
JSSC-draft

Abstract— Custom accelerators improve the energy efficiency,

area efficiency, and performance of deep neural network (DNN)

inference. This work presents a scalable DNN accelerator

consisting of 36 chips connected in a mesh network on a multi-

chip-module (MCM) using ground-referenced signaling (GRS).

While previous accelerators fabricated on a single monolithic chip

are optimal for specific network sizes, the proposed architecture

enables flexible scaling for efficient inference on a wide range of

DNNs, from mobile to data center domains. Communication

energy is minimized with large on-chip distributed weight storage

and a hierarchical network-on-chip and network-on-package, and

inference energy is minimized through extensive data reuse. The

16nm prototype achieves 1.29 TOPS/mm2 area efficiency, 0.11

pJ/op (9.5 TOPS/W) energy efficiency, 4.01 TOPS peak

performance for a 1-chip system, and 127.8 peak TOPS and 1903

images/s ResNet-50 batch-1 inference for a 36-chip system.

Index Terms— Ground-referenced signaling, single-ended

signaling, multi-chip modules, deep neural networks, inference

accelerator.

I. INTRODUCTION

Deep neural networks (DNNs) are extremely popular and

have been widely adopted to solve problems in a huge variety

of fields, including image recognition [1]–[3], semantic

segmentation [4], language translation [4], and autonomous

driving [5]. DNN inference is currently performed on a variety

of traditional computing systems including CPUs, FPGAs, and

GPUs, which provide different trade-offs between efficiency,

cost, performance and programmability.

Due to the deterministic structure of DNNs, fixed-function

accelerators have the potential to further improve area

efficiency, energy efficiency, and performance relative to CPUs

and GPUs [6]–[12]. However, the absolute performance

requirements of DNNs vary from tiny networks on energy-

constrained edge devices to large networks in data centers. It is

extremely expensive to build a separate chip for each of these

applications, as each domain has widely different compute and

memory bandwidth requirements. Additionally, in such a

rapidly changing field, it is difficult to predict DNN

requirements years in advance, the lead time required to

develop a custom accelerator for a target market.

 The goal of this work is to design a system that can easily

scale across all application requirements with a single silicon

chip. The main idea is to build one small chip and assemble and

connect a variable number of these chips together on a package

to form a multi-chip module, or MCM, as shown in Figure 1.

MCM-based systems offer a variety of benefits [13], [14].

Large designs are sometimes reticle limited, and MCMs

provide a method to increase system capacity without requiring

board-level or system-level integration. Smaller chips have

higher yield, as a fixed number of defects per wafer breaks

fewer total chips as the number of chips on a wafer grows.

Smaller chips are simpler and easier to design. A system can

mix silicon dice from different process nodes to improve design

reuse and reduce cost. The acceleration of new networks can be

achieved by quickly and easily repackaging existing chips into

an optimally sized system without waiting for the development

and fabrication of new chips. Despite all these advantages,

MCMs have area, performance, and power penalties relative to

a large monolithic chip because chip-to-chip communication is

more expensive than on-chip communication. The proposed

system limits this penalty through energy-efficient chip-to-chip

links, a hierarchical interconnect network, algorithmic

A 0.32-128 TOPS, Scalable Multi-Chip-

Module-based Deep Neural Network Inference

Accelerator with Ground-Referenced

Signaling in 16nm
Brian Zimmer, Member, IEEE, Rangharajan Venkatesan, Member, IEEE, Yakun Sophia Shao,

Member, IEEE, Jason Clemons, Member, IEEE, Matthew Fojtik, Member, IEEE, Nan Jiang, Member,

IEEE, Ben Keller, Member, IEEE, Alicia Klinefelter, Member, IEEE, Nathaniel Pinckney, Member,

IEEE, Priyanka Raina, Member, IEEE, Stephen G. Tell, Member, IEEE, Yanqing Zhang, Member,

IEEE, William J. Dally, Fellow, IEEE, Joel S. Emer, Fellow, IEEE, C. Thomas Gray, Senior Member,

IEEE, Stephen W. Keckler, Fellow, IEEE, and Brucek Khailany, Senior Member, IEEE

This research was, in part, funded by the U.S. Government under the

DARPA CRAFT program. The views and conclusions contained in this
document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the U.S.

Government. Distribution Statement "A" (Approved for Public Release,
Distribution Unlimited).

Figure 1: Composing an MCM from various number of chiplets

addresses different performance requirements with a single chip.

36 Chips

(6×6)
1 Chip

(1×1)

O
n

-c
hi

p
w

ei
g

ht
 s

to
ra

g
e

(8
-b

it
pa

ra
m

et
er

s)

4 Chips

(2×2)

16 Chips

(4×4)

0.5M
2M

18M

8M

Datacenter

Mobile

Automotive

JSSC-draft

optimizations to exploit the latency insensitive nature of

architecture, and flexible dataflow mapping.

Implementing an MCM-based neural network inference

accelerator posed some unique challenges. In order to achieve

good performance for modern networks such as ResNet-50 [3],

the scale of the system must be very large—compared to

recently published 8-bit neural network accelerators [6]–[9], the

prototype system has 15-160× the on-chip SRAM storage, and

over 67-1300× the performance. The system was designed to

achieve strong scaling, in which increased compute capacity

directly reduces latency, instead of weak scaling, where larger

batches are used to perform more work in parallel but with the

same latency. Because there is only one unique chip in the

system, the architecture must be efficient for both small single-

chip configurations and huge 36-chip configurations.

The prototype system, shown in Figure 2, combines 36

identical chips on an organic package to form a large-scale

neural network accelerator. Each chip on the package is 2.5mm

by 2.4mm, and 36 are connected on a 47.5mm by 47.5mm

organic substrate. Each chip, described in Section II, has

752KB of total SRAM storage and can perform 1,024 multiply-

and-accumulates (MACs) per cycle to execute smaller DNNs

individually. Each package, described in Section III, combines

36 dice together in a mesh network with 100GB/s interconnect

in each direction to execute larger networks with 22.5MB of on-

chip SRAM and 36,864 MACs per cycle. Performance ranges

from 4 TOPS for a 1-chip system to 128 TOPS for a 36-chip

system. The chip was fabricated in the TSMC 16nm FinFET

process and implemented with an agile design methodology

further discussed in Section IV. Experimental results in Section

V discuss energy-efficiency and performance measurements for

a peak performance benchmark and ResNet-50.

II. SINGLE-CHIP ARCHITECTURE

Each chip in the system can operate as a standalone neural

network accelerator for smaller networks.

A. System Operation

DNNs are composed of a series of many layers, including

convolutional layers, pooling layers, activation layers, and

fully-connected layers. Each layer processes an input activation

tensor from the previous layer and creates an output activation

tensor for the next layer. The key workload kernel executed by

this neural network accelerator is the convolution of a single

layer shown in Figure 3. An input activation tensor with size

H×W and C input channels is convolved with a weight tensor

with size R×S and C channels. After striding R×S across H×W,

an output of size P×Q is formed. K different weight kernels

contribute to each of the K output channels in the output

activation tensor. Each element of the output activation tensor

is formed from the MAC of R×S×C elements from the input

and weight tensors, and this MAC is repeated P×Q×K times.

Layer dimensions vary for each layer in the DNN, so the total

number of MAC operations required can vary from 0.6M-14M

in DriveNet [5] to 50M-100M in ResNet-50 [3]. These MAC

operations need to be distributed spatially across multiple MAC

datapaths and temporally within each datapath.

The system diagram shown in Figure 4 describes the data

movement required to execute a convolution. Weight tensors

are loaded once at boot through general-purpose input-output

(GPIO) from a host and distributed across the network-on-chip

(NoC) to SRAMs inside each of the 16 processing elements

(PEs) (Figure 4a). Each weight tensor can be split among the

PEs if each PE computes separate input/output channels or

replicated on different PEs so that each PE can work on a

different portion of the output activation in parallel. Each PE

and the global buffer (GB) operate autonomously after a go

command from the RVP, and are controlled by local

configurable state machines (Figure 4b). Input activation

tensors are loaded through GPIO and are stored in large SRAMs

in the GB (Figure 4c). The GB sends the input activation tensor

to the PEs, and the tensor can be split among the PEs along a

layer dimension (such as input channel) or replicated so that

each PE can compute a different output channel in parallel

(Figure 4d). Each PE performs 64 MACs per cycle for a total of

1024 MACs per cycle in the chip. Accumulation of

intermediate sums occurs either within the PE or across

Figure 4: Flow of data across the NoC router to execute a layer.

NoC

Processing Element

Input

SRAM

Weight

SRAM

Accum.

SRAM

Configuration Registers

Processing Element

Input

SRAM

Weight

SRAM

Accum.

SRAM

Configuration Registers

(16 total)

GPIO

Global Buffer

RISC-V Processor

Config. Registers

(a) (b) (c)

(d) (e) (f)

Chip

Output SRAM

Input SRAM

Figure 2: Prototype system with 36 chips connected on a package.

.

47.5mm × 47.5mm Package
2.5mm × 2.4mm Die

Chip-to-chip

interconnect (100 Gbps/link)

Processing elements

with distributed weights

(512KB total) and 8-bit

MACs (1024 total)

Activation storage (64KB)

Figure 3: Generation of one output element during convolution.

H

W

C

R

S

P

Q

K

K

C

1
1 1

R

S

C

× =

JSSC-draft

multiple PEs (Figure 4e). Each PE sends its respective portion

of the output activation tensor to the GB to finish layer

computation (Figure 4f).

B. Mapping Convolutions

Figure 5 describes one possible mapping of a convolution

onto the chip. The input channels are split into four parts, and

each part is multicast to the four PEs in each row of the PE

array. The weight tensors are allocated between the four

columns of the PE array and replicated into each PE along the

column. All 16 PEs perform their MACs on the partitioned

volumes in parallel. Then, the partial sums of the top row are

accumulated row by row until the final row of PEs has

accumulated contributions from all C channels back together to

form the final output activation.

Valid mappings and communication overheads are

determined by the layer dimensions as well as the PE and GB

SRAM sizes. The architecture was designed to be very flexible

and allows tiling across many different dimensions to achieve

high efficiency across layers with very different dimensions.

Layers with large K benefit from partitioning weight tensors

between PEs and multicasting the input activation to each PE at

the cost of more input activation traffic. Layers with large H×W

benefit from replicating the weight kernels to minimize input

activation traffic at the cost of greater weight storage

requirements. Layers with large C benefit from splitting the

input channels across PEs to minimize input traffic and weight

storage at the cost of output accumulation traffic. The key to

this architecture is that the weights remain stationary and are

reused across multiple inputs. Only input activations, output

partial sums, and output activations need to be transported

across the NoC.

C. Network-on-Chip (NoC)

The on-chip network, shown in Figure 6, serves as the

transport layer for network transactions between the various

blocks in the system. Each transaction can be one of three types:

streaming data, interrupts, or AXI transactions [15]. Streaming

data transactions are used to send input activations, partial

sums, and output activations between the PEs and GB.

Interrupts are single-flit packets generated by the PEs and GB

and sent to the RVP to signal completion of a layer. AXI

transactions are used for all other reads and writes of registers

and memory in the system. A protocol similar to 64-bit AXI4-

Lite supports bursts up to 8 words in length to allow the RVP

to fetch entire cache lines with a single transaction. All

architecturally visible state across the multi-chip system is

globally addressable, including control registers, PE and GB

buffers, and the RVP scratchpad. Only the RVP implements

AXI masters that can initiate requests, while the PEs and GBs

implement AXI slaves to service requests to local state. To

simplify the heavily reused AXI slave in the PE, no write

responses are generated anywhere in the system.

Custom hardware extensions to the AXI master block enable

the RVP to exploit features of the system that reduce

communication latency during runtime. A portion of the global

address space is reserved for multicast requests: by writing to a

particular global address, the RVP’s AXI write is converted into

a multicast packet that writes the same data to the same local

address of a configurable subset of the PEs on the chip or the

RVPs in the MCM system. The RVP’s hardware interrupt lines

are also memory-mapped, so that a write to a particular address

can trigger an interrupt.

The NoC routers are connected in a mesh network as shown

in Figure 7. Each NoC transaction is encoded in a packet that is

composed of one or more 66-bit flits. A flit is composed of 64

bits of data and two bits of flit identification, indicating a

header, body, or tail flit. Singleton flits are indicated by setting

both the header and tail bits. The header flit’s 64 bits of data are

for packet routing and other metadata; subsequent flits contain

the packet payload. The NoC supports both unicast and

multicast traffic, and routes are specified in the header flit with

a bit indicating whether the packet is unicast or multicast.

Multicast is one-hot encoded and can address all 36 chips in the

system and 20 NoC destinations; this information consumes 56

bits header bits. Unicast packet destinations are binary encoded,

consuming 6 bits for network-on-package (NoP) destinations

and 5 for NoC destinations. Unicast headers thus have available

header bits to encode additional packet-specific information;

only certain types of packets can be multicast due to the large

bitwidth of the one-hot multicast address.

Figure 5: Example mapping splits input channels along rows and output

channels along columns.

Global buffer Processing Elements

PE

PE

PE

PE

PE

PE

PE

PE

Crow

Kcol

Kcol

Crow ...

Figure 6: Communication interface capabilities of the NoC.

NoC

PE (x16)

SRAMs

Config.

Registers

Off-chip host

(via GPIO)

RISC-V

Control

Processor

(RVP)

Scratchpad
Interrupt

Logic

GB

SRAMs

Config.

Registers

AXI S

Streaming

AXI S

Streaming

Interrupt

Interrupt

AXI S

Interrupt

AXI M

AXI M

Multicast

Figure 7: Units are connected in a mesh NoC.

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

GB

RVP

NoP

R R R RR

R

R R R RR

R R R RR

R R R RR

GPIO
R

N

W

S

E

Chip-to-chip

JSSC-draft

The NoC router implementation uses cut-through routing

with credit-based flow control and is pipelined to operate at full

throughput and 2 cycles of latency. At 0.72V, each link of the

NoC achieves 70 Gbps bandwidth.

D. Processing Element (PE)

Most computation is done by the processing element (PE) in

Figure 8, which executes convolutional layers, fully-connected

layers, and post-processing functions like bias addition, ReLU,

and pooling. There are 8 lanes in the PE, and each lane uses a

different weight tensor to generate elements for a separate

output channel (K). Within each lane, an 8-bit precision vector

MAC multiplies 8 input elements from separate input channels

(C) with 8 weight elements and sums them to calculate a single

output value. As the numbers of input and output channels (C

and K) generally range from 64 to 1024, performing vector

operations in sets of 8 elements is very efficient. Local input

activation, output activation, and accumulation SRAMs buffer

data for the datapath. Minimizing accesses to these SRAMs is

critical to maximizing energy efficiency. The input activation

SRAM is read every cycle, but the energy cost is amortized by

distributing each element to 8 lanes. The weight SRAM is much

wider than the input activation SRAM as it needs to supply a

separate vector of values to each lane in the datapath, but the

weights remain constant for multiple inputs, so the values are

reused P×Q times. The accumulation SRAM is written every

cycle to hold partial sums, but energy is amortized by writing

the accumulation of the 8-wide vector of C channels. The output

size P×Q is generally larger than the number of entries in the

accumulation buffer, so computation is temporally tiled to

generate a subset of output activation dimensions at a time. The

accumulation buffer can also be written through the router from

other PEs to perform cross-PE reduction when the weight

kernel is split between multiple PEs. Once the full accumulation

is complete, each PE performs the final post-processing

functions such as ReLU, bias addition, pooling, scaling, or

truncation to compute the final output activation.

PE power was simulated on the post-synthesis gate-level

netlist using activity traces from a representative workload, and

a breakdown of PE power is shown in Figure 9 at 0.72V. The

largest consumer of energy is the accumulation buffer SRAM,

due to the writing of 192 bits every cycle. The second largest

consumer is the datapath, which performs the MAC operations.

Since the input buffer output is shared between multiple lanes,

and the weight buffer output is used for many cycles, the

contribution of these two SRAMs is small. PE energy efficiency

could be optimized by using a generator to explore the design

space of many different possible PE dataflows and precisions

for different DNNs [16].

E. Global Buffer (GB)

As input activations are generally multicast to multiple PEs,

and output activations collected from multiple PEs, the global

buffer acts as a second level in the memory hierarchy to store

these activations on chip. The GB SRAM is partitioned into

four 16KB banks which can be flexibly partitioned between

input and output activations. The GB includes three routers that

provide higher bandwidth into the NoC. In addition to

managing activations, the global buffer can perform some

forms of computation (such as element-wise computation)

locally, without needing to send data to PEs.

F. RISC-V Processor (RVP)

The RISC-V core is an RV64IMAC implementation of the

open-source Rocket Chip Generator [17] based on the

SmallCore instance. The RVP includes a 16KiB instruction

cache, an 8KiB data cache, and a 16KiB scratchpad. 128

external interrupt lines are accessible via the NoC, which can

trigger them either via interrupt transactions or AXI writes.

G. General Purpose Input-Output (GPIO) and JTAG

The chip uses a narrow, low-speed GPIO interface to

communicate with a host for the purpose of loading weights,

input activations, and RISC-V runtime software. The GPIO

interface uses a divided on-chip clock and a ready-valid

protocol to communicate with an FPGA, which recovers the

clock and performs skew alignment. JTAG is used to configure

GPIO, clocking, and routing tables, toggle reset, and provide

observability of key signals for debug.

III. MULTI-CHIP ARCHITECTURE

A full MCM-based neural network accelerator is formed by

connecting 36 dice together on the package in a mesh network

as shown in Figure 2. There are two general strategies to utilize

the increased computation capacity to improve throughput:

increase parallelism or pipeline multiple layers in the system.

When increasing parallelism, the system executes a single layer

at a time as it does in the one-chip architecture, except

computation is split between dice in the same manner as

computation was split between PEs in the one-chip case. The

Figure 8: Architecture of the processing element (PE).

512

8*8

SRAM

SRAM

SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Control

Arbitrated Crossbar

+

××××××××
8 ...

19

+

××××××××

...

+

××××××××

...

+

××××××××

...

+

××××××××

...

+

××××××××

...

+

××××××××

...

+

××××××××

...

Vector MACs

Weight Buffer (32KB)

Accumulation

Buffer (3KB)

Router

Input Activation Buffer (8KB)
1024

8*8

SRAM64

8*24

+++++++ +

SRAM

+++++++ +

ReLU Bias Addition Pooling Scaling Truncation

Post-Processing

Figure 9: Simulated power breakdown of the processing element at 0.72V.

31%

45%

10%
3%

2%
9%

Input

Activation

Buffer

(15fJ/op)

Accumulation

Buffer

(77fJ/op)

Router

(18fJ/op)

Control (5fJ/op)

Datapath

(54fJ/op)

Weight

Buffer

(4fJ/op)

JSSC-draft

latency of the layer computation is reduced (strong scaling), so

more layers can be executed per unit time, improving

throughput. An alternative strategy pipelines multiple layers,

with groups of chips executing different layers simultaneously

and forwarding their results to the next group. Pipelining

improves throughput but does not decrease the latency of layer

computation (weak scaling). While pipelining can improve the

overall utilization when there is limited parallelism in a layer

[18], this work focuses on the increased layer parallelism

strategy to understand the limits of strong scaling.

A. System Operation

The system diagram shown in Figure 10 describes the data

movement required to execute a convolution on multiple chips.

Weight tensors are loaded once at boot through GPIO from the

host subsystem and distributed across the NoP and NoC to

SRAMs inside each of the 576 processing elements (PEs)

(Figure 10a). Each weight tensor can be split among the chips

when each chip computes a separate output channel or

replicated on different chips so that each chip can work on a

different portion of the input activation in parallel. The RVPs

on each chip configure state machines within each PE and the

GB to match the layer dimensions. Input activation tensors are

loaded through GPIO from a host subsystem and are stored in

large SRAMs in the GB (Figure 10b).

To initiate layer execution, a lead RVP multicasts a go

command to the other worker RVPs, which then multicast local

start commands to every unit on the chip (Figure 10c). The GB

sends the input activation tensor to the local PEs across the NoC

as well as remote PEs across the NoP (Figure 10d). Each PE

performs 64 MACs per cycle for a total of 36,864 MACs per

cycle in the package. Accumulation of intermediate sums to

compute the final output element occurs either within the PE,

across multiple PEs in one chip, or across multiple PEs in one

package (Figure 10e). Then each PE sends their respective

portion of the output activation tensor to the local or remote GB

and the layer’s computation is finished (Figure 10f). The RVPs

across the system synchronize at the completion of each layer

using an interrupt-based barrier system controlled by the lead

RVP. The worker RVPs wait for interrupts from all local units

that indication completion of work. Once received, the worker

RVPs send an interrupt to the lead RVP. Meanwhile, the lead

RVP first waits for all local interrupts, then waits for interrupts

from the other RVP participating in the computation. The lead

RVP uses built-in counters to time the execution of each layer.

B. Mapping Convolutions

The mapping strategy across multiple chips in a package is

almost identical to mapping across multiple PEs in a chip,

except that traffic flows across the NoP in addition to the NoC,

and there are now multiple GBs in the system. Mapping remains

flexible, and computation can be split along any dimension

between chips (K, P, Q, R, S, H, W, and C). Figure 11 shows

an example of mapping a layer onto a 4-chip system. Each chip

computes a subset of the output rows (P), so each chip stores

the corresponding input activation rows (H) in their local GB

and the weights are replicated across all 4 chips. Within each

chip, input channels (C) are split between rows and output

channels (K) between columns as described in Figure 5. Each

PE executes 8 K and 8 C per cycle, each chip operates on 4

segments of K and 4 segments of C in parallel, and each

package operates on 4 segments of P in parallel for 4,096 MACs

per cycle. The other layer dimensions are looped over

temporally to complete the convolution. Detailed descriptions

and studies of various mapping strategies and measurements of

resulting latencies can be found in [18].

C. Network-on-Package (NoP)

Simply connecting the edges of the single-chip NoC mesh to

adjacent chips in one large multi-chip mesh would inhibit

scalability. Instead, a hierarchical network connects 36 chips in

a 6-by-6 chip mesh network-on-package (NoP), and each chip’s

NoP router connects to 4 NoC local ports as shown in Figure 7.

The NoP routers use the same design and packet format as the

NoC routers. NoP routing tables are configurable via JTAG-

configurable lookup tables. Careful consideration has been

given to avoid various deadlock scenarios that can arise from a

hierarchical network shared by both unicast and multicast

traffic. Multicast-multicast deadlocks are avoided by enforcing

cut-through flow control, in which a packet can only advance

to the next router when there is enough buffering for the entire

packet. Multicast-unicast routing deadlocks are avoided by

using the Base-Routing-Conformed-Path model [19], in which

multicast and unicast routing tables are programmed such that

they share the same network paths. This ensures that as long as

Figure 10: Flow of data across the NoP router to execute a layer.

NoC

Router

Processing Element

Input

SRAM

Weight

SRAM

Accum.

SRAM

Configuration Registers

Processing Element

Input

SRAM

Weight

SRAM

Accum.

SRAM

Configuration Registers

(16 total)

GPIO

Global Buffer

RISC-V

Input SRAM

Output SRAM

Config. Regs.

(a) (b) (c)

(d) (e) (f)

Chip (36 total)

Package

6×6

Chip

Mesh

NoP

Router
GRS
GRS
GRS

GRS

Figure 11: Mapping a convolution to an example 4-chip system.

Chip

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEPE

Chip

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEPE

Chip

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PEPE

Crow

Kcol

Hchip

Pchip

JSSC-draft

the unicast routing algorithm is deadlock-free, all possible

interaction between unicast and multicast is also deadlock-free.

Figure 12 shows an example input activation multicast

operation in a 4-chip system. The GB on chip A sends data path

into local PEs through the NoC and other chips through the

NoP. The data moves to chips B and C through the chip-to-chip

interconnect, and arrives at the local GB, where it is forwarded

to chip D and deposited into the local NoCs to send to local PEs.

D. Chip-to-Chip Ground-Referenced Signaling (GRS)

The scalability of the MCM-based accelerator relies on

efficient chip-to-chip communication within the NoP. To

achieve high bandwidth and energy efficiency, each chip in the

package is connected with single-ended ground-referenced

signaling (GRS) [20]. To implement a package mesh, every

chip has 8 chip-to-chip GRS transceivers, where 4 are

configured as transmitters (TX) and 4 as receivers (RX) and

communicate to adjacent chips in a mesh. Each TX and RX pair

has 4 data wires and one forwarded clock wire as shown in

Figure 13. Each signal is ground-referenced instead of

differential, only requiring one bump, and the transmitters drive

a low-swing signal of about 200mV around ground to improve

energy efficiency. Each link has configurable equalization and

termination at both the receiver and transmitter. An alternative

MCM technology to GRS across organic substrates is the

silicon interposer [13], which allows much finer pitch bumps,

but the wires support much lower data rates and the expense is

impractical for many markets. Unlike silicon interposer

transceivers, GRS can communicate with other packages

through the PCB at the same speed with the same circuits, so

the prototype system size is not limited to a single package and

could scale further through either denser packing of chips on

the package or multiple packages on a PCB.

Since each GRS link is unidirectional, credit-based flow

control is used where credits are returned using the GRS link

running in the opposite direction. Data sent from the NoP router

to the GRS TX is written to a 15-word, 128-bit FIFO memory

using the NoP router clock. This same memory is read as a 32-

word, 60-bit FIFO by a 1.56 GHz GRS word clock, such that

the same FIFO memory is used for both clock domain crossing

and splitting the data into 60-bit words. Four bits of header are

added per word to signify when data is valid or partially valid

and to pass credits. The 64-bit words are then sent to high speed

16:1 serializers to drive the 4 data wires. This process is

reversed in the GRS RX to reconstitute data for the receiving

NoP router.

Buffering of full packets is used along the GRS NoP and

GPIO interfaces, in the former case to ensure that no stalling

occurs mid-packet when sending across the GRS interface, and

in the latter case to ensure that the much slower GPIO interface

does not tie up routing resources while flits are being

transmitted or received off-chip. Total packet length is limited

by these interfaces to 17 flits (1 header and 16 payload).

IV. MCM SOC IMPLEMENTATION

The 6mm2
 inference accelerator [21] was fabricated in a

TSMC 16nm FinFET process, and 36 chips were assembled

on a 12-layer organic substrate.

A. HLS-based Agile Design Methodology

The testchip was designed with a high-productivity VLSI

design methodology [22], which enabled 24-hour turnaround

from design changes to a tape-out-ready GDS. Most of the

design was described in C++ using an open-source library of

commonly used micro-architectural components called

MatchLib [23] and synthesized into Verilog using an industry-

standard high-level synthesis (HLS) tool. The design was

intentionally modularized into partitions of around 200,000

gates that avoid tight communication or timing constraints to

other units by using latency-insensitive (LI) channels. The main

partitions in the design were the PE, GB, RVP, NoP, and GRS,

shown as rectangles in the floorplan in Figure 14, and were

implemented independently from each other in parallel to

improve turnaround time. Partitioning the design into smaller

units increases the number of cross-unit boundaries, while

larger units increase place-and-route runtime. An agile

hardware implementation flow using fully automated synthesis

and place-and-route tools provided daily feedback about

timing, area, and power consumption as the design was

optimized. ECOs were avoided entirely by making changes

directly in the source code and reimplementing the entire unit.

In parallel with VLSI trials, the entire design was prototyped on

an FPGA so that software development occurred in parallel

with hardware development, which revealed many critical bugs

well before tape-out. Overlapping architectural design, VLSI

implementation, and software design ensured that effort was

focused on improving the final quality-of-result.

Figure 12: Example multicast operation between 4 chips.

Network on

Package

(NoP)

...

Network on

Chip

(NoC)

NoP

Router

(NoPR)

Chip A Chip B

Chip C Chip D

1a

2b

2a

3a

3b

1b

4a

4b

5b

5a

5c

6
WRX NTX

NRX

ETX

WTX ERXSRX STX

GB

PEPE PEPE
7

PEPE PEPE

PEPE PEPE

PEPE PEPE

8

N
oP

R

Example:

Multicast Chip A input activation

(1a) A_GB -> A_NoPR

(1b) A_GB -> A_PE

(2a) A_NoPR -> A_STX

(2b) A_NoPR -> A_ETX

(3a) A_ETX -> B_WRX

(3b) A_STX -> C_NRX

(4a) B_WRX->B_NoPR

(4b) C_NRX -> C_NoPR

(5a) B_NoPR -> B_PE

(5b) C_NoPR -> C_PE

(5c) B_NoPR -> B_STX

(6) B_STX -> D_NRX

(7) D_NRX -> D_NoPR

(8) D_NoPR -> D_PE

...

... ...

Figure 13: Chips communicate on the package using ground-referenced

signaling (GRS).

Chip B RXChip A TX

3mm-7mm trace

DataClock

16:2 2:1 2:16

16:2 2:1

PLL
Iclk

Qclk

txdata[3:0]

clk_pattern

Data Transmitters

Clock Transmitter

4 Data Lanes

Clock Lane

rxclk

Data Receivers

rxdata[3:0]

Clock Receiver

δ

x4 x4

JSSC-draft

B. Floorplan

The physical floorplan in Figure 14 largely reflects the

logical NoC mesh network shown in Figure 7. Physical

partition reuse was critical to reducing design effort. Each of

the 16 PE partitions are identical and are designed so that their

IO pins connect by abutment. The off-chip communication

partitions (GRS, JTAG, and GPIO) are placed on the edge of

the chip to avoid disturbing power delivery to the PEs in the

center of the chip. The 8 GRS partitions are identical and

designed so that they can be mirrored across the X and Y

dimension while still abutting correctly to the power grid. The

GRS partition floorplan, shown in Figure 15, contains the

custom layout transceivers in the center. The connections to the

140µm pitch bumps are made with length-matched and shielded

RDL. The t-coils, ESD devices, decoupling capacitance, and

link calibration circuits are implemented with a digital place-

and-route flow. The JTAG and GPIO partitions use standard

1.8V IO devices to communicate off-chip. The NoP contains

the most difficult timing paths because it synchronously

communicates with every GRS macro, so it requires careful

pipelining and clock distribution.

C. Clocking

Each partition in the design is clocked by an adaptive clock

generator in the center of the partition and is asynchronous to

other partitions. The latency cost of synchronization between

clock domains is mitigated with the use of pausible

bisynchronous FIFOs [24][25]. Each partition can run at

independent frequencies, so physically large partitions such as

the NoP can run at a slower frequency than the PEs.

A JTAG interface is used to configure the chip during the

boot process. Every partition has a separate JTAG tap controller

to avoid synchronous paths between partitions, and the entire

chip consists of a chain of 31 controllers with the JTAG signals

serially snaked through the chip. Reset is toggled through the

JTAG interface and is synchronized into each local clock

domain. A high-frequency reference clock for GRS (1.56GHz),

a low frequency testing clock for measurement circuits in each

partition (100MHz), and a global on-chip clock are distributed

as a tree from the JTAG partition.

V. EXPERIMENTAL RESULTS

A. Test Setup

Figure 16 shows the prototype package with 36 chips and

Figure 17 shows the bench measurement setup. The test

package is mounted on a custom PCB with voltage regulators,

clock generators, and power measurement circuitry. The test

board connects via FMC to a Xilinx VCU118 FPGA board,

which is connected to a host PC via PCIE. The FPGA

communicates with the prototype via the GPIO interface of one

of the chips. The FPGA fabric implements an AXI interconnect

that shares the global memory map of the prototype system,

allowing the RVPs to access FPGA state that includes 4GB of

DRAM. To execute an inference operation, a RISC-V program,

which includes all weights, input activations, and configuration

settings, is loaded into FPGA DRAM. The RVPs then execute

the program, fetching from DRAM and loading state into the

PEs and GBs before initiating layer execution.

B. NoP Performance

Each data lane operates at a configurable speed between 11-

25Gbps and consumes 0.82-1.75pJ/bit. Compared to previous

interconnect on organic substrates for MCM systems [14], GRS

has about 3.5× higher bandwidth per chip area and lower energy

per bit. Measurements show an eye opening of 0.7UI at 25Gbps.

C. Peak Performance

Table 2 compares our system to prior inference accelerators

with 8-bit precision running a peak performance benchmark

Figure 14: Chip micrograph annotated with the floorplan of the chip.

GB PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

2
.5

m
m

2.4mm

GRS WRX GRS NTX GPIO

JTAG

GRS NRX GRS ETX

RVP

GRS STX GRS ERXGRS SRXGRS WTX

NoP

Figure 15: Floorplan of the chip-to-

chip GRS interconnect partition.

CLK

D3 D2

D1D0

VDD

VDD

GND

GND GND

GND

GND

T-coil

Transceivers

Decap

Figure 17: Bench measurement setup.

36-chip

Package

And

Cooling

VCU118 FPGA

Host and DRAM

Power

Supply

Generation

Host PC

JTAG

connection

and Power

Measurement

Figure 16: Prototype system connects

36 chips on the package.

JSSC-draft

that saturates MACs on each chip. The digital core efficiency

numbers exclude chip-to-chip interconnect power for

comparison purposes. GRS consumes constant power, even

with no traffic, as there is no sleep mode in this prototype. At

peak performance mode, this fixed power overhead is less than

5% of overall power, but it becomes more significant at

minimum voltage. Overall the prototype achieves around

between 67× and 1280× higher TOPS, 0.8-10× higher energy

efficiency, and 4-100× higher area efficiency.

D. Application Measurements

Table 2 demonstrates the architecture’s scalability with

measured performance of a 32-chip datacenter-scale system

running each layer of ResNet-50 [3]. GRS chip-to-chip

interconnect enables multi-chip scalability while consuming

12% of the total energy, and a batch size of one minimizes

inference latency and energy.

E. Strong Scaling

Figure 18 shows that measured latency in terms of PE cycles

is reduced by 16× when executing the res4a_branch1 layer of

ResNet-50 [3] on 32 chips instead of 1 chip. One chip maintains

63% utilization of the MAC units. With 32 chips, the

computation is spread across so many PEs that the number of

cycles spent doing computation is only 4096 cycles, and 6000

cycles of synchronization between chips across the NoC starts

to dominate runtime. Overall, a 32-chip system can execute 128

million MACs in 11µs, and design improvements to the

synchronization scheme could further improve strong scaling.

VI. CONCLUSION

This work presents a scalable DNN inference accelerator that

uses MCM assembly of multiple chips on an organic substrate

to improve yield, reduce design cost, and address different

market segments with a single chip. Scalability is enabled by a

flexible multi-chip architecture and hierarchical NoC and NoP.

The 36-chip system achieves high energy efficiency (9.5

TOPS/W), high area efficiency (1.29 TOPS/mm2), and high

performance (128 TOPS).

ACKNOWLEDGEMENT

The authors would like to thank Don Templeton, Guy Peled,

Jim Dobbins, Ben Boudaoud, Randall Laperriere, Borhan

Moghadam, Sunil Sudhakaran, Zuhair Bokharey, Sankara

Rajapandian, James Chen, John Hu, Vighnesh Iyer for package,

PCB, signal integrity, fabrication, and prototyping support.

Table 1: Comparison to other inference accelerators for peak performance benchmark.

 B. Moons,

ENVISION [7]

Z. Yuan,

STICKER [8]

J.Lee,

UNPU [9]

J. Song,

Exynos [6]

Proposed*

1 Chip 4 Chip (2 2) 36 Chip (6 6)

Technology 28nm 65nm 65nm 8nm 16nm

Cumulative Core Area 1.87 mm2 7.8 mm2 13 mm2 5.5 mm2 3.1 mm2 12.4 mm2 111.6 mm2

Cumulative Chip Area unknown 12 mm2 16 mm2 unknown 6 mm2 24 mm2 216 mm2

Precision 4b,8b,16b 8b 1-16b 8b,16b 8b

On-Chip SRAM (MB) 0.14 0.17 0.25 1.53 0.625 2.5 22.5

Supply Voltage (V) 1 0.67-1.1 0.63-1.1 0.5-0.8 0.41-1.2 0.52-1.2 0.52-1.1

Frequency (MHz) 200 200 5-200 67-933 161-2001 515-1998 484-1797

Core Power (mW) 165 21-248 3.2-297 39-1,553 30-4160 630-16,420 5,310-106,090

GRS Power† (mW) n/a n/a n/a n/a n/a 215-220 3,840-4,090

MACs per cycle 512 @8b 256 1,728@8b 1,024 1,024 4,096 36,864

Performance (TOPS) ~0.15@8b 0.1 0.69@8b 1.91 0.32-4.01 3.93-15.7 32.5-127.8

Core Energy Efficiency (pJ/op) ~1.1@8b 0.96 ~0.18@8b 0.087@8b 0.105-1.04 0.160-1.05 0.164-8.30

Core Area Efficiency (TOPS/mm2) 0.08 0.013 0.053 0.35 0.10-1.29 0.32-1.27 0.29-1.15

* Measured results reported for 40% density weights and input activations †11Gbps mode

Figure 18: Increasing the number of chips decreases the latency of layer

execution.

Table 2: Measurement of a 36-chip system running ResNet-50 at 0.80V.

Layer Latency (µS)
Core Energy

(µJ)

GRS Energy

(µJ)

conv1-pool1 41.00 902.90 147.70

res2a_branch1 8.87 209.00 32.02

res2a_branch2a 6.44 141.21 23.26

res2[a-c]_branch2b 9.26 250.84 33.40

res2[a-c]_branch2c 8.87 209.00 32.02

res2[b-c]_branch2a 14.04 417.68 50.56

res3a_branch1 8.92 281.39 32.15

res3a_branch2a 7.59 199.90 27.41

res3[a-d]_branch2b 9.11 237.57 32.91

res3[a-d]_branch2c 8.18 220.74 29.52

res3[b-d]_branch2a 8.40 232.08 30.29

res4a_branch1 8.11 264.19 29.21

res4a_branch2a 6.06 154.99 21.87

res4[a-f]_branch2b 11.98 302.36 43.35

res4[a-f]_branch2c 6.64 187.68 23.94

res4[b-f]_branch2a 6.86 194.77 24.77

res5a_branch1 12.49 326.72 45.18

res5a_branch2a 21.09 464.69 76.28

res5[a-c]_branch2b 13.33 349.58 48.20

res5[a-c]_branch2c 7.38 181.21 26.74

res5[b-c]_branch2a 8.23 203.74 29.78

fc1000 3.32 27.37 3.29

Total (batch=1) 0.525 ms 16.3 mJ/image 2.33 mJ/image

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

1 10

res4a_branch1 Latency

(Number of PE cycles)

Ideal Measured

1 4 32
Number of Chips

4096

1017

5620

281

32768

9272

8295

8990

114688

32648

34729

Peak MACs/cycle (128M total MACs)
1K 4K 32K

Other overhead

Multi-chip RISC-V synchronization

PE data movement overhead

Minimum cycles for MACs

JSSC-draft

REFERENCES

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.

B. Wojna, “Rethinking the Inception Architecture for

Computer Vision,” 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep Convolutional

Neural Networks,” in Proceedings of the 25th

International Conference on Neural Information

Processing Systems - Volume 1, 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” in The IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770–778.

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H.

Adam, “Encoder-Decoder with Atrous Separable

Convolution for Semantic Image Segmentation: 15th

European Conference, Munich, Germany, September

8–14, 2018, Proceedings, Part VII,” 2018, pp. 833–

851.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B.

Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,

U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,

“End to End Learning for Self-Driving Cars,”

arXiv:1604.07316, 2016.

[6] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H.

Song, J.-G. Lee, and I. Kang, “7.1 An 11.5TOPS/W

1024-MAC Butterfly Structure Dual-Core Sparsity-

Aware Neural Processing Unit in 8nm Flagship

Mobile SoC,” in 2019 IEEE International Solid- State

Circuits Conference - (ISSCC), 2019, pp. 130–132.

[7] B. Moons, R. Uytterhoeven, W. Dehaene, and M.

Verhelst, “Envision: A 0.26-to-10TOPS/W subword-

parallel dynamic-voltage-accuracy-frequency-scalable

Convolutional Neural Network processor in 28nm

FDSOI,” in 2017 IEEE International Solid-State

Circuits Conference (ISSCC), 2017, pp. 246–247.

[8] Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q.

Guo, X. Li, M.-F. Chang, H. Yang, and Y. Liu,

“Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network

Processor with Multi-Sparsity Compatible

Convolution Arrays and Online Tuning Acceleration

for Fully Connected Layers,” in 2018 IEEE

Symposium on VLSI Circuits, 2018, pp. 33–34.

[9] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J.

Yoo, “UNPU: A 50.6TOPS/W unified deep neural

network accelerator with 1b-to-16b fully-variable

weight bit-precision,” in 2018 IEEE International

Solid-State Circuits Conference (ISSCC), 2018, pp.

218–220.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.

Horowitz, and W. J. Dally, “EIE: Efficient Inference

Engine on Compressed Deep Neural Network,” in

Proceedings of the 43rd International Symposium on

Computer Architecture, 2016, pp. 243–254.

[11] Y. Chen, S. Member, T. Krishna, J. S. Emer, V. Sze,

and S. Member, “Eyeriss : An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional

Neural Networks,” pp. 1–12, 2016.

[12] N. P. Jouppi et al., “In-Datacenter Performance

Analysis of a Tensor Processing Unit,” in Proceedings

of the 44th Annual International Symposium on

Computer Architecture, 2017, pp. 1–12.

[13] K. Saban, “Xilinx Stacked Silicon Interconnect

Technology Delivers Breakthrough FPGA Capacity,

Bandwidth, and Power Efficiency,” 2012. [Online].

Available:

https://www.xilinx.com/support/documentation/white_

papers/wp380_Stacked_Silicon_Interconnect_Technol

ogy.pdf.

[14] N. Beck, S. White, M. Paraschou, and S. Naffziger,

“‘Zeppelin’: An SoC for multichip architectures,” in

2018 IEEE International Solid - State Circuits

Conference - (ISSCC), 2018, pp. 40–42.

[15] “AMBA ® AXI and ACE Protocol Specification

AXI3, AXI4, AXI5, ACE and ACE5,” 2017. [Online].

Available: arm.com.

[16] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S.

Dai, M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney,

P. Raina, Y. Zhang, B. Zimmer, W. J. Dally, J. Emer,

S. W. Keckler, and B. Khailany, “MAGNet: A

Modular Accelerator Generator for Neural Networks,”

in 2019 International Conference On Computer Aided

Design (ICCAD), to appear, 2019.

[17] K. Asanovic et al., “The Rocket Chip Generator,” in

EECS Department, University of California, Berkeley,

Technical Report, 2016, no. UCB/EECS-2016-17.

[18] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer,

M. Fojtik, N. Jiang, B. Keller, A. Klinefelter, N.

Pinckney, P. Raina, S. Tell, Y. Zhang, W. Dally, J.

Emer, C. Gray, B. Khailany, and S. W. Keckler,

“Simba: Scaling Deep-Learning Inference with Multi-

Chip-Module-Based Architecture,” in 2019 52nd

Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), to appear, 2019.

[19] D. K. Panda, S. Singal, and R. Kesavan,

“Multidestination message passing in wormhole k-ary

n-cube networks with base routing conformed paths,”

IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 1, pp.

76–96, Jan. 1999.

[20] J. W. Poulton, J. M. Wilson, W. J. Turner, B. Zimmer,

X. Chen, S. S. Kudva, S. Song, S. G. Tell, N. Nedovic,

W. Zhao, S. R. Sudhakaran, C. T. Gray, and W. J.

Dally, “A 1.17-pJ/b, 25-Gb/s/pin ground-referenced

single-ended serial link for off- and on-package

communication using a process- and temperature-

adaptive voltage regulator,” IEEE J. Solid-State

Circuits, vol. 54, no. 1, pp. 43–54, 2019.

[21] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons,

M. Fojtik, N. Jiang, B. Keller, A. Klinefelter, N.

Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J. Dally,

J. S. Emer, C. T. Gray, S. W. Keckler, and B.

Khailany, “A 0.11 pJ/Op, 0.32-128 TOPS, Scalable

Multi-Chip-Module-based Deep Neural Network

Accelerator with Ground-Reference Signaling in

16nm,” in 2019 Symposium on VLSI Circuits, 2019,

pp. C300–C301.

[22] B. Khailany, E. Krimer, R. Venkatesan, J. Clemons, J.

S. Emer, M. Fojtik, A. Klinefelter, M. Pellauer, N.

JSSC-draft

Pinckney, Y. S. Shao, S. Srinath, C. Torng, S. (Likun)

Xi, Y. Zhang, and B. Zimmer, “A modular digital

VLSI flow for high-productivity SoC design,” in

Proceedings of the 55th Annual Design Automation

Conference on - DAC ’18, 2018, pp. 1–6.

[23] “MatchLib.” [Online]. Available:

https://github.com/NVlabs/matchlib.

[24] B. Keller, M. Fojtik, and B. Khailany, “A Pausible

Bisynchronous FIFO for GALS Systems,” in 2015

21st IEEE International Symposium on Asynchronous

Circuits and Systems, 2015, pp. 1–8.

[25] M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney, S. G.

Tell, B. Zimmer, T. Raja, K. Zhou, W. J. Dally, and B.

Khailany, “A Fine-Grained GALS SoC with Pausible

Adaptive Clocking in 16 nm FinFET,” in 2019 25th

IEEE International Symposium on Asynchronous

Circuits and Systems (ASYNC), 2019.

