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Abstract— Custom accelerators improve the energy efficiency, 

area efficiency, and performance of deep neural network (DNN) 

inference. This work presents a scalable DNN accelerator 

consisting of 36 chips connected in a mesh network on a multi-

chip-module (MCM) using ground-referenced signaling (GRS). 

While previous accelerators fabricated on a single monolithic chip 

are optimal for specific network sizes, the proposed architecture 

enables flexible scaling for efficient inference on a wide range of 

DNNs, from mobile to data center domains. Communication 

energy is minimized with large on-chip distributed weight storage 

and a hierarchical network-on-chip and network-on-package, and 

inference energy is minimized through extensive data reuse. The 

16nm prototype achieves 1.29 TOPS/mm2 area efficiency, 0.11 

pJ/op (9.5 TOPS/W) energy efficiency, 4.01 TOPS peak 

performance for a 1-chip system, and 127.8 peak TOPS and 1903 

images/s ResNet-50 batch-1 inference for a 36-chip system. 

 
Index Terms— Ground-referenced signaling, single-ended 

signaling, multi-chip modules, deep neural networks, inference 

accelerator. 

I. INTRODUCTION 

Deep neural networks (DNNs) are extremely popular and 

have been widely adopted to solve problems in a huge variety 

of fields, including image recognition [1]–[3], semantic 

segmentation [4], language translation [4], and autonomous 

driving [5]. DNN inference is currently performed on a variety 

of traditional computing systems including CPUs, FPGAs, and 

GPUs, which provide different trade-offs between efficiency, 

cost, performance and programmability. 

Due to the deterministic structure of DNNs, fixed-function 

accelerators have the potential to further improve area 

efficiency, energy efficiency, and performance relative to CPUs 

and GPUs [6]–[12]. However, the absolute performance 

requirements of DNNs vary from tiny networks on energy-

constrained edge devices to large networks in data centers. It is 

extremely expensive to build a separate chip for each of these 

applications, as each domain has widely different compute and 

memory bandwidth requirements. Additionally, in such a 

rapidly changing field, it is difficult to predict DNN 

requirements years in advance, the lead time required to 

develop a custom accelerator for a target market. 

 The goal of this work is to design a system that can easily 

scale across all application requirements with a single silicon 

chip. The main idea is to build one small chip and assemble and 

connect a variable number of these chips together on a package 

to form a multi-chip module, or MCM, as shown in Figure 1. 

MCM-based systems offer a variety of benefits [13], [14]. 

Large designs are sometimes reticle limited, and MCMs 

provide a method to increase system capacity without requiring 

board-level or system-level integration. Smaller chips have 

higher yield, as a fixed number of defects per wafer breaks 

fewer total chips as the number of chips on a wafer grows. 

Smaller chips are simpler and easier to design. A system can 

mix silicon dice from different process nodes to improve design 

reuse and reduce cost. The acceleration of new networks can be 

achieved by quickly and easily repackaging existing chips into 

an optimally sized system without waiting for the development 

and fabrication of new chips. Despite all these advantages, 

MCMs have area, performance, and power penalties relative to 

a large monolithic chip because chip-to-chip communication is 

more expensive than on-chip communication. The proposed 

system limits this penalty through energy-efficient chip-to-chip 

links, a hierarchical interconnect network, algorithmic 
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Figure 1:  Composing an MCM from various number of chiplets 

addresses different performance requirements with a single chip. 
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optimizations to exploit the latency insensitive nature of 

architecture, and flexible dataflow mapping. 

Implementing an MCM-based neural network inference 

accelerator posed some unique challenges. In order to achieve 

good performance for modern networks such as ResNet-50 [3], 

the scale of the system must be very large—compared to 

recently published 8-bit neural network accelerators [6]–[9], the 

prototype system has 15-160× the on-chip SRAM storage, and 

over 67-1300× the performance. The system was designed to 

achieve strong scaling, in which increased compute capacity 

directly reduces latency, instead of weak scaling, where larger 

batches are used to perform more work in parallel but with the 

same latency. Because there is only one unique chip in the 

system, the architecture must be efficient for both small single-

chip configurations and huge 36-chip configurations. 

The prototype system, shown in Figure 2, combines 36 

identical chips on an organic package to form a large-scale 

neural network accelerator. Each chip on the package is 2.5mm 

by 2.4mm, and 36 are connected on a 47.5mm by 47.5mm 

organic substrate. Each chip, described in Section II, has 

752KB of total SRAM storage and can perform 1,024 multiply-

and-accumulates (MACs) per cycle to execute smaller DNNs 

individually. Each package, described in Section III, combines 

36 dice together in a mesh network with 100GB/s interconnect 

in each direction to execute larger networks with 22.5MB of on-

chip SRAM and 36,864 MACs per cycle. Performance ranges 

from 4 TOPS for a 1-chip system to 128 TOPS for a 36-chip 

system. The chip was fabricated in the TSMC 16nm FinFET 

process and implemented with an agile design methodology 

further discussed in Section IV.  Experimental results in Section 

V discuss energy-efficiency and performance measurements for 

a peak performance benchmark and ResNet-50. 

II. SINGLE-CHIP ARCHITECTURE 

Each chip in the system can operate as a standalone neural 

network accelerator for smaller networks. 

A. System Operation 

DNNs are composed of a series of many layers, including 

convolutional layers, pooling layers, activation layers, and 

fully-connected layers. Each layer processes an input activation 

tensor from the previous layer and creates an output activation 

tensor for the next layer. The key workload kernel executed by 

this neural network accelerator is the convolution of a single 

layer shown in Figure 3. An input activation tensor with size 

H×W and C input channels is convolved with a weight tensor 

with size R×S and C channels. After striding R×S across H×W, 

an output of size P×Q is formed. K different weight kernels 

contribute to each of the K output channels in the output 

activation tensor. Each element of the output activation tensor 

is formed from the MAC of R×S×C elements from the input 

and weight tensors, and this MAC is repeated P×Q×K times. 

Layer dimensions vary for each layer in the DNN, so the total 

number of MAC operations required can vary from 0.6M-14M 

in DriveNet [5] to 50M-100M in ResNet-50 [3]. These MAC 

operations need to be distributed spatially across multiple MAC 

datapaths and temporally within each datapath.  

The system diagram shown in Figure 4 describes the data 

movement required to execute a convolution. Weight tensors 

are loaded once at boot through general-purpose input-output 

(GPIO) from a host and distributed across the network-on-chip 

(NoC) to SRAMs inside each of the 16 processing elements 

(PEs) (Figure 4a). Each weight tensor can be split among the 

PEs if each PE computes separate input/output channels or 

replicated on different PEs so that each PE can work on a 

different portion of the output activation in parallel. Each PE 

and the global buffer (GB) operate autonomously after a go 

command from the RVP, and are controlled by local 

configurable state machines (Figure 4b). Input activation 

tensors are loaded through GPIO and are stored in large SRAMs 

in the GB (Figure 4c). The GB sends the input activation tensor 

to the PEs, and the tensor can be split among the PEs along a 

layer dimension (such as input channel) or replicated so that 

each PE can compute a different output channel in parallel 

(Figure 4d). Each PE performs 64 MACs per cycle for a total of 

1024 MACs per cycle in the chip. Accumulation of 

intermediate sums occurs either within the PE or across 

 
Figure 4: Flow of data across the NoC router to execute a layer. 
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Figure 2: Prototype system with 36 chips connected on a package. 
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Figure 3: Generation of one output element during convolution. 
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multiple PEs (Figure 4e). Each PE sends its respective portion 

of the output activation tensor to the GB to finish layer 

computation (Figure 4f). 

B. Mapping Convolutions 

Figure 5 describes one possible mapping of a convolution 

onto the chip. The input channels are split into four parts, and 

each part is multicast to the four PEs in each row of the PE 

array. The weight tensors are allocated between the four 

columns of the PE array and replicated into each PE along the 

column. All 16 PEs perform their MACs on the partitioned 

volumes in parallel. Then, the partial sums of the top row are 

accumulated row by row until the final row of PEs has 

accumulated contributions from all C channels back together to 

form the final output activation.  

Valid mappings and communication overheads are 

determined by the layer dimensions as well as the PE and GB 

SRAM sizes. The architecture was designed to be very flexible 

and allows tiling across many different dimensions to achieve 

high efficiency across layers with very different dimensions. 

Layers with large K benefit from partitioning weight tensors 

between PEs and multicasting the input activation to each PE at 

the cost of more input activation traffic. Layers with large H×W 

benefit from replicating the weight kernels to minimize input 

activation traffic at the cost of greater weight storage 

requirements. Layers with large C benefit from splitting the 

input channels across PEs to minimize input traffic and weight 

storage at the cost of output accumulation traffic. The key to 

this architecture is that the weights remain stationary and are 

reused across multiple inputs. Only input activations, output 

partial sums, and output activations need to be transported 

across the NoC. 

C. Network-on-Chip (NoC) 

The on-chip network, shown in Figure 6, serves as the 

transport layer for network transactions between the various 

blocks in the system. Each transaction can be one of three types: 

streaming data, interrupts, or AXI transactions [15]. Streaming 

data transactions are used to send input activations, partial 

sums, and output activations between the PEs and GB. 

Interrupts are single-flit packets generated by the PEs and GB 

and sent to the RVP to signal completion of a layer. AXI 

transactions are used for all other reads and writes of registers 

and memory in the system.  A protocol similar to 64-bit AXI4-

Lite supports bursts up to 8 words in length to allow the RVP 

to fetch entire cache lines with a single transaction. All 

architecturally visible state across the multi-chip system is 

globally addressable, including control registers, PE and GB 

buffers, and the RVP scratchpad. Only the RVP implements 

AXI masters that can initiate requests, while the PEs and GBs 

implement AXI slaves to service requests to local state. To 

simplify the heavily reused AXI slave in the PE, no write 

responses are generated anywhere in the system. 

Custom hardware extensions to the AXI master block enable 

the RVP to exploit features of the system that reduce 

communication latency during runtime. A portion of the global 

address space is reserved for multicast requests: by writing to a 

particular global address, the RVP’s AXI write is converted into 

a multicast packet that writes the same data to the same local 

address of a configurable subset of the PEs on the chip or the 

RVPs in the MCM system. The RVP’s hardware interrupt lines 

are also memory-mapped, so that a write to a particular address 

can trigger an interrupt. 

The NoC routers are connected in a mesh network as shown 

in Figure 7. Each NoC transaction is encoded in a packet that is 

composed of one or more 66-bit flits. A flit is composed of 64 

bits of data and two bits of flit identification, indicating a 

header, body, or tail flit. Singleton flits are indicated by setting 

both the header and tail bits. The header flit’s 64 bits of data are 

for packet routing and other metadata; subsequent flits contain 

the packet payload. The NoC supports both unicast and 

multicast traffic, and routes are specified in the header flit with 

a bit indicating whether the packet is unicast or multicast. 

Multicast is one-hot encoded and can address all 36 chips in the 

system and 20 NoC destinations; this information consumes 56 

bits header bits. Unicast packet destinations are binary encoded, 

consuming 6 bits for network-on-package (NoP) destinations 

and 5 for NoC destinations. Unicast headers thus have available 

header bits to encode additional packet-specific information; 

only certain types of packets can be multicast due to the large 

bitwidth of the one-hot multicast address. 

 
Figure 5:  Example mapping splits input channels along rows and output 

channels along columns. 
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Figure 6:  Communication interface capabilities of the NoC. 
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Figure 7:  Units are connected in a mesh NoC. 
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The NoC router implementation uses cut-through routing 

with credit-based flow control and is pipelined to operate at full 

throughput and 2 cycles of latency. At 0.72V, each link of the 

NoC achieves 70 Gbps bandwidth. 

D. Processing Element (PE) 

Most computation is done by the processing element (PE) in 

Figure 8, which executes convolutional layers, fully-connected 

layers, and post-processing functions like bias addition, ReLU, 

and pooling. There are 8 lanes in the PE, and each lane uses a 

different weight tensor to generate elements for a separate 

output channel (K). Within each lane, an 8-bit precision vector 

MAC multiplies 8 input elements from separate input channels 

(C) with 8 weight elements and sums them to calculate a single 

output value. As the numbers of input and output channels (C 

and K) generally range from 64 to 1024, performing vector 

operations in sets of 8 elements is very efficient. Local input 

activation, output activation, and accumulation SRAMs buffer 

data for the datapath. Minimizing accesses to these SRAMs is 

critical to maximizing energy efficiency. The input activation 

SRAM is read every cycle, but the energy cost is amortized by 

distributing each element to 8 lanes. The weight SRAM is much 

wider than the input activation SRAM as it needs to supply a 

separate vector of values to each lane in the datapath, but the 

weights remain constant for multiple inputs, so the values are 

reused P×Q times. The accumulation SRAM is written every 

cycle to hold partial sums, but energy is amortized by writing 

the accumulation of the 8-wide vector of C channels. The output 

size P×Q is generally larger than the number of entries in the 

accumulation buffer, so computation is temporally tiled to 

generate a subset of output activation dimensions at a time. The 

accumulation buffer can also be written through the router from 

other PEs to perform cross-PE reduction when the weight 

kernel is split between multiple PEs. Once the full accumulation 

is complete, each PE performs the final post-processing 

functions such as ReLU, bias addition, pooling, scaling, or 

truncation to compute the final output activation. 

PE power was simulated on the post-synthesis gate-level 

netlist using activity traces from a representative workload, and 

a breakdown of PE power is shown in Figure 9 at 0.72V. The 

largest consumer of energy is the accumulation buffer SRAM, 

due to the writing of 192 bits every cycle. The second largest 

consumer is the datapath, which performs the MAC operations. 

Since the input buffer output is shared between multiple lanes, 

and the weight buffer output is used for many cycles, the 

contribution of these two SRAMs is small. PE energy efficiency 

could be optimized by using a generator to explore the design 

space of many different possible PE dataflows and precisions 

for different DNNs [16]. 

E. Global Buffer (GB) 

As input activations are generally multicast to multiple PEs, 

and output activations collected from multiple PEs, the global 

buffer acts as a second level in the memory hierarchy to store 

these activations on chip. The GB SRAM is partitioned into 

four 16KB banks which can be flexibly partitioned between 

input and output activations. The GB includes three routers that 

provide higher bandwidth into the NoC. In addition to 

managing activations, the global buffer can perform some 

forms of computation (such as element-wise computation) 

locally, without needing to send data to PEs. 

F. RISC-V Processor (RVP) 

The RISC-V core is an RV64IMAC implementation of the 

open-source Rocket Chip Generator [17] based on the 

SmallCore instance. The RVP includes a 16KiB instruction 

cache, an 8KiB data cache, and a 16KiB scratchpad. 128 

external interrupt lines are accessible via the NoC, which can 

trigger them either via interrupt transactions or AXI writes. 

G. General Purpose Input-Output (GPIO) and JTAG 

The chip uses a narrow, low-speed GPIO interface to 

communicate with a host for the purpose of loading weights, 

input activations, and RISC-V runtime software. The GPIO 

interface uses a divided on-chip clock and a ready-valid 

protocol to communicate with an FPGA, which recovers the 

clock and performs skew alignment. JTAG is used to configure 

GPIO, clocking, and routing tables, toggle reset, and provide 

observability of key signals for debug. 

III. MULTI-CHIP ARCHITECTURE 

A full MCM-based neural network accelerator is formed by 

connecting 36 dice together on the package in a mesh network 

as shown in Figure 2. There are two general strategies to utilize 

the increased computation capacity to improve throughput: 

increase parallelism or pipeline multiple layers in the system. 

When increasing parallelism, the system executes a single layer 

at a time as it does in the one-chip architecture, except 

computation is split between dice in the same manner as 

computation was split between PEs in the one-chip case. The 

 
Figure 8:  Architecture of the processing element (PE). 
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Figure 9:  Simulated power breakdown of the processing element at 0.72V. 
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latency of the layer computation is reduced (strong scaling), so 

more layers can be executed per unit time, improving 

throughput. An alternative strategy pipelines multiple layers, 

with groups of chips executing different layers simultaneously 

and forwarding their results to the next group. Pipelining 

improves throughput but does not decrease the latency of layer 

computation (weak scaling). While pipelining can improve the 

overall utilization when there is limited parallelism in a layer 

[18], this work focuses on the increased layer parallelism 

strategy to understand the limits of strong scaling. 

A. System Operation 

The system diagram shown in Figure 10 describes the data 

movement required to execute a convolution on multiple chips. 

Weight tensors are loaded once at boot through GPIO from the 

host subsystem and distributed across the NoP and NoC to 

SRAMs inside each of the 576 processing elements (PEs) 

(Figure 10a). Each weight tensor can be split among the chips 

when each chip computes a separate output channel or 

replicated on different chips so that each chip can work on a 

different portion of the input activation in parallel. The RVPs 

on each chip configure state machines within each PE and the 

GB to match the layer dimensions. Input activation tensors are 

loaded through GPIO from a host subsystem and are stored in 

large SRAMs in the GB (Figure 10b).  

To initiate layer execution, a lead RVP multicasts a go 

command to the other worker RVPs, which then multicast local 

start commands to every unit on the chip (Figure 10c). The GB 

sends the input activation tensor to the local PEs across the NoC 

as well as remote PEs across the NoP (Figure 10d). Each PE 

performs 64 MACs per cycle for a total of 36,864 MACs per 

cycle in the package. Accumulation of intermediate sums to 

compute the final output element occurs either within the PE, 

across multiple PEs in one chip, or across multiple PEs in one 

package (Figure 10e). Then each PE sends their respective 

portion of the output activation tensor to the local or remote GB 

and the layer’s computation is finished (Figure 10f). The RVPs 

across the system synchronize at the completion of each layer 

using an interrupt-based barrier system controlled by the lead 

RVP. The worker RVPs wait for interrupts from all local units 

that indication completion of work. Once received, the worker 

RVPs send an interrupt to the lead RVP. Meanwhile, the lead 

RVP first waits for all local interrupts, then waits for interrupts 

from the other RVP participating in the computation. The lead 

RVP uses built-in counters to time the execution of each layer. 

B. Mapping Convolutions 

The mapping strategy across multiple chips in a package is 

almost identical to mapping across multiple PEs in a chip, 

except that traffic flows across the NoP in addition to the NoC, 

and there are now multiple GBs in the system. Mapping remains 

flexible, and computation can be split along any dimension 

between chips (K, P, Q, R, S, H, W, and C). Figure 11 shows 

an example of mapping a layer onto a 4-chip system. Each chip 

computes a subset of the output rows (P), so each chip stores 

the corresponding input activation rows (H) in their local GB 

and the weights are replicated across all 4 chips. Within each 

chip, input channels (C) are split between rows and output 

channels (K) between columns as described in Figure 5. Each 

PE executes 8 K and 8 C per cycle, each chip operates on 4 

segments of K and 4 segments of C in parallel, and each 

package operates on 4 segments of P in parallel for 4,096 MACs 

per cycle. The other layer dimensions are looped over 

temporally to complete the convolution. Detailed descriptions 

and studies of various mapping strategies and measurements of 

resulting latencies can be found in [18]. 

C. Network-on-Package (NoP) 

Simply connecting the edges of the single-chip NoC mesh to 

adjacent chips in one large multi-chip mesh would inhibit 

scalability. Instead, a hierarchical network connects 36 chips in 

a 6-by-6 chip mesh network-on-package (NoP), and each chip’s 

NoP router connects to 4 NoC local ports as shown in Figure 7. 

The NoP routers use the same design and packet format as the 

NoC routers. NoP routing tables are configurable via JTAG-

configurable lookup tables. Careful consideration has been 

given to avoid various deadlock scenarios that can arise from a 

hierarchical network shared by both unicast and multicast 

traffic. Multicast-multicast deadlocks are avoided by enforcing 

cut-through flow control, in which a packet can only advance 

to the next router when there is enough buffering for the entire 

packet. Multicast-unicast routing deadlocks are avoided by 

using the Base-Routing-Conformed-Path model [19], in which  

multicast and unicast routing tables are programmed such that 

they share the same network paths. This ensures that as long as 

 
Figure 10: Flow of data across the NoP router to execute a layer. 
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Figure 11:  Mapping a convolution to an example 4-chip system. 
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the unicast routing algorithm is deadlock-free, all possible 

interaction between unicast and multicast is also deadlock-free. 

Figure 12 shows an example input activation multicast 

operation in a 4-chip system. The GB on chip A sends data path 

into local PEs through the NoC and other chips through the 

NoP. The data moves to chips B and C through the chip-to-chip 

interconnect, and arrives at the local GB, where it is forwarded 

to chip D and deposited into the local NoCs to send to local PEs. 

D. Chip-to-Chip Ground-Referenced Signaling (GRS) 

The scalability of the MCM-based accelerator relies on 

efficient chip-to-chip communication within the NoP. To 

achieve high bandwidth and energy efficiency, each chip in the 

package is connected with single-ended ground-referenced 

signaling (GRS) [20]. To implement a package mesh, every 

chip has 8 chip-to-chip GRS transceivers, where 4 are 

configured as transmitters (TX) and 4 as receivers (RX) and 

communicate to adjacent chips in a mesh. Each TX and RX pair 

has 4 data wires and one forwarded clock wire as shown in 

Figure 13. Each signal is ground-referenced instead of 

differential, only requiring one bump, and the transmitters drive 

a low-swing signal of about 200mV around ground to improve 

energy efficiency. Each link has configurable equalization and 

termination at both the receiver and transmitter. An alternative 

MCM technology to GRS across organic substrates is the 

silicon interposer [13], which allows much finer pitch bumps, 

but the wires support much lower data rates and the expense is 

impractical for many markets. Unlike silicon interposer 

transceivers, GRS can communicate with other packages 

through the PCB at the same speed with the same circuits, so 

the prototype system size is not limited to a single package and 

could scale further through either denser packing of chips on 

the package or multiple packages on a PCB. 

Since each GRS link is unidirectional, credit-based flow 

control is used where credits are returned using the GRS link 

running in the opposite direction. Data sent from the NoP router 

to the GRS TX is written to a 15-word, 128-bit FIFO memory 

using the NoP router clock. This same memory is read as a 32-

word, 60-bit FIFO by a 1.56 GHz GRS word clock, such that 

the same FIFO memory is used for both clock domain crossing 

and splitting the data into 60-bit words. Four bits of header are 

added per word to signify when data is valid or partially valid 

and to pass credits. The 64-bit words are then sent to high speed 

16:1 serializers to drive the 4 data wires. This process is 

reversed in the GRS RX to reconstitute data for the receiving 

NoP router. 

Buffering of full packets is used along the GRS NoP and 

GPIO interfaces, in the former case to ensure that no stalling 

occurs mid-packet when sending across the GRS interface, and 

in the latter case to ensure that the much slower GPIO interface 

does not tie up routing resources while flits are being 

transmitted or received off-chip. Total packet length is limited 

by these interfaces to 17 flits (1 header and 16 payload). 

IV. MCM SOC IMPLEMENTATION 

The 6mm2
 inference accelerator [21] was fabricated in a 

TSMC 16nm FinFET process, and 36 chips were assembled 

on a 12-layer organic substrate. 

A. HLS-based Agile Design Methodology 

The testchip was designed with a high-productivity VLSI 

design methodology [22], which enabled 24-hour turnaround 

from design changes to a tape-out-ready GDS.  Most of the 

design was described in C++ using an open-source library of 

commonly used micro-architectural components called 

MatchLib [23] and synthesized into Verilog using an industry-

standard high-level synthesis (HLS) tool. The design was 

intentionally modularized into partitions of around 200,000 

gates that avoid tight communication or timing constraints to 

other units by using latency-insensitive (LI) channels. The main 

partitions in the design were the PE, GB, RVP, NoP, and GRS, 

shown as rectangles in the floorplan in Figure 14, and were 

implemented independently from each other in parallel to 

improve turnaround time. Partitioning the design into smaller 

units increases the number of cross-unit boundaries, while 

larger units increase place-and-route runtime. An agile 

hardware implementation flow using fully automated synthesis 

and place-and-route tools provided daily feedback about 

timing, area, and power consumption as the design was 

optimized. ECOs were avoided entirely by making changes 

directly in the source code and reimplementing the entire unit. 

In parallel with VLSI trials, the entire design was prototyped on 

an FPGA so that software development occurred in parallel 

with hardware development, which revealed many critical bugs 

well before tape-out. Overlapping architectural design, VLSI 

implementation, and software design ensured that effort was 

focused on improving the final quality-of-result. 

 
Figure 12:  Example multicast operation between 4 chips. 
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Figure 13:  Chips communicate on the package using ground-referenced 

signaling (GRS). 
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B. Floorplan 

The physical floorplan in Figure 14 largely reflects the 

logical NoC mesh network shown in Figure 7. Physical 

partition reuse was critical to reducing design effort. Each of 

the 16 PE partitions are identical and are designed so that their 

IO pins connect by abutment. The off-chip communication 

partitions (GRS, JTAG, and GPIO) are placed on the edge of 

the chip to avoid disturbing power delivery to the PEs in the 

center of the chip. The 8 GRS partitions are identical and 

designed so that they can be mirrored across the X and Y 

dimension while still abutting correctly to the power grid. The 

GRS partition floorplan, shown in Figure 15, contains the 

custom layout transceivers in the center. The connections to the 

140µm pitch bumps are made with length-matched and shielded 

RDL. The t-coils, ESD devices, decoupling capacitance, and 

link calibration circuits are implemented with a digital place-

and-route flow. The JTAG and GPIO partitions use standard 

1.8V IO devices to communicate off-chip. The NoP contains 

the most difficult timing paths because it synchronously 

communicates with every GRS macro, so it requires careful 

pipelining and clock distribution. 

C. Clocking 

Each partition in the design is clocked by an adaptive clock 

generator in the center of the partition and is asynchronous to 

other partitions. The latency cost of synchronization between 

clock domains is mitigated with the use of pausible 

bisynchronous FIFOs [24][25]. Each partition can run at 

independent frequencies, so physically large partitions such as 

the NoP can run at a slower frequency than the PEs. 

A JTAG interface is used to configure the chip during the 

boot process. Every partition has a separate JTAG tap controller 

to avoid synchronous paths between partitions, and the entire 

chip consists of a chain of 31 controllers with the JTAG signals 

serially snaked through the chip. Reset is toggled through the 

JTAG interface and is synchronized into each local clock 

domain. A high-frequency reference clock for GRS (1.56GHz), 

a low frequency testing clock for measurement circuits in each 

partition (100MHz), and a global on-chip clock are distributed 

as a tree from the JTAG partition. 

V. EXPERIMENTAL RESULTS 

A. Test Setup 

Figure 16 shows the prototype package with 36 chips and 

Figure 17 shows the bench measurement setup. The test 

package is mounted on a custom PCB with voltage regulators, 

clock generators, and power measurement circuitry. The test 

board connects via FMC to a Xilinx VCU118 FPGA board, 

which is connected to a host PC via PCIE. The FPGA 

communicates with the prototype via the GPIO interface of one 

of the chips. The FPGA fabric implements an AXI interconnect 

that shares the global memory map of the prototype system, 

allowing the RVPs to access FPGA state that includes 4GB of 

DRAM. To execute an inference operation, a RISC-V program, 

which includes all weights, input activations, and configuration 

settings, is loaded into FPGA DRAM. The RVPs then execute 

the program, fetching from DRAM and loading state into the 

PEs and GBs before initiating layer execution. 

B. NoP Performance 

Each data lane operates at a configurable speed between 11-

25Gbps and consumes 0.82-1.75pJ/bit. Compared to previous 

interconnect on organic substrates for MCM systems [14], GRS 

has about 3.5× higher bandwidth per chip area and lower energy 

per bit. Measurements show an eye opening of 0.7UI at 25Gbps. 

C. Peak Performance 

Table 2 compares our system to prior inference accelerators 

with 8-bit precision running a peak performance benchmark 

Figure 14:  Chip micrograph annotated with the floorplan of the chip. 
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Figure 17: Bench measurement setup. 
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that saturates MACs on each chip. The digital core efficiency 

numbers exclude chip-to-chip interconnect power for 

comparison purposes. GRS consumes constant power, even 

with no traffic, as there is no sleep mode in this prototype. At 

peak performance mode, this fixed power overhead is less than 

5% of overall power, but it becomes more significant at 

minimum voltage. Overall the prototype achieves around 

between 67× and 1280× higher TOPS, 0.8-10× higher energy 

efficiency, and 4-100× higher area efficiency. 

D. Application Measurements 

Table 2 demonstrates the architecture’s scalability with 

measured performance of a 32-chip datacenter-scale system 

running each layer of ResNet-50 [3]. GRS chip-to-chip 

interconnect enables multi-chip scalability while consuming 

12% of the total energy, and a batch size of one minimizes 

inference latency and energy. 

E. Strong Scaling 

Figure 18 shows that measured latency in terms of PE cycles 

is reduced by 16× when executing the res4a_branch1 layer of 

ResNet-50 [3] on 32 chips instead of 1 chip. One chip maintains 

63% utilization of the MAC units. With 32 chips, the 

computation is spread across so many PEs that the number of 

cycles spent doing computation is only 4096 cycles, and 6000 

cycles of synchronization between chips across the NoC starts 

to dominate runtime. Overall, a 32-chip system can execute 128 

million MACs in 11µs, and design improvements to the 

synchronization scheme could further improve strong scaling.  

VI. CONCLUSION 

This work presents a scalable DNN inference accelerator that 

uses MCM assembly of multiple chips on an organic substrate 

to improve yield, reduce design cost, and address different 

market segments with a single chip. Scalability is enabled by a 

flexible multi-chip architecture and hierarchical NoC and NoP. 

The 36-chip system achieves high energy efficiency (9.5 

TOPS/W), high area efficiency (1.29 TOPS/mm2), and high 

performance (128 TOPS). 
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Table 1:  Comparison to other inference accelerators for peak performance benchmark. 

 B. Moons, 

ENVISION [7]  

Z. Yuan,  

STICKER [8] 

J.Lee,  

UNPU [9] 

J. Song,  

Exynos  [6] 

Proposed* 

1 Chip 4 Chip (2  2) 36 Chip (6  6) 

Technology 28nm 65nm 65nm 8nm 16nm 

Cumulative Core Area 1.87 mm2 7.8 mm2 13 mm2 5.5 mm2 3.1 mm2 12.4 mm2 111.6 mm2 

Cumulative Chip Area unknown 12 mm2 16 mm2 unknown 6 mm2 24 mm2 216 mm2 

Precision 4b,8b,16b 8b 1-16b  8b,16b 8b 

On-Chip SRAM (MB) 0.14 0.17 0.25 1.53 0.625 2.5 22.5 

Supply Voltage (V) 1 0.67-1.1 0.63-1.1 0.5-0.8 0.41-1.2 0.52-1.2 0.52-1.1 

Frequency (MHz) 200 200 5-200 67-933 161-2001 515-1998 484-1797 

Core Power (mW) 165 21-248 3.2-297 39-1,553 30-4160 630-16,420 5,310-106,090 

GRS Power† (mW)  n/a n/a n/a n/a n/a 215-220 3,840-4,090 

MACs per cycle 512 @8b 256 1,728@8b 1,024 1,024 4,096 36,864 

Performance (TOPS) ~0.15@8b 0.1 0.69@8b 1.91 0.32-4.01 3.93-15.7 32.5-127.8 

Core Energy Efficiency (pJ/op) ~1.1@8b 0.96 ~0.18@8b 0.087@8b 0.105-1.04 0.160-1.05 0.164-8.30 

Core Area Efficiency (TOPS/mm2) 0.08 0.013 0.053 0.35 0.10-1.29 0.32-1.27 0.29-1.15 

* Measured results reported for 40% density weights and input activations      †11Gbps mode 

 

 
Figure 18: Increasing the number of chips decreases the latency of layer 

execution. 

 

Table 2: Measurement of a 36-chip system running ResNet-50 at 0.80V. 

Layer Latency (µS) 
Core Energy 

(µJ) 

GRS Energy 

(µJ) 

conv1-pool1 41.00 902.90 147.70 

res2a_branch1 8.87 209.00 32.02 

res2a_branch2a 6.44 141.21 23.26 

res2[a-c]_branch2b 9.26 250.84 33.40 

res2[a-c]_branch2c 8.87 209.00 32.02 

res2[b-c]_branch2a 14.04 417.68 50.56 

res3a_branch1 8.92 281.39 32.15 

res3a_branch2a 7.59 199.90 27.41 

res3[a-d]_branch2b 9.11 237.57 32.91 

res3[a-d]_branch2c 8.18 220.74 29.52 

res3[b-d]_branch2a 8.40 232.08 30.29 

res4a_branch1 8.11 264.19 29.21 

res4a_branch2a 6.06 154.99 21.87 

res4[a-f]_branch2b 11.98 302.36 43.35 

res4[a-f]_branch2c 6.64 187.68 23.94 

res4[b-f]_branch2a 6.86 194.77 24.77 

res5a_branch1 12.49 326.72 45.18 

res5a_branch2a 21.09 464.69 76.28 

res5[a-c]_branch2b 13.33 349.58 48.20 

res5[a-c]_branch2c 7.38 181.21 26.74 

res5[b-c]_branch2a 8.23 203.74 29.78 

fc1000 3.32 27.37 3.29 

Total (batch=1) 0.525 ms 16.3 mJ/image 2.33 mJ/image 
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