 16nm. (b) Normalized energy of the same technology
16nm with different mapping choices. 65map is the optimal mapping with
65nm model, while 16map is the optimal mapping with 16nm model.

C. Case Study: Memory Hierarchy Optimization

The Eyeriss architecture we have modeled so far uses a 256-
entry register file (RF) in each PE as the innermost storage
level, which is shared across all dataspaces and contributes
a significant amount of energy consumption, as shown in
Figure 12. In this study, we explore two designs that aim
to reduce the RF energy consumption by (1) adding an
additional one-entry register at the innermost storage level, and
(2) partitioning the shared RF into separate ones for inputs,
weights and partial sums. As the row-stationary dataflow has
high temporal locality in the RF for inputs and partial sums,
the RFs for inputs and partial sums are allocated with 12 and
16 entries, respectively, to take advantage of a small capacity
to reduce their access cost. The rest of the entries are allocated
for the weight. This is inspired by how Eyeriss is actually
implemented in [8], which is slightly different from the model
in [6].

Figure 13 shows the normalized energy for various work-
loads (with batch size of 1) of the three Eyeriss variants.
For each layer, the bars from left to right are Eyeriss with:
(1) a shared RF, (2) a shared RF and an additional register,
and (3) a partitioned RF. The result shows that the memory

10

20

440

450

460

470

0

N
or

m
al

iz
ed

 E
ne

rg
y/

M
AC

AlexN
et_CONV1

AlexN
et_CONV2

AlexN
et_CONV3

AlexN
et_CONV4

AlexN
et_CONV5

AlexN
et_FC6

AlexN
et_FC7

AlexN
et_FC8

DeepBench_10

DeepBench_48

DeepBench_93

DeepBench_9

DeepBench_69

30

40

Shared RF

Shared RF + Register

Partitioned RF

Fig. 13. Normalized energy per MAC for three different Eyeriss designs. For
each layer, the three bars from left to right are Eyeriss with (1) a shared RF,
(2) a shared RF and an additional register, and (3) a partitioned RF.



0

0.1

1.0
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

AlexN
et_CONV1

AlexN
et_CONV2

AlexN
et_CONV3

AlexN
et_CONV4

AlexN
et_CONV5

AlexN
et_FC6

AlexN
et_FC7

AlexN
et_FC8

DeepBench_10

DeepBench_48

DeepBench_93

DeepBench_9

DeepBench_69

0.5

(a) Normalized Performance

0

10

500

N
or

m
al

iz
ed

 E
ne

rg
y/

M
AC

AlexN
et_CONV1

AlexN
et_CONV2

AlexN
et_CONV3

AlexN
et_CONV4

AlexN
et_CONV5

AlexN
et_FC6

AlexN
et_FC7

AlexN
et_FC8

DeepBench_10

DeepBench_48

DeepBench_93

DeepBench_9

DeepBench_69

100

(b) Normalized Energy/MAC

Fig. 14. Performance and Energy Efficiency Comparisons of NVDLA, DianNao, and Eyeriss.

hierarchy optimizations in (2) and (3) reduce the total energy
consumption in all the workloads. The improvement is more
pronounced in convolutional layers, which show an over 40%
reduction in energy. This case study shows that the co-design
of dataflow and memory hierarchy implementation is crucial
to the energy efficiency of an architecture; Timeloop can
effectively guide this design space exploration.

D. Case Study: Modeling of Existing Architectures

In this study, we use Timeloop to model and compare
the performance and energy efficiency of three representative
architectures from prior work: NVDLA, DianNao, and Eyeriss.
Since NVDLA has more PEs (1024 PEs) than the nominal
configurations of DianNao and Eyeriss (256 PEs), we also
model scaled variants of DianNao and Eyeriss with 1024 PEs
each. Increasing the number of PEs scales the multipliers,
buffers and network, but results in each architecture occupying
a different silicon area from NVDLA (because of organiza-
tional differences). Therefore, we then adjust the buffer sizes
to align the final area with NVDLA. Figure 14 shows the
normalized performance and energy of the three architectures.

First, NVDLA demonstrates higher performance and energy
efficiency compared to the other two architectures except
for AlexNet CONV1 and DeepBench workload 10, both of
which have shallow input channels (C). As both NVDLA and
DianNao map input channels spatially across PEs, when the
network has smaller number of input channels, not all the PEs
can be utilized during its execution. In contrast, Eyeriss shows
a consistent performance across different workloads thanks
to its flexible mapping scheme. Overall, this demonstrates
that there is no single architecture in this experiment that is
universally better than the others.

In addition, the scaled version of DianNao demonstrates
a higher energy efficiency and better performance across all
the workloads than its default version. This is mainly due to
the additional spatial reuse of inputs and the efficient spatial
reduction of partial sums in the larger PE array, which greatly
amortizes the cost of accessing the on-chip buffers.

On the contrary, while the performance of Eyeriss improves
with more PEs, its energy efficiency stays relatively the same
between the scaled and default configurations. This is due to

the fact that most of the energy in Eyeriss is consumed by
the RF in each PE instead of shared buffers. As a result, its
energy scales approximately with the number of PEs.

The case studies in this section demonstrate Timeloop’s
capability for modeling and fairly comparing a wide range
of architectures on a diverse set of workloads. The results of
such studies should be useful to inform the design of future
DNN accelerator architectures.

IX. CONCLUSIONS AND FUTURE WORK

We presented Timeloop, an infrastructure for modeling and
evaluating a rich design space of DNN accelerator architec-
tures. We demonstrated how to describe DNN architectures
using a generic template, characterize workloads such as
convolutional layers, comprehensively describe mappings us-
ing a loop-nest-style representation, and efficiently enumerate
the space of feasible mappings by combining workload and
architectural constraints. We also described computationally
inexpensive and modular techniques for modeling the data
transfers and arithmetic for a given mapping, which gives
energy and performance estimates with enough speed and
accuracy to rapidly explore architectural trade-offs, while
including the important step of using an appropriate mapping
for each accelerator design. Overall, this provides a practical
and powerful automated tool for understanding the complex
trade-offs in DNN accelerator design across a wide range of
workloads and helps navigate those trade-offs in a systematic
fashion.

Future work includes modeling inter-layer relationships to
find globally-optimal solutions for full networks (as in [2]).
Also, although Timeloop already accounts for the energy
savings due to sparsity, future work includes modeling archi-
tectures that save both time and energy [1], [15], [29], [39].
Other future work includes modeling accelerators for other
domains like graph analytics [40] and sparse tensor algebra
[20].

The generality of Timeloop opens the door to a variety of re-
search directions in accelerator architecture design, especially
for accelerators with mapping dependent behavior. We are in
the process of releasing the infrastructure to the community
under an open-source license.



ACKNOWLEDGMENTS

We thank Michael Pellauer and Christopher W. Fletcher for
sharing their insights on dataflows over numerous discussions.
We also appreciated the valuable insights William J. Dally
provided. Finally, we thank the anonymous reviewers for their
helpful and insightful comments.

Distribution Statement A. This research was, in part, funded
by the U.S. Government. The views and conclusions contained
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

REFERENCES

[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Na-
talie Enright Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-
Neuron-Free Deep Convolutional Neural Network Computing. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 1–13, June 2016.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer CNN accelerators. In Proceedings of the International Symposium
on Microarchitecture (MICRO), 2016.

[3] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby
Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan
Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang,
Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and
Zhenyao Zhu. Deep Speech 2: End-To-End Speech Recognition in
English and Mandarin. https://arxiv.org/abs/1512.02595, 2015.

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated
end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, Carlsbad, CA, 2018. USENIX Association.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. DianNao: A Small-footprint High-throughput
Accelerator for Ubiquitous Machine-learning. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), pages 269–284, March
2014.

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Convolutional Neural
Networks. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 367–379, June 2016.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Using Dataflow to
Optimize Energy Efficiency of Deep Neural Network Accelerators. IEEE
Micro’s Top Picks from the Computer Architecture Conferences, 37(3),
May-June 2017.

[8] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. Eyeriss:
An Energy-efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. In Proceedings of the International Solid State
Circuits Conference (ISSCC), February 2016.

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) From Scratch. In
arxiv.org, 2011.

[10] DeepBench. https://github.com/baidu-research/DeepBench.
[11] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates,

E. Elsen, J. Engel, A. Hannun, and S. Satheesh. Persistent RNNs:
Stashing Recurrent Weights On-Chip. In ICML, June 2016.

[12] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDianNao:
Shifting Vision Processing Closer to the Sensor. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 92–
104, June 2015.

[13] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and efficient neural network acceleration
with 3d memory. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operation
Systems (ASPLOS), 2017.

[14] A. Graves and J. Schmidhuber. Framewise Phoneme Classification With
Bidirectional LSTM and Other Neural Network Architectures. In Neural
Networks, 2005.

[15] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark
Horowitz, and Bill Dally. EIE: Efficient Inference Engine on Com-
pressed Deep Neural Network. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 243–254, June
2016.

[16] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng. Deep
Speech: Scaling Up End-To-End Speech Recognition. https://arxiv.org/
abs/1412.5567, 2014.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[18] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 1–12,
2017.

[19] Liu Ke, Xin He, and Xuan Zhang. Nnest: Early-stage design space ex-
ploration tool for neural network inference accelerators. In Proceedings
of the International Symposium on Low Power Electronics and Design,
ISLPED ’18, pages 4:1–4:6, New York, NY, USA, 2018. ACM.

[20] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and
Saman Amarasinghe. The Tensor Algebra Compiler. In Proc. OOPSLA,
2017.

[21] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Proceedings of the
International Conference on Neural Information Processing Systems
(NIPS), December 2012.

[22] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri:
Enabling flexible dataflow mapping over dnn accelerators via reconfig-
urable interconnects. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 461–475, New York, NY, USA,
2018. ACM.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning.
Nature, 521:436–444, May 2015.

[24] C. Lee, Y.S. Shao, J-F Zhang, A. Parashar, J. Emer, S.W. Keckler,
and Z. Zhang. Stitch-x: An accelerator architecture for exploiting
unstructured sparsity in deep neural networks. In SysML Conference,
2018.

[25] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and
Xiaowei Li. Flexflow: A flexible dataflow accelerator architecture for
convolutional neural networks. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), 2017.

[26] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop
operation and dataflow in FPGA acceleration of deep convolutional
neural networks. In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017.

[27] Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil
Ghiasi. Design space exploration of FPGA-based deep convolutional



neural networks. In 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), 2016.

[28] Nvidia. NVDLA Open Source Project, 2017.
[29] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,

Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keck-
ler, and William J Dally. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2017.

[30] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kar-
tik Hegde, Rangharajan Venkatesan, Stephen W. Keckler, Christopher W.
Fletcher, and Joel Emer. Buffets: An efficient and composable storage
idiom for explicit decoupled data orchestration. In Architectural Sup-
port for Programming Languages and Operating Systems (to appear),
ASPLOS ’19, 2019.

[31] Benoı̂t Pradelle, Benoı̂t Meister, M. Baskaran, Jonathan Springer, and
Richard Lethin. Polyhedral Optimization of TensorFlow Computation
Graphs. In Workshop on Extreme-scale Programming Tools (ESPT),
November 2017.

[32] Atul Rahman, Sangyun Oh, Jongeun Lee, and Kiyoung Choi. Design
space exploration of FPGA accelerators for convolutional neural net-
works. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

[33] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Saekyu Lee, Jose Miguel Hernandez Lobato, Gu-
Yeon Wei, and David Brooks. Minerva: Enabling Low-Power, High-
Accuracy Deep Neural Network Accelerators. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 267–

278, June 2016.
[34] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,

Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to FPGAs. In Proceedings of the
International Symposium on Microarchitecture (MICRO), 2016.

[35] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing CNN
accelerator efficiency through resource partitioning. In Proceedings of
the International Symposium on Computer Architecture (ISCA), 2017.

[36] Kodai Ueyoshi, Kota Ando, Kentaro Orimo, Masayuki Ikebe, Tetsuya
Asai, and Masato Motomura. Exploring optimized accelerator design
for binarized convolutional neural networks. In International Joint
Conference on Neural Networks (IJCNN), 2017.

[37] Kaiyi Yang, Shihao Wang, Jianbin Zhou, and Takeshi Yoshimura.
Energy-efficient scheduling method with cross-loop model for resource-
limited cnn accelerator designs. In IEEE International Symposium on
Circuits and Systems (ISCAS), 2017.

[38] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to
estimate the energy consumption of deep neural networks. In Asilomar
Conference on Signals, Systems and Computers, 2017.

[39] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-X: An Accelerator
for Sparse Neural Networks. In Proceedings of the International
Symposium on Microarchitecture (MICRO), October 2016.

[40] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. GraphIt-A High-Performance
DSL for Graph Analytics. arXiv preprint arXiv:1805.00923, 2018.


