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ABSTRACT

Generalized tensor algebra is a prime candidate for acceleration

via customized ASICs. Modern tensors feature a wide range of data

sparsity, with the density of non-zero elements ranging from 10−6%

to 50%. This paper proposes a novel approach to accelerate tensor

kernels based on the principle of hierarchical elimination of com-

putation in the presence of sparsity. This approach relies on rapidly

inding intersectionsÐsituations where both operands of a multipli-

cation are non-zeroÐenabling new data fetching mechanisms and

avoiding memory latency overheads associated with sparse kernels

implemented in software.

We propose the ExTensor accelerator, which builds these novel

ideas on handling sparsity into hardware to enable better band-

width utilization and compute throughput. We evaluate ExTensor

on several kernels relative to industry libraries (Intel MKL) and

state-of-the-art tensor algebra compilers (TACO). When bandwidth

normalized, we demonstrate an average speedup of 3.4×, 1.3×, 2.8×,

24.9×, and 2.7× on SpMSpM, SpMM, TTV, TTM, and SDDMM ker-

nels respectively over a server class CPU.

CCS CONCEPTS

· Computer systems organization → Special purpose sys-

tems.
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1 INTRODUCTION

Recently, there has been a surge of interest in generalized tensor al-

gebra in the ields of deep learning [1, 15], machine learning [5], data

science [7, 9, 27, 35, 48], physical sciences [18], engineering [20, 28],

and graph analytics [34]. Tensors generalize vectors and matrices

to N -dimensions, and tensor kernels combine two or more tensors

using low-level computations similar to traditional 2-dimensional

dense/sparse linear algebra, i.e., sequences of arithmetically inten-

sive operations such as matrix multiplications.

These tensor operations often operate on very sparse data (i.e.,

with a small percentage of data which is non-zero). Figure 1 shows

that the percentage of non-zero elements ranges from 10−6% to 50%

depending on the problem domain, with many domains featuring

tensors with density less than 0.1%. As a result, tensors are stored

in compressed representations and looked-up via metadata, e.g.,

compressed sparse row (CSR) or compressed sparse iber (CSF) [46],

which indicate where non-zeros occur in the tensor.

The variety of tensor kernels, their extreme sparsity, and their

compressed representations make tensor algebra challenging on

today’s platforms. On one hand, the architecture community has

proposed accelerators for sparse linear algebra, but they deal with

relatively dense data (e.g., deep neural networks [4, 13, 21, 42, 51])

or speciic kernels (e.g., sparse matrix vector multiply [2, 8, 24, 33,

36, 40, 41]). On the other hand, general purpose platforms such as

CPUs and GPUs cannot reach peak performance for a variety of

reasons, e.g., main memory latency [17, 38].

This paper proposes a novel approach for accelerating gener-

alized tensor algebra that is eicient when handling very sparse

tensors. At a basic level, the main opportunity provided by sparsity

in tensor operations is the potential to exploit the axiom 0 · x = 0

for any x . For a scalar x , various platforms have exploited this op-

portunity to remove inefectual computation. For example, we can

avoid delivering x to the staging bufers and performing a multi-

ply [4, 12, 13, 21, 26, 31, 40, 42, 50, 51]. Our key insight is that in

https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
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Figure 1: Tensor sparsity by workload domain.

higher-order tensor algebra, this opportunity applies even when x

is not a scalar. For example, x might be a tile, in which case recog-

nizing that the other operand is 0 means we don’t have to transfer

data (or metadata) for the entire tile. x might even represent an

un-evaluated tensor computation, and recognizing that the other

operand is 0 early can result in skipping all operations, data, and

metadata transfers required to create x . These opportunities are

even further magniied when the 0 corresponds to a tile or larger

region of the tensor.

Mathematically, to detect the work that will not be skipped, we

can calculate the intersection of coordinatesÐlogical locationsÐof

non-zero elements in each tensor operand. Importantly, coordinates

can be associated with scalars, tiles, sub-computations, etc., allow-

ing us to hierarchically eliminate work using these intersections.

With this inmind, we propose ExTensor1, an accelerator architec-

ture built around the idea of performing hierarchical compositions

of intersections to eliminate inefectual computation. In ExTensor,

tensor metadata and data processing are decoupled so that the

metadata engines can aggressively look ahead in the computation

to discover inefectual computation before they are delivered to

the arithmetic units. This idea is applied to each level in the bufer

hierarchy to stage sub-tiles and sub-computations at the next level

so that, at the bottom level, the arithmetic units perform a minimal

amount of work.

Overall, we make the following contributions.

(1) To the best of our knowledge, we propose the irst accelerator

for general, sparse tensor algebra.

(2) We describe a general abstractionÐbased on intersections

between coordinates of non-zero dataÐfor describing in-

tersections (opportunities to skip work due to sparsity) in

sparse tensor algebra, that applies at diferent granularities

in the problem (e.g., scalar level, tile level).

(3) We propose a hardware mechanism, and optimizations, for

performing these intersections at multiple levels of an accel-

erator’s memory hierarchy.

(4) We extensively evaluate ExTensor over a range of tensor

kernels, and implement a core hardware component in

RTL. When bandwidth normalized, we demonstrate an av-

erage (geomean) speedup of 3.4×, 1.3×, 2.8×, 24.9×, and

2.7× on SpMSpM, SpMM, TTV, TTM, and SDDMM kernels

respectively over a server class CPU.

1In biology, an extensor is a muscle whose contraction causes a limb to straighten,
which we see as analogous to performing intersections that unravel a sparse tensor
computation into a linear stream of the desired operations.
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Figure 2: Tensor terminology & example compression using CSR.

2 BACKGROUND

We review the key details of tensor algebra that are relevant to

computer architecture and our proposed approach. For additional

information see [27]. When possible, we use terminology and math-

ematical notation from the TACO tensor algebra compiler [26].

2.1 Tensor Terminology and Representation

Tensors are multi-dimensional arrays of arbitrary order (dimension-

ality) N , and we use the notation N -tensor for brevity. For example,

0-tensors are scalars, 1-tensors are vectors, 2-tensors are matrices.

Figure 2 (a) shows an example tensor X ∈ RI×J , i.e., a 2-tensor (ma-

trix) of real numbers (loats) of size I × J . Locations in a tensor are

referred to as points, which are identiied by a tuple of coordinates,

one for each dimension. Our notation for the coordinates of a point

uses concatenated subscripts. For example, the element of tensor

X at point (i, j) for i < I , j < J is written as Xi j . In cases where

concatenation introduces ambiguity we clarify with parentheses,

e.g., the element at (i + 1, j) is X(i+1)j .

Large tensors are frequently sparse (see Figure 1 and [26]), so

compressed representations are used to avoid storing zero data

values in memory. Various domain-speciic compressed repre-

sentations exist to minimize storage while also enabling high-

performance access to the non-zero data. Generally, all compressed

formats store metadata for indexing the compressed data structure

as well as the actual data (non-zero tensor values), each element of

which is stored at a position in memory.

For dense (uncompressed) tensors, there is an O(1)-cost trans-

lation from coordinate to data position, which permits eicient

random access. In compressed representations, random access can

require a search through a list of coordinates, but sequential traver-

sal of the tensor can often leverage the metadata format to improve

eiciency. For example, Figure 2 (b) shows a tensor represented in

the Compressed Sparse Row (CSR) format. Note that access to a

completely random point (i, j) requires a memory indirection in

order to ind the row bounding positions (via the segment array),

followed by a search to locate the appropriate inner dimension

coordinate, if present (through the coordinate array). However, also

note that once this search is performed, the position of the next

non-zero in row i (if any) is derivable from the position found for

(i, j), meaning that an operation acting on the subsequent non-zero

in the row may be performed in O(1) time.

In this paper, we support tensor representations where each di-

mension is stored either dense/uncompressed (U) or compressed
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Table 1: Example tensor kernels and BLAS routines. α, β, γ are

scalars (0-tensors); A, B, C, Z , O, I, F are higher-order tensors. Sym-

bols for convolution match [12] where possible for consistency.

We note that
∑

has precedence, meaning GEMV should be read as

α (
∑
k AkBki ) + βCi .

Name Tensor index notation

GEMV Zi = α
∑
k AkBki + βCi

GEMM Zi j = α
∑
k AikBk j + βCi j

TTV Zi j =
∑
k Ai jkBk

TTM Zi jk =
∑
l Ai jlBkl

SDDMM Zi j = Ci j
∑
k AikBk j

MTTKRP Zi j =
∑
kl AiklBk jCl j

2D Conv Oxy =
∑
r s I(x+r )(y+s)Fr s

CNN layer Ozuxy =
∑
crs Izc(γ x+r )(γy+s)Fucrs

(C) [26]. We refer to speciic formats in this family using nota-

tion deined by the following regular expression: łT-[uc]+ž. In this

taxonomy, a 2-tensor (matrix) in the CSR format is categorized as

T-uc, corresponding to the irst dimension being uncompressed and

second dimension compressed. The Compressed Sparse Column

(CSC) format is also categorized as T-uc but with rows as the irst

dimension and columns as the second dimension [14]. Many other

representations are also possible. For example, the Compressed

Sparse Fiber (CSF) [46] format corresponds to class of representa-

tions described by T-c+.

Given an N -dimensional tensor, choosing whether each dimen-

sion should be uncompressed or compressed is a trade-of between

random access time and storage. In terms of random access, trans-

lating a tuple of coordinates to a data position is done dimension-

by-dimension, where each uncompressed dimension is traversed

in O(1) time and each compressed dimension requires a search. In

terms of storage, an uncompressed dimension must allocate meta-

data proportional to the size of the dimensionwhereas a compressed

dimension need only allocate storage proportional to the number

of non-zero elements in the dimension. Importantly, representing

a dimension in compressed form gives the opportunity to avoid

storing any data and metadata for lower dimensions. For example,

a 2-tensor compressed as T-cc stores no metadata/data for a row

that contains only zeros.

2.2 Tensor Algebra Kernels

Tensor algebra is the process of performing binary operations (e.g.,

multiplies and adds forming dot products) between tensors to pro-

duce new tensors.We follow the tensor index notation found in [26],

which provides a compact way to describe a kernel’s functionality.

For example, matrix multiply Z = AB can be written as:

Zi j =
∑

k
AikBk j (1)

That is, the output point (i, j) is formed by taking a dot product of

k values along the i-th row of A and the j-th column of B.

We give more examples of important kernels written in this

form in Table 1. Each kernel is useful in diferent problem domains.

GEMV/GEMM are well known and have many applications [10, 34].

The SDDMM kernel is used in machine learning [52] and triangle

counting [6]. MTTKRP is used in tensor decompositions [27], 2D

Conv is used in image processing applications, and CNN layers are

the core kernels in state-of-the-art image recognition [22, 29].

Tiled Tensor Algebra: Sparse tensors can be tiled to improve

locality, by adding dimensions to the tensor representation. For ex-

ample, to break a matrix represented in CSR into two-dimensional

tiles, we add two dimensions to the representation, giving us T-?uc,

where ‘??’ are two new outer dimensions which can be either u

or c. Thus, each tile is represented in CSR, and we traverse outer

dimensions to index into each tile. Importantly, compressed outer

dimensions imply no storage for tiles that contain only zeros. Sup-

porting multiple levels of tiles entails adding yet more dimensions.

As the most eicient tiling is dependent on the traversal order of

any given kernel, oline pre-processing is considered acceptable

in the tensor community [26], as it can be thought of selecting the

most appropriate compression format for the data.

3 INTERSECTION OPPORTUNITIES

From Table 1, we see that tensor kernels are a composition of com-

putations on values generated by co-iterations through (possibly

diferent) dimensions of two or more tensors. For example, in Equa-

tion 1 (matrix multiply) we perform co-iterations through the k di-

mension, which corresponds to traversing corresponding elements

from rows of matrix A and columns of matrix B. The co-iterations

merge the elements from the source tensors using either multiply

or add, which is sometimes additionally reduced via accumulate

(e.g., via dot product, min/max). An important observation is that,

because 0 · x = 0, a co-iteration with multiplication is a merge

intersection operation (intersection for short) between two sets

of coordinates corresponding to non-zero values in each operand.

Such intersections can enable skipping computation, data transfers,

or both. We now describe diferent intersection opportunities for

the matrix multiply example (Equation 1), using the matrices in

Figure 3. The key takeaway is that, in all cases, intersection can be

modeled as comparisons between sets of coordinates. This will allow

us to build a single hardware mechanism to perform the diferent

types of intersections we illustrate below.

Matrix B Matrix Z = ABMatrix A

f g

h

0

1

2

0 1 2

K

J

ah

cf
cg+

dh

0

1

0 1 2

I

J

a b

c d e

0

1

0 1 2

I

K

Figure 3: Examplematrices.White space indicates zero value. Num-

bers along each dimension are coordinates for that dimension.

3.1 Two-Operand Intersections

For the following examples, we visualize tensors as N -level trees,

where each level indicates the coordinates for one dimension, and

each unique path through the tree represents a non-zero data ele-

ment and its associated coordinates. (See Figure 4 for examples of

the matrices in Figure 3.) Dimensions are labeled level by level, with

the outermost immediately below the root of the tree. A subtree

rooted at a coordinate represents a subtensor. When a subtensor
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contains only zero data elements, we omit its subtree. The order of

dimensions (levels) in the tree corresponds to diferent data layouts,

and is set oline based on the intended traversal order. For example,

diferent datalows [12] such as output- and A-stationary (Figure 4,

left and right) prefer matrix B to be stored in diferent layouts.

0

0 1

1 2 0 1 2

a b c d e

A (Row major)

0

1 2

0 0 1

f g h

B (Col major)

I

K

0

0 1

1 2 0 1 2

a b c d e

A (Row major)

for i in [0, I):

  for j in [0, J):

    for k in [0, K):

      Zij += Aik * Bkj

for i in [0, I):

  for k in [0, K):

    for j in [0, J):    

      Zij += Aik * Bkj

0

0

1 2

f g

1

2

h

B (Row major)

Output stationary A stationary

I

K

J

K

K

J

Figure 4: Example datalows for matrix multiply. Intersections are

between sets of coordinates for each datalow (red dashed ovals).

Importantly, the tree representation conveys the same informa-

tion as T-[uc]+ representations such as CSR and CSF (Section 2.1),

while hiding implementation details. Furthermore, in T-[uc]+ for-

mats it is generally the case that coordinates within a level are

stored sequentially in memory, which means we have good spatial

locality when traversing a level.

IntersectionsWithin Dot Products: Suppose the matrix mul-

tiply kernel is implemented using an output-stationary datalow,

where each output Zi j is computed one at a time, shown in Figure 4

(left). In output stationary, we only need to do a multiply when

corresponding values in the active row and column are both non-

zero. These operations can be viewed as intersections of sets of

coordinates between rows of A and columns of B.

By laying out A and B in row- and column-major order, respec-

tively, this corresponds to intersecting coordinates in the second

level (dimension K ) of each matrices’ tree representation. The coor-

dinates involved in the intersection to compute Z02, a dot product,

are shown in the igure as dashed red ovals. Because only coor-

dinate 1 appears in both ovals, only data elements a from matrix

A and h from matrix B need to be read and computed upon. Be-

cause the subtrees under each intersected coordinate are scalars,

this intersection saves work (both loads of values and computes)

associated with scalar operations.

IntersectionsAcross Dot Products: We can also intersect sets

of coordinates in levels (tensor dimensions) closer to the root of

the tree and between diferent levels of the tree, which eliminates

work associated with entire subtensors with a single intersection.

For example, consider the A-stationary datalow in Figure 4 (right),

where Matrix B is laid out in row-major order. Intersections are

now between sets of coordinates from the second level (dimension

K) of A and the irst level (dimension K) of B. As we see in the

example, the missing 0 coordinate in the second dimension of A

eliminates a number of multiplies that would have been done with

elements from the subtree with coordinate 0 in the irst dimension

of B (broadcasting the scalar across the row of B). This can eliminate

work fetching the data and metadata from the row of B as well as

the multiplies themselves. Also, the missing coordinate 2 in the irst

dimension of B (a zero row) eliminates work associated with the

scalar b in matrix A.

Intersections at Tile Granularity: Recall from Section 2.2,

tiling can be implemented by adding additional dimensions to the

compressed representation. Thus, the opportunities above apply

when scalars a, b, c , etc. in matrices A and B are replaced with tiles

(subtrees) of A and B, meaning we can perform intersections at

the tile granularity to eliminate the work done to load/compute

on tiles, when entire tiles contain only zero. That is, intersection

opportunities are hierarchical.

3.2 Compositions of Intersections

More intersection opportunities arise in kernels involving more

than two tensors. For example, the SDDMM kernel performs

element-wise multiplications between matrix C and the results

of a matrix multiplication between A and B (Table 1). This can

be viewed as a composition of intersections, where we compute

intermediate matrix D = AB and the coordinates of C and D are

subsequently intersected. Suppose we intersect C and D before (or

while) D is being computed. Since missing coordinates in A are

known at the start, this early intersect tells us when a dot prod-

uct in AB = D is inefectual and can be skipped. Likewise, if dot

products in AB result in zero, which occurs if there is an empty

intersection between corresponding rows and columns in A and B,

we can eliminate work in fetching/computing on data in C .

4 INTERSECTING STREAMS

From the previous section, we saw multiple opportunities where

intersection could save various types of work (arithmetic, data and

metadata transfers, whole sub-computations, etc). A key observa-

tion is that these various intersection opportunities require the

same computation: namely an intersection operation between sets

of coordinates in the dashed red ovals. In hardware, we call the

contents of these ovals streams of coordinates. In this and the next

section, we design hardware to eiciently intersect these streams.

4.1 Iterating over Streams

A tensor kernel is made up ofmany streamswhich are hierarchically

intersected as described in Section 3. For simplicity, we start by

describing the simplest intersection: between coordinates of two

streams. Before we consider intersection, however, we describe

the unit that stores individual coordinate streams. It consists of

metadata storage, that interfaces with a hardware FSM that iterates

through the storage. We call the combined unit a Scanner, shown

in Figure 5.

Scanners must perform one operation: Iterate(), which outputs

coordinates stored in the metadata storage, in increasing order by

coordinate. (We denote explicit command interfaces supported in
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Iteration 
FSM

Metadata
Storage

Iterate()

Read request

Read response

Fill path

The coordinate stream: 
Next coordinate (or EOS)

Scanner

Figure 5: Scanner hardware. Storage is shaded.

the hardware with method call syntax.) For now, we assume each

Iterate() call outputs all stored coordinates. Once the iteration is

complete, the Scanner outputs the symbol EOS to indicate the end

of the stream.

The metadata storage can be implemented in multiple ways, e.g.,

as cache, (double bufered) scratchpad, or bufet [43]. Depending

on the implementation, a separate mechanism may be required to

ill the coordinates into the metadata storage. For example, a cache-

based or scratchpad-based storage ills through demand loads from

the iteration FSM or an explicit fetch unit, respectively. To simplify

the Iterate() command’s implementation, coordinates are illed

and stored in increasing order.

4.2 Intersecting Streams

Intersecting two streams requires co-iterating over two Scanners

in parallel and processing the resulting streams using a hardware

block called Intersect, as shown in Figure 6. The design generalizes

to intersecting any number of parallel streams, but we discuss two

for simplicity.

Scanner 
B

Scanner 
A

Intersect

while (true)

if (A.is_empty() || B.is_empty())
{ A.flush(); B.flush(); break; }

else if (A.peek() < B.peek())
A.pop();

else if (A.peek() > B.peek()) 
B.pop();

else // A.peek() == B.peek()
{ B.pop(); C.push(A.pop()) }

A B

C

Iterate() Iterate()

Stream BStream A

Figure 6: Basic intersection hardware and algorithm.

We use FIFO terminology: the current irst/last element in a

stream as seen from a consumer is denoted head/tail, respectively.

In each clock tick, the head coordinate of each stream A and B,

generated by Scanner A and B, respectively, is checked by value

(via peek). If the head coordinates of both streams match, those

coordinates are both efectual, and the common coordinate is passed

to the output C. Otherwise, if the head coordinate of one stream is

less than the head of the other, the head of the lagging stream is

inefectual and is dropped (via pop). In this case, no output is sent to

C in that cycle. This is functionally correct because the coordinates

in each stream are ordered. Finally, if one stream is empty, the

intersection exits (via flush) as no more efectual coordinates will

be produced.

We note that it is straight-forward to employ a vector pipeline

for Intersect by having each scanner read out vectors of coordinates.

We assume each Scanner produces a single coordinate per cycle for

simplicity.

4.3 Eiciency

In hardware, the Scanner is a simple pipelined iterator that pro-

duces one coordinate per cycle. Likewise, the Intersect block can

be pipelined to perform one iteration of the while loop per cycle.

Thus, the above design completes an intersection in O(|StreamA ∪

StreamB |) cycles.

From this, we see that our intersection hardware has a perfor-

mance deiciency. Ideally, we want Intersect to take no more than

|StreamA ∩ StreamB | cycles, as this is the minimum amount of

time needed to output the common coordinates. Yet, even when

|StreamA ∩ StreamB | is small, intersection time is still proportional

to the sum of the length of both streams in the worst case. Consider

two example streams in Figure 7 (a) and (b). Streams are given on

the left, and timing of Intersect for each stream on the right.

0 1 3 5

5

0 1

3 4

Head

Stream B

Stream A

Tail

Head Tail

(a)

(b)

7 9

9

5

0 1 3 5

5Stream B

Stream A

Time (cycles) 1 2 3 4

5 5 5

>
>

> =

0 1 9

3Stream B

Stream A

Time (cycles) 1 2 3 4 5

3 3

Streams Intersect Time

Stream B

Stream A

>
>

>

4 5

9 9

> >

Figure 7: Examples for the basic intersect architecture, with cycle-

level timing. Coordinates for each stream are shown in boxes. Light-

ened boxes indicate the value has not changed from the previous

cycle (i.e., was not popped in the previous cycle).

In Figure 7 (a), Stream B has fewer coordinates than Stream A,

but the head of Stream B will not be dropped (which would ter-

minate the intersection early) until Stream A has been iterated

partially (or completely), because Stream B’s coordinate is greater

than some (or all) of Stream A’s coordinates. This scenario occurs

frequently when intersecting data from two tensors of highly difer-

ent density, which occurs in important applications such as breadth

irst search [34]. In Figure 7 (b), the two streams result in an empty

intersection. One would like to detect this case and terminate inter-

section immediately, outputting the empty set.

5 OPTIMIZED INTERSECTION

In this section, we propose an optimized intersection architecture

to remove the bottlenecks discussed in the previous section (Sec-

tion 4.3). Our design is based on two key observations, which we

illustrate using Figure 7.

First, in Figure 7 (a), the only work necessary to complete the

intersection is to determine if Stream A contains coordinate 5. More

generally, intersection requires searching for coordinates in one

stream (e.g., Stream A) which match those in the other stream (e.g.,

Stream B). Semantically, this is a content addressable lookup which

the strawman design implements in linear time (i.e., by iterating
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through coordinates 0, 1, 3, 5). Thus, to speedup intersections the

core task is to architect a faster content addressable search.

Second, since coordinates in streams are ordered, consecutive

coordinates in one stream can be interpreted as a range of coor-

dinates that will be inefectual in the opposite stream. For example,

in Figure 7 (b), the consecutive coordinates 1, 9 in Stream A can

be interpreted as a hint to Scanner B that all coordinates in the

open interval (1, 9) ś namely coordinates 3, 4, 5 ś are inefectual

and do not have to be output. Such a scheme can łrule outž a large

number of coordinates in a single shot. Importantly, to eiciently

skip through ranges of coordinates within a stream, we require a

similar content addressable lookup, as in the previous paragraph,

to identify the start and end of each range.

5.1 Skip Mechanism Design

Combining the above observations, we add a new functionality

to scanners called SkipRange() which takes a (begin, end) tuple

of coordinates as input. Scanners send each other SkipRange()

commands in a bidirectional fashion to decrease the number of

coordinates sent to the Intersect block and more quickly reach the

end of their respective streams.

Suppose a scanner is in the middle of an Iterate() operation (i.e.,

has output some but not all of its stream). If that scanner receives a

SkipRange() command, it is allowed to skip over (i.e., not output)

coordinates in the range (begin, end). Depending on the value of

coordinate coord at the head of the scanner’s stream, the scanner

must handle three cases:

(1) coord ≤ begin: Output coord as usual. Do not consume the

SkipRange() command this cycle.

(2) begin < coord < end: Do not output coord. Do not consume

the SkipRange() command this cycle.

(3) end ≤ coord: Output coord as usual. Consume the

SkipRange() command.

SkipRange() may have no efect, if the scanner’s head coordinate

has already past end in the range (Case 3). Once the scanner enters

Case 2, it may require multiple cycles to transition to Case 3 de-

pending on the number of coordinates in the range. In Section 5.2,

we architect an eicient content addressable lookup to jump imme-

diately to Case 3 once we have reached Case 2.
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Figure 8: (Left) Intersection based on bidirectionally skipping

ranges of coordinates. (Right) The SkipTo() implementation, with

input coordinate scoord and CAM capacity T (Section 5.2). Double

bufering the CAM registers is not shown. Storage is shaded.

The overall design is shown in Figure 8. Iterate() is called on

both scanners. Conceptually, each scanner initiates SkipRange()

operations on its neighbor, for each pair of consecutive coordinates

in its stream. SkipRange() internally performs the content address-

able lookup to advance to the end of the range (Section 5.2). Notice

that consecutive (begin, end) tuples share one coordinate. For exam-

ple, Stream A in Figure 7 (b) might trigger SkipRange() calls with

coordinate ranges (0, 1) and (1, 9) ś notice the ‘1’ is common. Thus,

as an optimization we implement SkipRange() to take a single coor-

dinate ś the next coordinate in the stream denoted scoord ś and call

this variant SkipTo() for clarity. Importantly, for synchronization

correctness, the scanner must not consume a SkipTo() command

and its coordinate until the head of the stream is greater than or

equal to the coordinate argument to the previous SkipTo() call.
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Figure 9: Example timing using the optimized intersect architec-

ture. For simplicity, the examples assumes SkipTo() skips through

any range of coordinates in 1 cycle.

Crucially, SkipTo() operations are only triggered by coordinates

successfully output by each scanner. We show a timing example

in Figure 9, which corresponds to Figure 7 (b), assuming we can

implement the content addressable lookup in a single cycle. Scanner

A need not initiate a SkipTo() operation on Scanner B for coordinate

1, since Scanner B previously sent a SkipTo() command to Scanner

A which skipped over coordinate 1 (and moved the iteration for

Scanner A to coordinate 9).

5.2 Content Addressable Lookup

Given the coordinate input to SkipTo(), scoord, we wish to ind

the address in the metadata storage corresponding to the largest

coordinate tcoord such that tcoord < scoord. The ability to quickly

ind tcoord when the head coordinate coord is in (begin, end) is

critical to the efectiveness of SkipTo().

There are diferent possible implementations for this search with

diferent time/space trade-ofs, e.g., a binary search or a hash table.

For simplicity, we implement the search using a hardware CAM

with T parallel comparators, shown in Figure 8 (right), which we

call the coarse-grain CAM. Each comparator tracks a coordinate

and address (for that coordinate, in the metadata storage) in the

stream. Given a stream with S coordinates: if S ≤ T , every coordi-

nate is assigned a comparator; else the stream is partitioned into

T + 1 regions of as close to equal size as possible. Note, the number

of coordinates in each stream is pre-computed in the T-[uc]+ rep-

resentation. We assume the spacing between coordinates assigned

to consecutive comparatorsÐi.e., ⌊S/T ⌋Ðis also calculated oline

and stored in stream metadata.

To perform a SkipTo() command, the Scanner advances the head

of its stream to the largest coordinate associated with a comparator

whose value is less than scoord. Since the comparators are parallel,
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this lookup takes a single cycle. T is a design-time parameter that

controls SkipTo() efectiveness: smaller T yields a coarser-grain

look-up (potentially skipping less), while larger T increases design

area.

Lastly, we note that the T coordinates must be loaded into regis-

ters connected to the comparators at the beginning of the Iterate()

calls. Although we have discussed a single stream, Scanners process

sequences of streams back to back. To hide comparator load time,

we double bufer the registers associated with the comparators, and

use a second read port into metadata storage to ill the registers

while an earlier stream is being intersected.

6 STAGING INTERSECTIONS

So far, we have discussed how to intersect a single pair of coordinate

streams. To evaluate a tensor kernel, we must intersect multiple

pairs of streams, in a sequence, and stage the results of those inter-

sections for use in subsequent intersections or arithmetic operations.

We perform these tasks using a hardware unit called the Stream

Coordinator (Coordinator for short). Shown in Figure 10, the Coor-

dinator is made up of two Scanners (Sections 4.1, 5.1), an Intersect

unit (Section 4.2), an FSM that schedules the order in which streams

are produced by each Scanner (Section 6.1), and memories to store

tensor data (Section 6.2). This logic corresponds to one or more

levels in the loop nest representation of a tensor kernel.
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Figure 10: The Coordinator. Next child indicates the next non-

empty child for Iterate() (Section 6.1). MD stands for metadata.

TCA and TCB append tile-level coordinates to each output so that

the point (Section 2.1) of any data value output can be derived later

on.

Throughout the section, we use Figure 4, output stationary, as a

running example.

6.1 Sequencing & Sourcing Streams

Up to this point, we have assumed a single stream has been stored in

each scanner’s metadata storage. We now generalize this to a multi-

dimensional tile of coordinates which corresponds to a subtensor.

Each tile is stored in a T-[uc]+ representation (Section 2.1) and is

conceptually a tree or subtree from Section 3.

We add two arguments to the Scanner’s Iterate() functionality:

level and parent_node, which represent a level (dimension) of the

tree and a node (coordinate) whose child coordinates should form

the stream.2 Level 0 is reserved for the root of the tree. For exam-

ple, to iterate through the coordinates in row 0 of matrix A from

2This new information may also be speciied as a list of coordinates forming the
subpath from the root of the tile to the node whose children we are iterating over.

Figure 4, we specify level 1 (for the I dimension) and parent_node 0

(for the coordinate in level 1 with value 0, for row 0). If the child

is not present, Iterate() returns an empty stream. For T-[uc]+

representations, the extra hardware needed per Scanner to support

this feature is similar to simple tree traversal logic.

A new unit called the Sequencer is responsible for calling Iter-

ate() for each Scanner in the order required by the tensor kernel.

For this purpose, the Sequencer is conigured with a table (indicated

by Configure() in Figure 10) that is programmed at kernel start

and stores a representation of the kernel loop nest. In our imple-

mentation, it stores the bound and stride of each loop in the kernel,

a map which associates loop variables to tensor dimensions for

indexing purposes, and counters to keep track of the current loop

state. For example, for the output-stationary datalow in Figure 4,

the Scanner for matrix A stores [I , J , K] to indicate loop bounds,

[1, 1, 1] to indicate stride 1 in all dimensions, and [0, N/A, 1] to

indicate that the outermost loop (I , index 0) corresponds to the

outer dimension (0) in A, and that the innermost loop (K , index 2)

corresponds to the inner dimension (1) in A.3

a

∩  [ , ], [ ] ∩  [ , ], [ , ] ∩  [ , , ], [ ] ∩  [ , , ], [ , ] 

Sparse loop nest skips Col 0 Sparse loop nest skips Col 0 

Row 0, Col 1 Row 0, Col 2 Row 1, Col 1 Row 1, Col 2

h

c

f

c d

g h

Data storage A (reads):

Data storage B (reads):

Output coordinate: 1 0 0 1
Time

Figure 11: Sparse stream sequencing for Figure 4, output stationary.

∩ is short for calling Iterate on each scanner and performing an

intersection. The coordinates for each streamare shown in brackets,

where the irst/second argument is for matrix A/B respectively.

Eiciently Supporting Sparse Sequences: We optimize the

Sequencer by adding support to traverse over sparse loop nests. For

example, in Figure 4 for output stationary, a dense loop nest would

call Iterate() J = 3 times for each row of matrix A, or once for each

column of matrix B. Yet, the column with coordinate 0 in matrix B is

empty. This case is common in sparse tensors, whose matricizations

are often hypersparse (have empty rows or columns) [16, 45]. We

would like to exploit this fact and skip a call to Iterate() to save

cycles.

To skip Iterate() calls when we encounter runs of empty

streams, we add a feedback path from each Scanner back to the

Sequencer to inform the Sequencer of the next value of parent_node

(in increasing order) that has a non-empty stream in the current

level (or that there are no such streams left in the current level). This

is efective because tensor representation and tensor kernel loop

nest are co-designed so that tensor dimensions are iterated over in

order, level by level. For example, output stationary iterates over

matrix B column by column. The resulting sequence of intersection

operations for Figure 4, output stationary, is shown in Figure 11.

3We note that many of the kernels in Table 1 require only this simple logic, but several,
e.g., convolution, require support for simple aine expressions. While straightforward
to add, we do not discuss those here for simplicity.
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Determining the next parent_node with a non-empty stream is

straightforward. For example, using the CSF representation (com-

pressed in each dimension; c.f., Section 2.1) the sequence of coordi-

nates corresponding to non-empty streams is stored sequentially

in memory for each dimension.

Sequencing Tiles: The above discussion concerns sequencing

streams within a tile. To run the entire kernel, we add state in the

Sequencer for the outer loops that sequence over tiles. Depend-

ing on the Scanner implementation, the next tile is illed based on

how the metadata storage is implemented (see Section 4.1). As it

is loaded, each tile is tagged with coordinates that identify the tile.

The Sequencer uses this information to adjust its internal coun-

ters, which enables sparse loops (Section 6.1), and passes tile-level

coordinates along with the results of each intersection (see below).

6.2 Using Intersected Streams

Post-intersection, surviving coordinates are used to lookup and

output tensor data for both tensors. For example, the intersection

between row 0 of matrix A and column 2 of matrix B in Figure 4

(left) has the common coordinate 1, which is associated to data a in

A and h in B.

To complete these data lookups, we transport data along with

coordinates and other T-[uc]+ metadata in each tile. When a tile is

initially loaded (illed) into the Coordinator, coordinate and other

metadata is stored in the metadata storage while data is stored

in a separate memory called data storage, shown in Figure 10. To

reduce inefectual data storage reads, we only fetch stored data

after intersections have been performed, as shown for our running

example in Figure 11.

Implementing this scheme naively requires a content-

addressable lookup (by coordinate) into the data storage. We

eliminate this expensive lookup by generating a pointer (a position

or pos) into the data storage for each coordinate that is used in

an intersection. Positions are generated on the ly, as each tensor

is illed into metadata/data storage. Now, the intersection unit

operates over tuples of (coordinate, position). The positions of

coordinates that survive the intersection are used to lookup the

data memory.

As discussed in Section 3.1, tensor data may correspond to scalars

or subtiles containing coordinates, other metadata, and data. In both

cases, the Coordinator outputs only efectual data, and tags that

data with all coordinates required to identify it in the overall tensor

(i.e., provides suicient information to form points; c.f., Section 2.1).

In the next section, this will be important when calculating partial

outputs.

Pre- vs. Post-Intersection Fills: As an optimization, tensor

data within a tile need not be illed into the Coordinator (or fetched

at all) unless at least one intersection for that data deems it efec-

tual. We call this scheme post-intersection ill, whereas the original

scheme ills tensor data pre-intersection.

Post-intersection ill can save bandwidth at the Coordinator

input (by fetching less data) and storage (as only post-intersection

data need be loaded into data memory). To support such a scheme,

we need mechanisms to hide the latency of fetching data later, and

a new level of indirections to store the post-intersected data in

contiguous positions in the data memory. This makes it diicult to

implement close to the arithmetic units, where data per coordinate

is small (e.g., a scalar) and latency is critical. Yet, we can implement

such a scheme close to DRAM, as latency and indirection cost is

amortized by the tile ill time and size.

7 ACCELERATOR-LEVEL DESIGN

Finally, we discuss how to integrate Coordinators into the ExTensor

accelerator architecture to evaluate tensor kernels. The main new

idea is to hierarchically intersect streams by placing intersection

logic (Sections 4-6) at diferent levels of an accelerator’s memory hi-

erarchy. Coordinators closer to the main memory perform courser-

grain intersections, e.g., at tile-level, and pass on efectual work

to the next level (closer to the arithmetic) which performs iner-

grain intersections, e.g., on scalars, before it is inally computed

on. Precisely what intersections occur where, in our current de-

sign, is discussed in Section 7.4. The resulting architecture streams

data from main memory to compute, reducing inefectual work and

data/metadata transfers at multiple granularities as soon as each

granularity of inefectual work is detected.

7.1 Macro Architecture

The architecture we evaluate is shown in Figure 12. DRAM chan-

nels connect to a last-level bufer (LLB), which stores input tensors,

and a partial output bufer (POB), which stores partial outputs (e.g.,

partial sums). These bufers connect over a NoC to processing ele-

ments (PEs), each of which have PE-level bufers (PEBs), arithmetic

units and datapath-level registers for performing efectual scalar

computations. Sequencers, Scanners and Coordinators (Sections 4-

6) are instantiated between each level of the memory hierarchy to

sequence and intersect streams of coordinates, which correspond

to diferent levels of tiles. We use a NoC that is conigurable to uni-

cast, multicast and broadcast data, similar to previous accelerator

proposals [23, 30].

ExTensor Accelerator
PE:

PE Coordinator

(contains PE buffers)

Datapath

PE array

xx++

D
R

A
M

CoordinatorsSequencer + Scanners

Last level 

buffer (LLB)

Partial Output 

Buffer (POB)

Figure 12: The ExTensor accelerator.

Support for sparse-sparse, sparse-dense and dense-dense

computations. A tensor kernel is made up of two or more tensors.

We optimize the accelerator for a common case where two sparse,

one sparse and one dense, or two dense tensors are the operands

of a computation. When evaluating sparse-sparse problems (both

tensors are sparse), we perform intersection as described previously.

When evaluating a sparse-dense problem, intersection is degenerate

as all coordinates of the sparse operand are efectual and those

coordinates are used (as positions) to access the values of the dense

operand. For dense-dense, intersection is disabled.
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Some kernels, e.g., SDDMM in Table 1, beneit from performing

analysis across more than two tensors simultaneously, e.g., to in-

tersect un-evaluated subtensors (Section 3.2). For these cases, we

allocate an additional Scanner at each PE which shares metadata

storage with other Scanners and is idle if not needed.

7.2 Datalow and Tiling

Coordinators have coniguration-time lexibility to support dif-

ferent datalows by coniguring Sequencer state as described in

Section 6.1. Figure 13 (right) shows, to continue our running exam-

ple, a speciic datalow used for matrix multiply that we use in our

evaluation. Datalows for other kernels look similar.

Matrix A Matrix B

1
1

2 3

4

4

5

6

7

7

LLB tile
PE tile

LLB tile 

MD

LLB tile Data

PE tile MD
PE tile Data

Scalars

I
K

K J

Datapath MD

Figure 13: (Left) Tiled matrix representation. (Right) Datalow for

matrixmultiplication.MD stands formetadata. Circled numbers in-

dicate loop order, ① in the innermost loop; ⑦ in the outermost loop.

In our datalow, input matrices A and B are broken into LLB tiles,

which are broken into PE tiles, which are broken into datapath

tiles. Datapath tiles (a row or column of scalars in the PE) are

output stationary (i.e., dimension K is iterated for both matrices

simultaneously ①). PE tiles are matrix A-stationary, since we move

across all columns in the LLB tile of B before switching to the next

PE tile of A ③. LLB tiles are matrix B-stationary, as we move down

all LLB tiles of A within a column before going to the next LLB tile

of B ⑤.

7.3 Data and Tile Representations

Input tensors are stored in T-[uc]+ representation at all levels of the

memory hierarchy. For the rest of the paper, we assume CSF (T-c+).

To tile at each level, we pre-process each tensor (oline), adding

levels of compressed metadata for each level of tiling, as discussed

in Section 2.2. The fully tiled representation is shown for matrix

A in Figure 13 (left). There are two levels of coordinates, which

specify a rectangular subtile, in each level (LLB, PE and datapath).

As tiles are broken into subtiles and stored closer to the arithmetic,

outer levels of metadata are dropped. For example, only PE tile data

is stored in the PEs (PE tile metadata and above is not).

7.3.1 Choosing Tile Sizes. Since tile sizes are chosen in the coordi-

nate space, one tile may contain more non-zeros than another tile.

We select the LLB tile size such that each LLB tile its in the LLB in

the worst case. For the tensors we evaluate (Section 8), we found

this conservative strategy untenable at the PEs, without incurring

a large PEB size. Thus, we size the PEB tile to it into the PEB in the

common case. In the uncommon case, we split the tile across two or

more PEs to emulate a larger PEB. Since this design is distributed,

our SkipTo() architecture (Section 5) is no longer efective, thus we

perform intersections using the baseline scheme (Section 4).

7.4 Staging Data Transfers and Intersections

Sequencers, Scanners and Coordinators between each level of the

memory hierarchy perform intersections and stage work to the

next level of the hierarchy. We continue our example for matrix

multiply; see Figure 13 for terminology.

1.) DRAM-level: Closest to DRAM, a Sequencer and Scanners

(i.e., without intersection logic or data memories) bootstrap the

kernel by traversing LLB metadata to determine the sequence of

LLB tiles to send to the LLB. As they are closest to DRAM, we

implement these Scanners’ metadata storage as cache memory

backed by DRAM.

2.) LLB-level: A Coordinator at the LLB intersects PE tile

metadata and ills data post-intersection (Section 6.2). Each in-

tersected coordinate corresponds to a PE tile. Since this level is

post-intersection ill, the design avoids reading inefectual PE tile

data from DRAM, within each LLB tile.

3.) PE-level: A Coordinator intersects Datapath metadata and

ills Datapath tiles (scalars) pre-intersection (Section 6.2). In our

datalow, each datapath tile is a row or column of scalars in the

PE tile for each matrix. Results from each intersection read scalars

which are sent to arithmetic units.

The Sequencers traverse their respective loop nests sparse (Sec-

tion 6.1) at all levels (1)-(3) above, to avoid spending cycles iterating

over empty streams. Aside from the DRAM-level Scanners (1), all

Scanner metadata storage is implemented as a bufet [43], and tiles

from memory closer to DRAM are pushed to lower levels, closer to

compute, as they are needed.

7.5 Partial Output Management

After computation (e.g., a dot product in matrix multiply) is per-

formed at the PEs, we need a mechanism to store and combine

partial outputs (e.g., partial sums) generated by those computations.

Storage for partial outputs is complicated because, unlike input

tensors, their sparsity changes dynamically (i.e., the output starts

completely empty, but becomes more dense as the computation

proceeds).

Wemake two observations about partial outputs which simpliies

their handling. First, if all inputs are sparse tensors, computing on

a PE tile will likely generate sparse partial outputs. For example,

in output-stationary matrix multiply (Figure 4 (left)) a new partial

output will only be generated if the intersection between streams

corresponding to a row and column of that PE tile was non-empty.

PE tiles are small relative to the overall matrix, thus computations

at the PE have a smaller chance to generate a partial output. Second,

co-iterations in tensor kernels are reduced via associative operators

(e.g., sum reduction as in Table 1, max/min [34]), meaning such

partial output reductions can be reordered.

Putting the observations together, ExTensor manages partial

outputs as follows. First, partial outputs are stored using a content

addressable memory alongside the LLB called the partial output

bufer (POB), which loads/unloads output tiles from DRAM. Output

tiles are stored un-ordered in the COO format [14] in contiguous
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Table 2:Real-world tensors used in the evaluation. The top group is

matrices from SparseSuite [16]. The bottom group are higher order

tensors from FROSTT [45].

Tensor
(Domain)

Dimensions Non-zeros
(Density)

mbeacxc (Economic Problem) 496 × 496 49.9k (20.3%)

bcsstk13 (Structural) 2k × 2k 83.9k (2.09%)

bcsstk10 (Structural) 1.1k × 1.1k 22k (1.87%)

bcsstk17 (Structural) 11k × 11k 428.6k (0.356%)

pdb1HYS (Protein Data Bank) 36.4k × 36.4k 4.3M (0.328%)

rma10 (Fluid Dynamics) 46.8k × 46.8k 2.3M (0.106%)

cant (FEM cantilever) 62.5k × 62.5k 4M (0.103%)

consph (FEM concentric spheres) 83.3k × 83.3k 6M (0.087%)

pwtk (Pressurized wind tunnel) 217.9k × 217.9k 11.5M (0.024%)

shipsec1 (FEM Ship section / detail) 140.8k × 140.8k 3.6M (0.018%)

mac_econ_fwd500
(Macroeconomic model)

206.5k × 206.5k 1.3M (0.003%)

Higher order tensors

Chicago Crime Data (Security) 6.2k × 24 × 2.5k 5.3M (1.46%)

Uber Pickups (Transportation) 4.4k × 1.1k × 1.7k 3.3M (0.0385%)

NIPS Publications (Academia) 2.5k × 2.8k × 239k 3.1M (0.0002%)

regions of DRAM.4 Each DRAM region is allocated based on the

worst-case output tile size. When output tiles are illed to the POB,

the COO is converted to a content addressable hash table repre-

sentation; the hash table is iterated sequentially to unload back to

DRAM. Partial outputs produced by the PEs are sent to the POB,

along with their coordinates (Section 6.1), where the coordinates

are hashed to locate the old output value and the new value is lo-

cally accumulated. If the hash table contains no entry (coordinate)

for the given output, one is allocated. Note, accumulations occur in

the background, of the critical path.

7.6 Programming Model

The complete ExTensor accelerator is conigured to run a speciic

tensor algebra kernel, e.g., kernels like those discussed in Section 2.2.

A coniguration speciies the number of input tensors, the tiling for

each tensor, a representation of the kernel loop nest/datalow and

connectivity between bufers, intersection units andmath datapaths.

Details of the low-level speciication are omitted, but involve conig-

uring DMA engines, partitioning bufers, setting control FSMs, and

deining on-chip network routes between physical components.

The accelerator is not Turing complete, but is designed to com-

pute all algebra equations accepted by the TACO Tensor Algebra

Compiler [26]. Generating conigurations directly from TACO is

future work.

8 EVALUATION

We now evaluate the inal ExTensor design proposed in Section 7.

In this evaluation, we compare ExTensor variants to optimized

CPU codes, perform a design space exploration for ExTensor, and

provide hardware area igures for the ExTensor Scanner unit.

8.1 Methodology

Tensors.We evaluate performance using real-life tensors from the

FROSTT [45] tensor data set and the SuiteSparse matrix collec-

tion [16] shown in Table 2. These datasets span multiple domains

4In COO, each output is stored alongside its point/coordinates, which is lattened to
save space.

(from luid dynamics to macroeconomic models), non-zero densi-

ties, and number of dimensions. The tensors are pre-processed into

the T-[uc]+ representation T-c+, also known as CSF (Section 7.3).

We also evaluate several layers of pruned AlexNet [29] with their

densities taken from [42].

Tensor kernels. We evaluate these tensors on kernels selected

from Table 1, including GEMM, TTV, TTM, and SDDMM. Of these,

TTV and TTM compute on 3-dimensional tensors. SDDMM com-

putes on 3 matrices. All the tensors used in the evaluation use

double precision data.

Simulation framework. We evaluate ExTensor using a model

written in Python that evaluates performance for a given tensor ker-

nel and input tensors. The performance model has two components.

First, the core intersection logicÐthat includes the Coordinator and

ALUsÐare modeled at cycle level for high idelity. This evaluates

the number of cycles required to intersect two PE-level tiles (Sec-

tion 7.3). Second, the rest of the accelerator componentsÐsuch as

the LLB, NoC, DRAM interface, and scheduling logicÐare modeled

analytically. These components evaluate data accesses, scheduling,

output handling, and the on-chip datalow (Section 7.2).

DRAM and NoC use a queuing model where data transfers are

not allowed to exceed a peak bandwidth. We believe this queuing

model should be suicient to model DRAM and NoC because of

ExTensor’s data access/movement patterns. Speciically, since Ex-

Tensor accesses data at tile granularity, we achieve good spatial

locality (at DRAM burst- and row bufer-granularity) and there-

fore achieve high DRAM utilization during periods where data

is being read. Similarly, based on our datalow (Section 7.2), we

multicast/unicast tiles across PEs in a ixed and regular order. This

allows us to model NoCs analytically such that the peak bandwidth

is never exceeded.

Baseline platform. We compare ExTensor against an Intel

Xeon E5-2687W v4 part, a high-end server CPU which has 12/24

cores/threads running at 3 GHz (Turbo 3.5 GHz) with a 30 MB LLC.

The CPU has 4 DRAM channels, providing a theoretical maximum

bandwidth of 68.256 GB/s. For each kernel, we compare to either In-

tel’s MKL library [49] or the TACO tensor compiler [26], depending

on which one gives better performance.

8.2 Main Result

We now present our main result: ExTensor performance relative

to the CPU baseline from Section 8.1 on all tensor kernels. We

compare two design variants:

ExTensor-skip. Our inal design from Section 7, assuming a

1 GHz clock.5 To make the comparison apples-to-apples, we set

ExTensor’s LLB size and DRAMbandwidth tomatch the CPU. Based

on design space studies, we use 128 PEs with 64 KB of PEB (local

bufer including metadata and data storage for all Scanners) each.

Each Scanner uses a coarse-grain CAM with T = 32 entries.

ExTensor-no-skip. Same as ExTensor-skip, but without the

intersection optimizations described in Section 5. We note that this

version still performs intersection; a design that does not intersect

would perform the computation dense.

5Note, this is lower than the CPU clock. Increasing ExTensor’s clock frequency would
signiicantly improve performance.
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Figure 14: ExTensor speed-up relative to MKL (SpMSpM).
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8.2.1 GEneralized Matrix Multiplication (GEMM). GEMM is a core

kernel in linear algebra and continues to remain as one of the most

widely used kernels in modern computing with its applications

ranging from deep learning to graph processing. We evaluate two

variants of GEMM:

Sparse-Sparse GEMM (SpMSpM, or SpGEMM): In this ker-

nel, a sparse matrix is multiplied by a sparse matrix. SpMSpM has

a wide range of applications, including linear algebra based graph

processing [34] and deep learning with sparse neural networks [21].

We evaluate SpMSpM by multiplying matrices from the SuiteSparse

collection by themselves, similar to graph algorithms such as ind-

ing nearest neighbors and triangle counting [34].

Figure 14 compares ExTensor variants and MKL for SpMSpM.

ExTensor-skip is 3.4× faster than the CPU on average and outper-

forms the CPU for every matrix. ExTensor improves performance

in two ways. First, logic close to the memory (Sequencers and

Scanners, hierarchical Coordinators; Section 7) look ahead in the

computation to ensure the DRAM bus is highly utilized. Second,

intersection logic at each level (e.g., between DRAM and the LLB,

between the PE and datapath) removes inefectual data reads (e.g.,

using tile metadata) Ð thus removing redundant bandwidth uti-

lization. ExTensor-skip is more efective than ExTensor-no-skip

in workloads with higher sparsity, evident from the results where
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Figure 17: Performance comparison between ExTensor variants

and TACO for generalized tensor algebra.

ExTensor-skip outperforms ExTensor-no-skip in all workloads

other than AlexNet, which has higher density. Figure 15 presents

the rooline analysis, which shows that MKL is memory latency

bound on SpMSpM while ExTensor is close to memory bandwidth

bound.

Interestingly, speedup is not a function of matrix sparsity. This is

because the core strength of ExTensor is intersection. Intersection

eliminates work based on the sparsity pattern, not simply the spar-

sity, at both the LLB at PE tile granularity and within the PE at scalar

granularity (Section 7.4). In particular, we see a ∼ 3.1× performance

improvement for ExTensor-skip relative to ExTensor-no-skip,

which illustrates the importance of sparsity pattern at the PE level

where the kernel is sensitive to intersection time.

Sparse-Dense GEMM (SpMM): In this kernel, a sparse matrix

is multiplied by a dense matrix. ExTensor evaluates SpMM by mul-

tiplying each matrix in Table 2 by a randomly generated dense

matrix with 32 columns. The multiplication of a sparse matrix by a

tall-and-skinny dense matrix is a key kernel in several applications

such as algebraic graph algorithms [3, 47].

Figure 16 compares ExTensor variants and MKL for the SpMM

kernel. ExTensor-skip performance improves the performance

by 1.3× over the CPU on average. The performance gap between

ExTensor and CPU is narrowed in SpMM compared to SpMSpM

kernel because SpMM is more DRAM bandwidth bound and ExTen-

sor is provisioned with the same bandwidth. Recall from Section 7,

intersection of streams of coordinates from a sparse and a dense

tensor simply yields the coordinate stream from the sparse tensor.

Thus, our performance improvement comes from higher DRAM

utilization using Scanners close to memory. We performed an anal-

ogous rooline analysis (not shown for space) which shows both

the CPU and ExTensor DRAM bandwidth bound for SpMM, which

points to the memory-bound nature of SpMM for both CPU and

ExTensor leaving little room to improve over the CPU.

8.2.2 Generalized Tensor Algebra. Figure 17 evaluates higher-order

tensor kernels TTV and TTM, along with the SDDMM kernel,

against TACO, a state of the art compiler for tensor algebra [26].

TTV and TTM contract a 3-dimensional sparse tensor with a dense

vector or matrix, respectively. SDDMM computes a iltered matrix-

matrix product, i.e., a Hadamard product between a sparse ma-

trix and a product of two smaller dense rectangular matrices. The

Hadamard product in SDDMM provides opportunity for intersec-

tion to avoid computation of whole dot-products.

We see 2.8×, 24.9×, and 2.7× average speedups for TTV, TTM,

and SDDMM kernels respectively. In TTM and TTM kernels, Ex-

Tensor uses a 3-level tiling strategy to improve data reuse. TACO is
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Figure 18: ExTensor bottleneck study with design variants.

slower for all the kernels, mainly due to its lack of tiling and inabil-

ity to eiciently avoid inefectual work. Hierarchical intersection

permits ExTensor to avoid inefectual tiles being scheduled to the

LLB/PEs, which is pronounced in these extremely sparse higher

order tensors. Similarly in SDDMM, most of our beneit comes from

the ability to skip entire dot products/tiles based on the sparsity of

the C matrix (Table 1).

8.3 Bottleneck Analysis

Figure 18 studies a set of ExTensor variants, ranging in design

realism, to give insight in what future changes can improve the

design by how much. This methodology is similar to the Eyexam

in [13]. We study the following design variants:

• Model 0 (most idealized) takes into account only the number

of MACC units available in ExTensor. For each matrix, the number

of efectual multiplications is calculated. Then, runtime calculated

by dividing the number of multiplications by available MACC units.

• Model 1 adds DRAM bandwidth constraints to the previous

model. Speciically, runtime is calculated as the maximum of model

0’s time and the time it takes to read/write back the input matri-

ces/result matrix once over the DRAM bus.

• Model 2 adds a realistic LLB tiling scheme to the previous

model. LLB tiling is modeled accurately, while on-chip behavior is

idealized. PE tiles are distributed to PEs in an idealized fashion that

tries to minimize load imbalance (as opposed to being constrained

to a speciic on-chip datalow) and intersection time is calculated

as the number of efectual MACCs.

•Model 3 adds a realistic CAM-based PE intersect unit to the

previous model.

•Model 4 (most realistic) is the ExTensor model we evaluate in

Section 8.2, which adds a realistic PE tile distribution unit to the

previous model.

Model 0 shows the performance ceiling given any accelerator.

Model 0 and 1 are likely un-implementable.We believeModels 2 and

3 may be implementable with improved methods for distributing

PE tiles and performing intersection. On average, there is a 1.8×,

1.4× and 1.2× performance gap between Model 1-2, Model 2-3 and

Model 3-4, respectively.

8.4 Synthetic Data Studies

In Section 8.2, we presented results for real-life matrices. This makes

analyzing ExTensor’s eiciency hard, because each real-life matrix

has diferent dimensions, sparsity, and sparsity pattern. To isolate

performance efects, Figure 19 shows a study on synthetically gener-

ated matrices using a uniform sparsity distribution, varying sparsity

and matrix dimension. Speciically, for ixed numbers of non-zeros
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Figure 19: ExTensor’s SpMSpMperformance across varying dimen-

sion sizes with constant number of non-zeros (NNZ) per matrix.

(NNZ), we generate square matrices (I = J = K ) of diferent dimen-

sion sizes and evaluate runtime on SpMSpM. For all points, we set

PE tile size to a constant 128x128 elements in coordinate space.

For each NNZ count, we observe three performance regimes.

First, when the dimension sizes are small and sparsity is low (e.g.,

when I < 3600 for 50k NNZ), the matrices only contain empty

scalars but not empty PE tiles or empty rows/columns within a tile

(on average). In this case, as we increase the dimension size, the

runtime increases because the number of non-empty tiles increases,

outweighing the beneit of scalar-granularity skips. Second, once

we reach a suiciently high sparsity (namely, when NNZ = O(I ) per

tile), the trend reverses. During this phase, although the number

of non-empty tiles continues to increase, we begin to see empty

rows/columns within a PE tile which means the sparse loop op-

timization (Section 6.1) activates, which reduces overall runtime.

Third, once the sparsity is high enough to see empty PE tiles, the

runtime lattens with increasing sparsity as any non-empty tile is

likely to have very few (e.g., 1) non-zeros.

8.5 Area and Bandwidth Studies

In the previous sections, we normalized ExTensor on-chip storage

and DRAM bandwidth to exemplify the beneit of our intersection

technique and architecture. We now perform two studies showing

design sensitivity to these parameters.

Sweep DRAM bandwidth, ixing area. First, Figure 20 shows

the impact of increasing DRAM bandwidth for ExTensor running

SpMSpM while keeping the same on-chip area as in the previous

section. We sweep from the baseline bandwidth to ∼ 550 GB/s,

which is more representative of (but still less than) modern GPUs.

We found that ExTensor Model 4 (the complete design) has bottle-

necks that prevent performance scaling with DRAM bandwidth.

Speciically, increasing DRAM bandwidth to ∼ 550 GB/s improves

performance by 3% only for Model 4. Thus, the results in Figure 20

are for ExTensor Model 2, which idealizes intersection and PE tile

distribution (Section 8.3). At this idelity, large matrices that do

not it into the LLB see performance scaling. Small matrices (e.g.,

mbeacxc) see less beneit, as those kernels are dominated by other

factors such as latency. Average performance improvement is 2.1×

for an 8× bandwidth increase. We consider addressing the bottle-

necks in Model 4 that prevent scaling to be future work.
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Figure 20: ExTensor (Model 2) SpMSpM speed-up over the CPU,

scaling ExTensor DRAM bandwidth.
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Fix DRAM bandwidth, sweep area. Second, Figure 21 shows

the impact of changing total LLB size, which is a dominant source of

overall area. Once a kernel’s runtime levels of, we stop increasing

the LLB. The takeaway is that for many matrices, performance is

not sensitive to LLB size until the LLB shrinks to 5-10 MB. Similar

to the efectiveness of intersection, this highly depends on exact

sparsity distribution in each matrix as opposed to absolute matrix

size, as even a small matrix can generate a relatively dense output

depending on non-zero distribution.

8.6 Hardware Implementation

We focused our RTL implementation on the novel parts of the accel-

erator, in particular the Coordinator, since the rest of the modules

(ALUs [19], NoC [30], and bufers [37], etc.) are already well stud-

ied. We implement the Coordinator design in Verilog, assuming a

64 KB PE bufer and a content addressable memory with T = 32

entries with 8-bit coordinates (suicient to represent the tile sizes

used in our evaluation). We synthesize the design using a 32 nm

commercial process, which meets timing at 1 GHz to match our

performance evaluation. Area numbers for SRAM were obtained

from CACTI [37] and for compute were taken from [19] scaled to

32nm [11]. Area for intersection is taken from synthesis. Overall,

we ind that PE SRAM bufer takes 79% of the area, double precision

arithmetic takes 12% and logic for intersection takes 9%.

Extrapolating from PE area plus projected LLB+POB area, we

estimate total chip area (using the parameters in Section 8.2) to be

96.89mm2, with the intersection logic across PEs consuming only

2.38mm2 (2.46% of total) in 32nm. The main take away is that the

Coordinator logic does not dominate the accelerator area budget.

9 RELATED WORK

Accelerator designs targeting tensor algebra [2, 8, 24, 33, 36, 40, 41]

and machine learning [4, 12, 13, 21, 25, 32, 42, 44, 51] are receiving

signiicant attention. Furthermore, these accelerator designs also

exploit sparsity to reduce both time and energy. We now compare

ExTensor to tensor algebra and machine learning accelerators.

Tensor Algebra Accelerators. The ubiquity of matrix opera-

tions in big data applications has spurred research work on ac-

celerating sparse matrix-dense vector (SpMV) and SpMM ker-

nels [2, 8, 24, 33, 39]. Intersecting coordinates from sparse matrices

to dense data is trivial, and these works skip inefectual computa-

tions (e.g. single multiplications or entire dot products based on

empty rows/columns) as a side efect of the compressed format

for the sparse matrix (e.g., CSR/CSC). Yet, none of these designs

extend to tensors with degrees higher than two or to compound

expressions such as SDDMM, which is the focus of ExTensor.

Recent work has investigated accelerators for sparse matrix

sparse vector (SpMSpV) multiplication and SpMSpM [41, 50]. Sev-

eral works perform inner-product matrix multiplication by loading

the entire sparse matrix B into the processor and then processing

sparse matrix A on a row-by-row basis [31, 40, 50]. These pro-

posals apply coordinate intersection after fetching the values and

meta data from memory, which leads to cases where data loaded is

never used. ExTensor avoids this memory traic by hierarchically

intersecting tiles and subtiles at each level of the memory/bufer

hierarchy and lazily loading values after intersection. Alternately,

accelerators have focused on outer-product multiplication to avoid

the need for coordinate intersection [36, 41]. With this approach,

each column in sparse matrix A is multiplied by the elements in each

row of sparse matrix B to generate partial products. In essence, this

approach improves memory traic eiciency for the multiplication

step but introduces an additional merge step where the many sets

of partial products are read from memory and reduced into the inal

products. ExTensor performs eicient inner-product multiplication

that achieves similar memory traic by using intersections, skips,

and tiling to reduce value and meta data memory traic.

Machine Learning Accelerators. Recent CNN accelerators

have also recognized the prevalence of inefectual computations

(e.g., [4, 12, 13, 21, 42, 51]). While these designs focus on saving

energy and time by skipping single multiplications, they still incur

memory access overhead of bringing the operands on-chip. ExTen-

sor can skip entire dot products when a tensor row/column/tile is

zero. In doing so, ExTensor reduces time and energy by avoiding

memory accesses associated with inefectual computations.

10 CONCLUSION

General tensor algebra represents a ripe domain for contributions

from computer architects. This paper presented ExTensor, a new

approach for performing general tensor algebra using hierarchical

and compositional intersection. There are multiple avenues for

future work. For example, eicient conversion between compressed

formats on the ly, online as opposed to oline tiling, support for

SIMD datapaths, and how to address the performance artifacts

hindering bandwidth scaling (Section 8.5). In the long run, we

believe that the broad applicability of algebra on compressed tensors

means that they should become a foundational building block of

accelerator construction.
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