
Simba: Scaling Deep-Learning Inference with
Multi-Chip-Module-Based Architecture

Yakun Sophia Shao
NVIDIA

Jason Clemons
NVIDIA

Rangharajan Venkatesan
NVIDIA

Brian Zimmer
NVIDIA

Matthew Fojtik
NVIDIA

Nan Jiang
NVIDIA

Ben Keller
NVIDIA

Alicia Klinefelter
NVIDIA

Nathaniel Pinckney
NVIDIA

Priyanka Raina
Stanford

Stephen G. Tell
NVIDIA

Yanqing Zhang
NVIDIA

William J. Dally
NVIDIA/Stanford

Joel Emer
NVIDIA/MIT

C. Thomas Gray
NVIDIA

Brucek Khailany
NVIDIA

Stephen W. Keckler
NVIDIA

ABSTRACT
Package-level integration using multi-chip-modules (MCMs) is a
promising approach for building large-scale systems. Compared to
a large monolithic die, an MCM combines many smaller chiplets
into a larger system, substantially reducing fabrication and design
costs. Current MCMs typically only contain a handful of coarse-
grained large chiplets due to the high area, performance, and energy
overheads associated with inter-chiplet communication. This work
investigates and quantifies the costs and benefits of using MCMs
with fine-grained chiplets for deep learning inference, an applica-
tion area with large compute and on-chip storage requirements.
To evaluate the approach, we architected, implemented, fabricated,
and tested Simba, a 36-chiplet prototype MCM system for deep-
learning inference. Each chiplet achieves 4 TOPS peak performance,
and the 36-chiplet MCM package achieves up to 128 TOPS and
up to 6.1 TOPS/W. The MCM is configurable to support a flexible
mapping of DNN layers to the distributed compute and storage
units. To mitigate inter-chiplet communication overheads, we in-
troduce three tiling optimizations that improve data locality. These
optimizations achieve up to 16% speedup compared to the base-
line layer mapping. Our evaluation shows that Simba can process
1988 images/s running ResNet-50 with batch size of one, delivering
inference latency of 0.50ms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358302

CCS CONCEPTS
• Computer systems organization → Interconnection architec-
tures; Multicore architectures; Neural networks; Data flow architec-
tures; Special purpose systems.

KEYWORDS
Multi-chip module, neural networks, accelerator architecture
ACM Reference Format:
Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zim-
mer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel
Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally,
Joel Emer, C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019.
Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based
Architecture . In The 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3352460.3358302

1 INTRODUCTION
Deep learning (DL) [44] has become critical for addressing complex
real-world problems. In particular, deep neural networks (DNNs)
have demonstrated their effectiveness across a wide-range of appli-
cations, including image recognition [33, 41, 60, 64, 65], object de-
tection [27, 54], language translation [63, 70], audio synthesis [69],
and autonomous driving [10]. State-of-the-art DNNs [6, 12, 27, 33,
41, 46, 54, 60, 64, 65] require billions of operations and hundreds
of megabytes to store activations and weights. Given the trend
towards even larger and deeper networks, the ensuing compute
and storage requirements motivate large-scale compute capability
in DL hardware, which is currently addressed by a combination
of large monolithic chips and homogeneous multi-chip board de-
signs [14, 17, 24, 29, 39, 71]. Previously proposed multi-chip DL
accelerators have focused on improving total compute throughput
and on-chip storage size but have not addressed the scalability chal-
lenges associated with building a large-scale system with multiple
discrete components.

https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

Figure 1: Input activations (IA), weights (W), and output ac-
tivations (OA) in convolutional layers.

Recently, the need for high compute throughput in an era of
slowing transistor scaling has motivated advances in multi-chip-
module (MCM) integration to build large-scale CPUs [7, 37, 40, 62]
and GPUs [3, 74]. MCM packaging approaches can also reduce cost
by employing smaller chiplets connected together post-fabrication,
as yield losses cause fabrication cost to grow super-linearly with
die size. Packaging technologies including organic substrates [36]
and silicon interposers [28, 55] can be used to assemble a large-
scale MCM system. In addition, recent advances in package-level
signaling offer the necessary high-speed, high-bandwidth signaling
needed for chiplet-based system [72]. As a result, chiplet-based
systems using MCMs can provide improved performance more
efficiently than board-level integration but with lower cost than
monolithic chips. While MCMs have been used for general compute
systems, applying MCMs to high-performance DNN inference algo-
rithms has not been previously examined. Specific challenges stem
from the natural non-uniformity between on-chip and on-package
bandwidth and latency. While multi-chip systems also exhibit sim-
ilar forms of non-uniformity, this paper focuses on the specific
characteristics of MCM-based systems as they provide a natural
progression from monolithic single-chip inference accelerators as
semiconductor scaling slows.

This paper presents Simba, a scalable deep-learning inference ac-
celerator employing multi-chip-module-based integration. Each of
the Simba chiplets can be used as a standalone, edge-scale inference
accelerator, while multiple Simba chiplets can be packaged together
to deliver data-center-scale compute throughput. We specifically ex-
amine the implications of the non-uniform latency and bandwidth
for on-chip and on-package communication that lead to significant
latency variability across chiplets. Such latency variability results
in a long “tail latency” during the execution of individual infer-
ence layers. As a result, the overall performance for each layer is
limited by the slowest chiplet in the system, limiting scalability.
To address these challenges, we propose three tail-latency-aware,
non-uniform tiling optimizations targeted at improving locality and
minimizing inter-chiplet communication: (1) non-uniform work
partitioning to balance compute latency with communication la-
tency; (2) communication-aware data placement to minimize inter-
chiplet traffic; and (3) cross-layer pipelining to improve resource
utilization.

To explore the challenges and evaluate the benefits of MCM-
based inference accelerator architectures, we designed, implemented,
and fabricated a prototype of Simba, consisting of 36 chiplets con-
nected in a mesh network in an MCM [76]. The 6mm2 chiplets are

1 for n = [0 : N) :
2 for p = [0 : P) :
3 for q = [0 : Q) :
4 for k = [0 : K) :
5 for r = [0 : R) :
6 for s = [0 : S) :
7 for c = [0 : C) :
8 OA[n,p,q,k] += IA[n,h,w,c] * W[k,r,s,c]

Listing 1: DNN loop nest.

fabricated in a 16 nm FinFET process technology and contain both
multiply-accumulate (MAC) units and an SRAM-based memory
system. Each chip has a peak performance of 4 tera-ops per second
(TOPS) using 8-bit weights and activations and 24-bit accumulation.
The 36-chiplet MCM achieves up to 128 TOPS with an energy effi-
ciency range of 0.2–6.1 TOPS/W depending on operating voltage.
Simba supports flexible mapping and resource allocation for effi-
cient DNN inference execution across a wide range of workloads.
We thoroughly characterize the Simba system and motivate the
importance of task and data placement in the Simba MCM system,
which can lead to as much as a 2.5× performance difference for indi-
vidual ResNet-50 layers. Motivated by our observations, we propose
non-uniform work and data placement, together with cross-layer
pipelining, to improve system utilization in the presence of small
batch sizes and communication latency.

2 BACKGROUND AND MOTIVATION
Many applications from edge devices to data centers demand fast
and efficient inference, often with low latency or real-time through-
put requirements. Today’s DNN inference applications typically
run on highly programmable but inefficient CPU-based systems,
programmable GPUs with ISA extensions for accelerating tensor
operations, or fixed-function DNN inference accelerators. Recent
work has shown that fixed-function accelerators can provide or-
ders of magnitude better energy efficiency and performance than
CPUs and better area and energy efficiency than GPUs [1, 13–
15, 20, 25, 30, 51, 59, 75].

Small-scale inference applications can run on moderately-sized
chips, while those demanding higher performance may require
large monolithic chips or board-level multi-chip solutions to scale.
Partitioning an application across multiple chips at the board level
is not easy because of the enormous difference in bandwidth, la-
tency, and energy between on-chip communication and inter-chip
communication. Other packaging approaches such as multi-chip
modules can provide inter-chip interconnect that is closer in nature
to on-chip interconnect, offering a more straightforward path to
scaling.

2.1 DNN Basics
DNNs are constructed using a series of layers, including convolu-
tional layers, pooling layers, activation layers, and fully-connected
layers. A convolutional layer is algorithmically formulated as a
seven-dimensional nested loop over an input activation (IA) ten-
sor, a weight (W) tensor, and an output activation (OA) tensor, as
shown in Figure 1. Listing 1 shows the convolution computation
embedded in a seven-dimensional loop nest. The same formulation

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 2: Simba architecture from package to processing element (PE).

also applies to fully-connected layers that are widely used in multi-
layer perceptrons (MLPs) and recurrent neural networks (RNNs).
An activation layer applies a non-linear function such as ReLU or
siдmoid , while pooling layers down-sample the input activations
after convolutional layers. Activation and pooling layers are typi-
cally merged with convolutional layers during execution to reduce
data movement.

2.2 Multi-Chip-Module Packaging
Package-level MCM integration is a promising alternative for as-
sembling large-scale systems out of small building blocks known
as chiplets. Such systems consist of multiple chiplets connected
together via on-package links using a silicon interposer or an or-
ganic substrate and employing efficient intra-package signaling
circuits [7, 21, 40, 72]. Compared to a large monolithic die, MCMs
can reduce (1) design costs, since logic design, verification, and
physical design are all easier on a small chip than a large chip;
and (2) fabrication costs, as the much lower manufacturing yield
of large chips make them far more expensive than small chips.
In addition, different scales of systems can be created merely by
adjusting the number of chiplets placed in a package, without re-
quiring a different chip tapeout for each market segment. MCMs
have been recently applied to a general-purpose CPU design [7]
as an alternative to building multi-core CPUs on reticle-limited
large die. They have also been an active research area for scaling of
multi-CPU [37, 40, 45, 62] and multi-GPU systems [3, 18, 74]. How-
ever, package-level wires do not provide the same communication
density or energy/bit as on-chip wires. Consequently, MCM archi-
tects and software developers must still consider the non-uniform
bandwidth, latency, and energy present in these systems to achieve
efficient application performance.

2.3 Non-Uniformity in MCM-based Design
An MCM-based system has a heterogeneous interconnect archi-
tecture, as the available intra-chiplet bandwidth is expected to be

significantly higher than available inter-chiplet bandwidth. In addi-
tion, sending data to remote chiplets incurs additional latency. This
latency may include on-chip wire delays to move data to the edge
of the chiplet, synchronizer delays for crossing clock domains, seri-
alization and deserialization latency in high-speed communication
links, and the on-package wire delays of inter-chiplet links. As a
result, communication latency between two elements in a MCM
heavily depends on their spatial locality on the package.

Mapping DNN layers to a tile-based architecture is a well-studied
research problem [15, 25, 50]. State-of-the-art DNN tiling typically
assumes a flat architecture with uniform latency and bandwidth
across processing elements and focuses on data reuse for reducing
global bandwidth demands. This assumption is acceptable for small-
scale systems, as the communication latency variability is small,
and the computation is often tolerant of communication latencies.
However, as DNN inference performance is scaled up to larger
systems, the execution time decreases and latency-related effects
become more important. Furthermore, in large-scale systems with
heterogeneous interconnect architectures such as MCMs, assump-
tions of uniform latency and bandwidth in selecting DNN tiling
can degrade performance and energy efficiency. Simba is the first
work that quantitatively highlights the challenge of mapping DNN
layers to non-uniform, MCM-based DNN accelerators and proposes
communication-aware tiling strategies to address the challenge.

3 SIMBA ARCHITECTURE AND SYSTEM
To understand the challenges and opportunities of using MCMs for
building large-scale, deep-learning systems, we designed, imple-
mented, fabricated, and characterized Simba, the first chiplet-based
deep-learning system. This section first presents an overview of
the Simba architecture and its default uniform tiling strategy. We
then describe Simba’s silicon prototype and present a detailed char-
acterization of the Simba system in Section 4.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

Table 1: Simba system communication capability.

Packet
Source

Unicast
Destination

Multicast
Destination

PE Local PEs, Global PE, Controller -

Remote PEs, Global PE, Controller -

Global PE Local PEs, Controller Local PEs

Remote PEs, Controller Remote PEs

Controller Local PEs, Global PE

Remote PEs, Global PE, Controller

3.1 Simba Architecture
Tile-based architectures have frequently been proposed for deep-
learning accelerator designs [1, 2, 13, 15, 22, 25, 30, 42, 51, 53, 56, 58,
61, 75]. Our design target is an accelerator scalable to data center
inference, where state-of-the-art data center accelerators deliver
around 100 tera-operations-per-second (TOPS). For example, the
first generation of the Tensor Processing Unit (TPU) delivers 92
TOPS [39] and is designed for inference applications. One simple ap-
proach to achieve this design goal is to increase the number of tiles
in a monolithic single chip. However, building a flat network with
hundreds of tiles would lead to high tile-to-tile communication la-
tency, as examined in both multi-core CPU [19] and accelerator [26]
research.

Simba adopts a hierarchical interconnect to efficiently connect
different processing elements (PEs). This hierarchical interconnect
consists of a network-on-chip (NoC) that connects PEs on the same
chiplet and a network-on-package (NoP) that connects chiplets
together on the same package. Figure 2 illustrates the three-level
hierarchy of the Simba architecture: package, chiplet, and PE. Fig-
ure 2(a) shows a Simba package consisting of a 6 × 6 array of
Simba chiplets connected via a mesh interconnect. Each Simba
chiplet, as shown in Figure 2(b), contains an array of PEs, a global
PE, a NoP router, and a controller, all connected by a chiplet-level
interconnect. To enable the design of a large-scale system, all com-
munication between the PEs, Global PEs, and controller is designed
to be latency-insensitive [11] and is sent across the interconnection
network through the NoC/NoP routers.

Simba PE: Figure 2(c) shows the microarchitecture of the Simba
PE, which includes a distributed weight buffer, an input buffer, paral-
lel vector MAC units, an accumulation buffer, and a post-processing
unit. Each Simba PE is similar to a scaled-down version of NVDLA,
a state-of-the-art DL accelerator product [59]. The heart of the
Simba PE is an array of parallel vector multiply-and-add (MAC)
units that are optimized for efficiency and flexibility. The Simba PE
uses a weight-stationary dataflow: weights remain in the vector
MAC registers and are reused across iterations, while new inputs
are read every cycle. Each vector MAC performs an 8:1 dot-product
along the input channel dimension C to exploit an efficient spatial
reduction [42]. To provide flexible tiling options, the Simba PE also
supports cross-PE reduction with configurable producers and con-
sumers. If the current PE is the last PE on the reduction chain, it first
sends partial sums to its local post-processing unit that performs
ReLU, truncation and scaling, pooling, and bias addition. The final

output activation is sent to the target Global PE for computation of
the next layer.

Simba Global PE: The Global PE serves as second-level stor-
age for input/output activation data to be processed by the PEs. To
support flexible partitioning of the computation, the Global PE can
either unicast data to one PE or multicast to multiple PEs, even
across chiplet boundaries. The Global PE has a multicast manager
that oversees these producer-consumer relationships. The Global
PE also serves as a platform for near-memory computation. Many
DNNs feature some computation that has low data reuse, such as
element-wise multiply/add in ResNet [33] or depth-wise convolu-
tion in MobileNet [34]. The Global PE can perform such computa-
tions locally to reduce communication overhead for these types of
operations.

3.2 Simba Silicon Prototype
Simba Controller: Each Simba chiplet contains a RISC-V proces-
sor core [4] that is responsible for configuring and managing the
chiplet’s PEs and Global PE states via memory-mapped registers
using an AXI-based communication protocol. After all states are
configured, the RISC-V triggers execution in the active PEs and
Global PEs and waits for these blocks to send done notifications via
interrupts. Synchronization of chiplet control processors across the
package is implemented via memory-mapped interrupts.

Simba Interconnect: To efficiently execute different neural
networks with diverse layer dimensions, Simba supports flexible
communication patterns across the NoC and NoP. Table 1 lists
Simba communication capability across all components. Both NoC
and NoP use a mesh topology with a hybrid wormhole/cut-through
flow control. Specifically, unicast packets usewormhole flow control
for large packet size, while multicast packets are cut-through to
avoid wormhole deadlocks. Each Simba PE can unicast to any local
or remote PE for cross-PE partial-sum reduction, to any local or
remote Global PE to transmit output activation values, and to any
local or remote chiplet controller to signal execution completion.
A PE does not need to send multicast packets as its computation
requires only point-to-point communication. In addition to unicast
communication, a Global PE can also send multicast packets to
local and remote PEs for flexible data tiling.

We implemented, fabricated, and tested a silicon prototype of
the Simba system, shown in Figure 3, with the microarchitecture

(a) Simba chiplet (b) Simba package

Figure 3: Simba silicon prototype.

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 2: Simba microarchitecture parameters.

Package

Number of Chiplets 36
Size 47.5mm × 47.5mm

Core Voltage 0.52–1.1 V
PE Clock Frequency 0.48–1.8 GHz

Chiplet-to-Chiplet Interconnect Ground-Referenced Signaling
NoP Interconnect Bandwidth 100GB/s/Chiplet
NoP Interconnect Latency 20 ns/Hop
NoP Interconnect Energy 0.82–1.75 pJ/bit

Chiplet

Number of PEs 16
Area 2.5mm × 2.4mm

Technology 16 nm FinFET
Voltage 0.42–1.2 V

PE Clock Frequency 0.16–2.0 GHz
Global PE Buffer Size 64 KiB
Routers Per Global PE 3

NoC Interconnect Bandwidth 68GB/s/PE
NoC Interconnect Latency 10 ns/Hop

Microcontroller RISC-V

PE

Weight Buffer Size 32 KiB
Input Buffer Size 8 KiB

Accumulation Buffer Size 3 KiB
Vector MAC Width 8

Number of Vector MACs 8
Dataflow Weight Stationary

Input/Weight Precision 8 bits
Partial-Sum Precision 24 bits

parameters in Table 2. We chose parameters so that a Simba chiplet
has area and power similar to an efficient edge system, such as Dian-
Nao [13] or Eyeriss [15], while a full Simba package is comparable
to a data-center-scale system such as TPU [39]. Table 3 shows the
synthesis area breakdown of key components in the Simba chiplet
architecture.

Shown in Figure 3a, the 2.5mm × 2.4mm Simba chiplets were
implemented in TSMC 16 nm FinFET process technology [76]. Each
Simba package (Figure 3b) contains an array of 6 × 6 chiplets con-
nected on an organic package substrate using ground-referenced
signaling (GRS) technology for intra-package communication [72].
The top and bottom rows of each chiplet include eight chiplet-
to-chiplet GRS transceiver macros. Four macros are configured
as receivers and four as transmitters. Each transceiver macro has
four data lanes and a clock lane with configurable speed from
11Gbps/pin to 25Gbps/pin, consuming 0.82–1.75 pJ/bit, with a to-
tal peak chiplet bandwidth of 100GB/s. We chose GRS as our com-
munication mechanism because it delivers 3.5× higher bandwidth
per unit area and lower energy per bit compared to other MCM
interconnects [7].

The prototype chiplets were implemented using a globally asyn-
chronous, locally synchronous (GALS) clocking methodology [23],

Table 3: Area breakdown of the Simba system.

Partition Component Area (µm2)

PE

Vector MACs 12K
Weight Buffer 41K
Input Buffer 11K

Accumulation Buffer 24K
NoC Router 19K

Global PE
Distributed Buffer 125K

NoC Routers 27K
RISC-V Processor 109K
NoP NoP Router 42K

1 //Package level
2 for p3 = [0 : P3) :
3 for q3 = [0 : Q3) :
4 parallel_for k3 = [0 : K3) :
5 parallel_for c3 = [0 : C3) :
6 // Chiplet level
7 for p2 = [0 : P2) :
8 for q2 = [0 : Q2) :
9 parallel_for k2 = [0 : K2) :
10 parallel_for c2 = [0 : C2) :
11 // PE level
12 for r = [0 : R) :
13 for s = [0 : S) :
14 for k1 = [0 : K1) :
15 for c1 = [0 : C1) :
16 for p1 = [0 : P1) :
17 for q1 = [0 : Q1) :
18 // Vector-MAC level
19 parallel_for k0 = [0 : K0) :
20 parallel_for c0 = [0 : C0) :
21 p = (p3 * P2 + p2) * P1 + p1;
22 q = (q3 * Q2 + q2) * Q1 + q1;
23 k = ((k3 * K2 + k2) * K1 + k1) * K0 + k0;
24 c = ((c3 * C2 + c2) * C1 + c1) * C0 + c0;
25 OA[p,q,k] += IA[p-1+r,q-1+s,c] * W[r,s,c,k];

Listing 2: Simba baseline dataflow.

allowing independent clock rates for individual PEs, Global PEs,
RISC-V processors, and NoP routers. Running in a single-chiplet
configuration, Simba prototypes have been measured to operate
correctly in the lab at a minimum voltage of 0.42 V with a 161MHz
PE frequency, achieving 0.11 pJ/Op (9.1 TOPS/W) core power ef-
ficiency on a peak-utilization convolution micro-benchmark. At
1.2 V, each chiplet operates with a 2GHz PE frequency for a peak
throughput of 4 TOPS. The 36-chiplet Simba system is functional
over a slightly narrower voltage range, from 0.52–1.1 V, achieving
0.16 pJ/op at 0.52 V and 484MHz; at 1.1 V, the 36-chiplet system
achieves a 1.8 GHz PE frequency and 128 TOPS.

3.3 Simba Baseline Tiling
To map DNN layers onto the hierarchical tile-based architecture,
we first use a state-of-the-art DNN tiling strategy that uniformly
partitions weights spatially, leveraging model parallelism [13, 14,
39, 51, 59, 73]. Listing 2 shows the default tiling in a loop-nest form.
Each dimension of a DNN layer can be tiled temporally, spatially,
or both at each level of the system hierarchy: package, chiplet, PE,
and vector MAC. The loop bounds and orderings in Listing 2 are
configurable in Simba so that users can flexibly map computation to
the Simba system. In particular, the default dataflow uniformly par-
titions weights along the input channel (C) and the output channel
(K) dimensions, as noted in the parallel_for loops. In addition,
Simba can also uniformly partition along the height (P) and width
(Q) dimensions of an output activation across chiplets and PEs to
support flexible tiling. Section 5 highlights the limitations of this
approach when mapping networks onto a large-scale, non-uniform
network access architecture with an MCM-based integration.

We developed a flow that uses Caffe [38] to map a DNN inference
application to the Simba system, which primarily determines an
efficient tiling strategy for the dataflow that best exploits data reuse
in the memory hierarchy. To facilitate evaluation of different map-
ping alternatives, we also developed a fast, analytical energy model
for Simba that quantifies the energy cost of a particular mapping,
similar to the methodology discussed in prior work [15, 25, 50]. The

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

compilation process starts with amapper that is provided with data
regarding available system resources (including the number of PEs,
the number of Global PEs, and the sizes of buffers in the system)
and the parameters of a given layer from the Caffe specification.
The mapper determines which PE will run each portion of the loop
nest and in which buffers the activations and weights are stored.
As this mapping is a logical one, the mapper is followed by a placer
which decides in which physical resource in the Simba topology the
loop nests and data structures are placed. We use a random search
algorithm to sample the mapping space and use the energy and per-
formance models to select good mappings and placements. Finally,
the flow generates the configuration binaries for each chiplet that
implement the execution created by the mapper and placer.

4 SIMBA CHARACTERIZATION
This section details the performance characterization of Simba,
focusing on achieved scalability using the uniform-tiling baseline.
All evaluation results are measured using the prototype system.

4.1 Methodology
Figure 4 shows the experimental setup for measuring the perfor-
mance and power of the Simba prototype system. The silicon pro-
totype test board is attached to an x86 host through PCI-E using a
Xilinx FPGA. To measure the performance of the Simba prototype
system, we use software running on the RISC-V to query cycle
counters built into the RISC-V microcontrollers. The runtime soft-
ware designates one chiplet’s RISC-V microcontroller to be the lead
RISC-V, which tracks the time from the start of execution until all
chiplets complete their assigned work. Power and performancemea-
surements begin after the weights have been loaded into each PE’s
weight buffer and the inputs have been loaded into the Global PE
buffers. Measurements conclude after all other partitions have sig-
naled their completion to the lead RISC-V. Unless otherwise noted,
the chiplets operate at a core voltage of 0.72 V, a PE frequency of 1.03
GHz, and GRS bandwidth of 11 Gbps. We use sense resistors on the
board power supplies and a digital acquisition module to measure
energy during experiment execution. Since the chiplets support
independent clock frequencies for different units (PEs, Global PEs,
RISC-V, and NoP routers), we can vary these frequencies to change
the compute-to-bandwidth ratios for our experiments. The NoC
and NoP routing tables use dimension-ordered X-Y routing for all
inter-chiplet communication. Although all 36 Simba chiplets are
functional, our evaluation uses 32 chiplets, as it is easier to partition
computation by powers of two since the number of input channels
(C) and output channels (K) are typically powers of two.

We focus our application measurements on ResNet-50 [33], a
state-of-the-art, representative deep-learning network, and evaluate
its layers running on the Simba system with a batch size of one, as
low-latency inference is a highly critical deployment scenario for
data center inferencing [32, 39, 43]. We compile and run each layer
independently, except when we map multiple layers to different
physical partitions of Simba and execute them in a pipelinedmanner.
Networks are pre-trained and quantized to 8-bit using TensorRT
without accuracy loss [48]. While we focus on ResNet-50 in this
paper, we also present measurement results from DriveNet [10] to
demonstrate Simba’s weak scaling performance, while AlexNet [41]

Figure 4: Benchmeasurement setup for the Simbaprototype.

layers exhibit similar behavior. We believe that the diversity of
layers in ResNet-50 provides sufficient breadth to cover a wide
range of behaviors across different convolutional networks.

4.2 Overview
Figure 5 summarizes performance and energy measurements across
all ResNet-50 layers. Each point represents a unique mapping for
that layer, while different colors show the number of chiplets active
for that mapping. Latency is normalized to a hypothetical best-
achievable latency that would be realized if each of the 576 PEs
of the system operated with 100% utilization and no communica-
tion or synchronization overheads. Simba provides a large number
of mapping options with drastically different performance and
energy profiles, highlighting the importance of strategies for effi-
ciently mapping DNNs to hardware. The figure also demonstrates
the highly variable behavior of different layers. For example, the
most energy-efficient configurations of layer res3[b-d]_branch2b
achieve almost an order of magnitude better efficiency than those
of res3a_branch2a. The degree of data reuse highly influences the
efficiency; layers with high reuse factors, e.g., the 3× 3 convolution
in 3[b-d]_branch2b, tend to perform computation more efficiently
than layers that require more data movement. Finally, although
increasing the number of chiplets used in the system improves
performance, it also leads to increased energy cost for chiplet-to-
chiplet communication and synchronization. Efficiency can drop
by nearly an order of magnitude for some layers, which further em-
phasizes the effect of data movement on overall efficiency. To better
understand system-level trade-offs, the remainder of this section
characterizes the sensitivity of Simba to mapping alternatives, layer
parameters, bandwidth, latency, and weak scaling, and includes a
comparison to modern GPUs.

4.3 Mapping Sensitivity
Figure 6 shows a performance comparison of mapping ResNet-50’s
res4[b-f]_branch2a layer onto multiple PEs, either on-chiplet
or spanning multiple chiplets. When mapped to a single chiplet,
execution latency decreases linearly from one to eight PEs because
of the improved compute throughput with more PEs. At the same
time, its performance flattens out beyond eight PEs due to the
memory bandwidth contention at the Global PE’s SRAM. However,

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

(a)

(b)

Figure 5: Measured performance and energy and running ResNet-50 on the fabricated Simba prototype. Each point is a valid
workload mapping onto the system; each column cluster shows the different performance and energy achieved by different
mappings of the same workload. Each symbol shape represents a different number of active chiplets used for the mapping.

when mapping across chiplets, execution time does not scale down
beyond four PEs. The additional latency to communicate across
multiple chiplets, including inter-chiplet communication latency
and synchronization latency, ultimately leads to a 2× greater exe-
cution time relative to employing a single chiplet. Good mapping
strategies for MCMs must consider the different characteristics of
the NoC and NoP to deliver efficient utilization of the hardware.

4.4 Layer Sensitivity
Figure 7 shows the performance scalability of running three dif-
ferent layers in ResNet-50 across different numbers of chiplets.
While the performance of res2[a-c]_branch2b initially improves
with increased chiplet count, the performance gains cease beyond

eight chiplets. As one of the early layers of the network, the num-
ber of weights in this layer is so small that it cannot fully uti-
lize the compute throughput of Simba. The performance degrades
with 32 chiplets because the inter-PE communication costs over-
whelm the limited parallelism. In contrast, the performance of the
res3a_branch1 layer scales to 8 chiplets, where it plateaus. This
layer has more compute parallelism than res2[a-c]_branch2b,
but it still does not have enough to fully overcome the overheads
of inter-chiplet communication.

The res5[a-c]_branch2b layer demonstrates the best perfor-
mance scaling, with improvements seen up to 32 chiplets. However,
performance scaling slows down significantly past eight chiplets
due to communication overheads. Of the 53 layers of ResNet-
50, 12 follow the behavior of res3a_branch1, 24 follow that of
res5[a-c]_branch2b, and the remaining 17 have behavior similar

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

Figure 6: Performance comparison of on-chip and on-
package communication and synchronization in Simba. La-
tency is normalized to single-PE execution latency.

Figure 7: Simba scalability across different layers from
ResNet-50. Latency is normalized to the latency of the best-
performing tiling with one chiplet.

to res2[a-c]_branch2b. These measurements demonstrate that
the amount of compute parallelism that anMCM can leverage varies
from layer to layer, and that the cost of communication can hinder
the ability to exploit that parallelism, even on a single chiplet.

4.5 NoP Bandwidth Sensitivity
To examine the bandwidth sensitivity of different layers, we adjust
the bandwidth of the NoP relative to the intra-chiplet compute
performance of the system. This adjustment is made by reduc-
ing the frequencies of the PE, Global PE, and RISC-V partitions
below nominal while maintaining a constant NoP frequency. By
measuring results in terms of the number of PE cycles required
for computation, this frequency reduction effectively corresponds
to an increase in NoP bandwidth. Figure 8 shows how execution
time is affected by NoP bandwidth for two representative ResNet
layers when mapped to 32 chiplets. For res3[a-d]_branch2b, the
increased bandwidth between chiplets results in only a 5% decrease
in execution time, indicating that this layer is not bound by NoP
bandwidth or inter-chiplet communication latency. However, for

Figure 8: Simba scalability with different chiplet-to-chiplet
communication bandwidths.

Figure 9: Simba scalability with different chiplet-to-chiplet
communication latencies running res4a_branch1 with four
chiplets (using the same tiling). Different bars represent dif-
ferent selections of the active four chiplets, as shown under
the X-axis; the active chiplets are highlighted in blue.

res3a_branch1, the increased bandwidth decreases execution time
by 27%, indicating that this layer is bottlenecked by communication
between chiplets. Because an MCM-based system intrinsically has
a NUNA architecture between intra-chiplet and inter-chiplet PEs,
mapping policies must consider the different latency and bandwidth
parameters to deliver good performance and efficiency.

4.6 NoP Latency Sensitivity
In addition to lower bandwidth, the NoP has higher latency than the
NoC due to inter-chiplet signaling overheads. To isolate the effect
of NoP latency, we ran experiments mapping layers to four chiplets,
but adjusted the locations of the selected chiplets in the package to
modulate latency. Figure 9 shows the effect of increasing the longest
inter-chiplet latency from 2 hops to 12 hops for res4a_branch1.
The figure shows the execution time normalized to a configuration
of adjacent chiplets, with the chiplet selection shown under each
bar. With active chiplets further apart, the overall execution time

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 10: Characterization of weak scaling on Simba run-
ning DriveNet.

increases by up to 2.5× compared to execution on adjacent chiplets.
Communication latency is typically less pronounced for small-scale
systems but plays a significant role in achieving good performance
and energy efficiency for a large-scale, MCM-based system like
Simba.

4.7 Weak Scaling Sensitivity
Figure 10 shows the weak scaling trend of Simba running DriveNet,
an end-to-end DNN for self-driving cars [10]. As DriveNet is a
significantly smaller network than ResNet-50, a one-chiplet map-
ping is the most energy-optimal configuration for batch size 1. We
use DriveNet to demonstrate the weak scaling trend of Simba. In-
stead of distributing the same amount of computation to multiple
chiplets, as in the case of ResNet-50, we fix the amount of work per
chiplet but increase the total amount of computation by increasing
the batch size. Figure 10 shows that by increasing the number of
active chiplets from one to 32, Simba achieves a 26× throughput
improvement (compared to 32× for perfect weak scaling), while
incurring a 24% latency increase due to synchronization cost across
multiple chiplets.

4.8 Comparisons with GPUs
Figure 11 compares Simba to NVIDIA’s V100 and T4 GPUs. We
run ResNet-50 with different batch sizes and compare to the GPU
results published in [49]. Due to Simba’s limited on-package storage
capacity for input activations, we only run Simba at batch size one
and two. Unlike GPUs, Simba is designed for low-latency inference
with a small batch size, which motivates the use of distributed and
persistent weight storage to reduce data movement. The Simba
package, including the MCM interface, has substantially smaller
total silicon area (216mm2) than (525mm2) or V100 (815mm2), due
to differences in math precision, on-chip storage, DRAM interface,
and types of computation supported in these architectures.

Figure 11a shows the throughput of Simba, V100, and T4 running
ResNet-50. Simba delivers 1.8× and 1.9× better throughput at batch
size one compared to V100 and T4, respectively. Figure 11b illus-
trates the corresponding energy efficiency improvement of Simba
compared to V100 (5.4×) and T4 (2.9×). When running ResNet-50

(a) (b)

Figure 11: Throughput and efficiency of Simba, V100, and T4
running ResNet-50 with different batch sizes.

with a larger batch size, instead of exploiting the batch-level paral-
lelism like GPUs, Simba would run each batch sequentially. As a
result, we expect the throughput of Simba is close to that of running
with a batch size of one.

5 SIMBA NON-UNIFORM TILING
This section presents three novel DNN workload tiling techniques
that target the non-uniform latency and bandwidth presented by
large-scale MCM-based systems. In all three cases, we stress the
importance of communication-latency-aware tiling when mapping
DNN workloads to large-scale, hierarchical systems.

5.1 Non-UniformWork Partitioning
Efficient use of parallel systems requires proper load balancing
among the components in the system. Failure to properly balance
the load on the system leads to higher latency and energy caused by
resources waiting for the slowest unit to complete, i.e., increased tail
latency. The total execution time can be broken down into twomajor
components: communication latency and compute latency. State-
of-the-art DNN tiling strategies typically assign the same amount
of the work to each of the available resources [71]. However, this
approach breaks down for large-scale systems, especially when the
PEs are spatially distributed with different communication latencies
between them.

To address this limitation, we propose a non-uniform work par-
titioning strategy that considers communication latencies. Instead
of uniformly assigning the same amount of work to each PE, we
non-uniformly partition the work across the PEs. PEs closer to
the data producers will perform more work to maximize physical
data locality, while PEs that are further away will do less work to
decrease the tail latency effects. Figure 12 illustrates an example
of non-uniform work partitioning using a 4-chiplet system. In this
example, we assume the input activation (IA) is physically stored
in the Global PEs of Chiplet0 and Chiplet2, while the weights
(W) and the work is partitioned across all four chiplets. During
execution, the Global PE of Chiplet0 will multicast a slice of IA

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

Figure 12: Illustration of communication-aware, non-
uniformwork partitioning. The top green tensors represent
weights (W), the left blue tensors represent input activa-
tions (IA), and the bottom red tensors represent the output
activation (OA). In this example, IA is stored in Chiplet0
and Chiplet2.

to PEs in both Chiplet0 and Chiplet1. Because the communica-
tion latencies from the Chiplet0 Global PE to the PEs in Chiplet0
and Chiplet1 are different, Chiplet1 will fall behind. To prevent
the longer communication to Chiplet1 from increasing the tail
latency of the execution, we can adjust the amount of computation
that each chiplet is assigned in a manner inversely proportional
to its communication distance from the source. In the example
shown in Figure 12, Chiplet0 and Chiplet2 are provided with
larger chunks of work (Klef t) while Chiplet1 and Chiplet3 get
the smaller chunks (Kr iдht). This work schedule evens out the
completion time across the chiplets, thereby improving overall
system performance. For simplicity, this example only shows non-
uniform partitioning with respect to input activations. A similar
technique can be used to mitigate the communication latency for
output activations to the destination chiplets by using non-uniform
partitioning along the C dimension.

The variation in communication latency is quite pronounced
in large-scale systems such as Simba, with hundreds of spatially
distributed PEs. To dynamically adjust the amount of work that
each PE performs, we use the performance counters within each
PE to collect accurate latency and utilization information during
the initial execution of a layer. We then adjust work distribution for
subsequent executions of each layer based on the latency variation
across PEs.

Figure 13 illustrates the measured performance improvement
using non-uniform work partitioning. For each of the layers, we
pick the highest-performance uniform tiling from Figure 7 as the
baseline. We then measure the execution time of different chiplets
and identify layers with a large tail latency. For these layers, we

Figure 13: Non-uniform work partition for ResNet-50 with
speedup normalized to the best-performing tiling.

use non-uniform work partitioning to shift the computation from
the tail PEs to the PEs that are closer to the data. Depending on
layer dimensions, we achieve up to 15% performance improve-
ment compared to the best uniform tiling for a given layer. We
notice that the achievable performance improvement is highly sen-
sitive to the compute-and-communication ratio in a given mapping.
For example, when either compute or communication is signifi-
cantly dominating the overall execution latency, as in the case of
res5a_branch1, incrementally modulating the amount of work
each PE performs provides little performance improvement. How-
ever, when compute and communication latencies are more com-
parable, which is typically desired to achieve good mapping, the
performance improvement is more pronounced, as in the case of
res2[b-c]_branch2c.

5.2 Communication-Aware Data Placement
The communication latency in a parallel system can have a large
effect on the overall system performance, as observed in multi-core
and multi-GPU characterizations [5, 8, 9, 16, 31, 35, 47, 66–68]. Due
to the limited scale of today’s deep-learning accelerators, most have
one unified global buffer that supplies data to all of the PEs [1, 13, 15,
59, 75]. However, in large-scale MCM system where on-chip buffers
are spatially distributed among the chiplets, communication latency
becomes highly sensitive to the physical location of data. Figure 14
illustrates how data placement affects communication distances and
latencies. For example, if the Src chiplet in Figure 14(a) broadcasts
data to the other chiplets, the arrival time of the data will vary
greatly depending the distance of the receiving chiplets from Src.
Depending on the amount of computation each chiplet performs,
such variations in communication distance could significantly limit
the achievable speedup in a distributed, tile-based system like Simba,
motivating the need for data placement optimization.

While optimal data placement is an NP-hard problem, we use
a practical greedy algorithm to iteratively determine where input
and output activation data should be placed in the Simba system.
The algorithm starts by performing placement of the input activa-
tion data blocks. Once the input activations are placed, the same
greedy algorithm is executed for tiles of output activations. Since a

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 14: Data placement on the Simba system. (a) Assessment of the relative latency to different chiplets that receive data
from Src. (b) Default input activation (IA) and output activation (OA) placement where data is sequentially placed from the
Global PE of the first chiplet. (c) An improved IA placement at the center of the package so that data can be multicast to all
chiplets. (d) OA placement with even distribution along the periphery of the package to minimize OA communication latency.

previous stage of the mapping process has already determined the
data tiling, this stage need only focus on data placement and not
re-tiling. Figure 14(b) shows a naive data placement with a sequen-
tial allocation of input activations to the chiplets on the top row
and output activations in the next six chiplets. Figure 14(c) shows
a better assignment of IAs to chiplets, selecting the four in the

Algorithm 1: Iterative data placement algorithm.
Result: Determine placement of the input activation data
Select an input activation block;
Precompute communication cost between different
source-destination pairs

while not the end of input activation do
for each possible chiplet placement do

Calculate communication cost using pre-computed
look-up table;

Select a chiplet that minimizes the communication cost;
if that chiplet’s RAM is full then

Select the next best source chiplet;

Figure 15: Data placement for ResNet-50 layers with
speedup normalized to the best performing tiling.

middle that minimize aggregate multi-cast hop-count to all chiplets.
Finally, Figure 14(d) shows a placement of output activations on
chiplets in regions where OA accumulation can occur.

Figure 15 shows the performance improvement of ResNet-50 lay-
ers with optimized data placement. Although all of the layers use
32 chiplets, many of them have different communication patterns.
For example, layers like res2[a-c]_branch2c communicate fre-
quently within a group of eight chiplets. In this case, it is better to
group those chiplets together to minimize communication cost. In
contrast, layer res4a_branch1must broadcast from a single chiplet
to all 32 chiplets. In this case, instead of placing the source chiplet
sequentially at the upper left corner, placing it at the center of the
package leads to a 5% performance improvement. Data placement
optimization results in up to 15% improved performance compared
to the best achieved baseline.

5.3 Cross-Layer Pipelining
One key challenge of mapping DNN layers to large-scale systems
is achieving high utilization when the layer computation has a
limited amount of parallelism [14, 39, 71]. To address this challenge,
recent DNN accelerators support pipelined execution to improve
overall system utilization [26, 71]. ScaleDeep supports column-wise
pipelining in the PE array, where different columns can be assigned
to different pipelined layers [71]. This low-overhead implementa-
tion still results in low utilization when layers cannot be easily
mapped across columns. Tangram supports flexible partitioning
across the PE array for different layer shapes but does not consider
the non-uniformity of communication latency and bandwidth [26].

Figure 16 illustrates how a residual block of ResNet-50 can
be pipelined across the Simba package. Because the Simba hier-
archical interconnect supports flexible communication patterns,
we can assign different-sized clusters of chiplets to different lay-
ers. In the example shown, res2a_branch2b uses four chiplets,
while res2a_branch2a uses only two chiplets. Figure 17 shows
the achieved throughput improvement from pipelining three resid-
ual blocks. Within each residual block, instead of executing each
layer sequentially on the entire package, we partition the package
into three or four clusters, assign different layers to each cluster,
and execute the layers in a pipelined fashion. Pipelined execution

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

Figure 16: Pipelining a residual block of ResNet-50 in the
Simba system.

on Simba improves overall throughput by up to 2.3× compared
to the sequential execution baseline. With pipelining, the overall
throughput is limited by the longest pipelining stage. For example,
res3_x achieves the most significant speedup due the relatively
balanced sizes of input activations and weights, while the earlier
res2_x layers have much larger input activations than weights.
Later res4_x layers are more dominated by weight size, leading to
less throughput improvement.

6 RELATEDWORK

DNN inference applications typically run on highly programmable
but inefficient CPUs, programmable GPUs with ISA extensions for
accelerating tensor operations, or fixed-function DNN inference
accelerators. In this work, we present anMCM-based fixed-function
DNN inference accelerator prototype system that is capable of run-
ning highly complex DNN models at high throughput and low
latency. Our aim for Simba is to explore scaling challenges and
opportunities without incurring higher inference latency.

Many previous papers have developed hardware accelerator
architectures that focus on fast and efficient execution of DL in-
ference [2, 13, 15, 30, 51, 52, 57, 59, 61]. In some cases, these accel-
erators target small-scale networks and do not consider the chal-
lenges associated with scaling to larger networks. In other cases, a
proposed accelerator requires structural changes to scale to large

Figure 17: Throughput improvement from pipelined execu-
tion on three residual blocks of ResNet-50.

high-performance chips. For example, DianNao was originally pro-
posed in the context of small DNN layers [13]. Follow-on work
with DaDianNao aimed at larger networks by proposing to use a
multi-chip network and eDRAM for weights and activations [14].
In contrast, Simba is designed from the ground up for large-scale
inference, specifically employing package-level integration.

The TPU [39] is a data-center inference accelerator which lacks
the mapping flexibility targeted in Simba . The TPU restricts com-
munication to column-wise or row-wise multicast in its systolic
computation core, while the communication flexibility in Simba
provides the opportunity to perform data-locality-based mapping
optimizations. MAERI [42] is a DNN accelerator in which the PEs
are controlled by switches at run time; this work does not explore
large scale inference with MCMs or chiplets as we do with Simba .
MCMs have been explored in CPU design [37, 40, 45, 62, 74] and
GPU design [3, 18] to circumvent the fabrication and design costs
associated with producing large monolithic chips. Our contribution
in Simba is the design, implementation, and evaluation of the first
MCM-based DNN accelerator.

Previous work explored efficient data movement for multi-chip
systems on general-purpose workloads [66]. Our work focuses on
efficient data movement on MCM-based systems for DNN inference.
Tangram [26] provides efficient mappings for tile-based accelerators
using shared buffers, loop ordering, and application pipelining.
Future work could apply Tangram’s mapping techniques to Simba
architectures.

7 CONCLUSIONS
This work presents Simba, a scalable MCM-based deep-learning
inference accelerator architecture. Simba is a heterogeneous tile-
based architecture with a hierarchical interconnect. We developed
a silicon prototype system consisting of 36 chiplets that achieves
up to 128 TOPS at high energy efficiency. We used the prototype
to characterize the overheads of the non-uniform network of an
MCM-based architecture, observing that load imbalance and com-
munication latencies contribute to noticeable tail-latency effects.
We then showed how considering the non-uniform nature of system
can help improve performance through techniques such as non-
uniform work partitioning, communication-aware data placement,
and cross-layer pipelining. Applying these optimizations results in
performance increases of up to 16% compared to naive mappings.

ACKNOWLEDGMENTS
The authors would like to thank Frans Sijstermans, Dan Smith,
Don Templeton, Guy Peled, Jim Dobbins, Ben Boudaoud, Randall
Laperriere, BorhanMoghadam, Sunil Sudhakaran, Zuhair Bokharey,
Sankara Rajapandian, James Chen, John Hu, Vighnesh Iyer for
package, PCB, signal integrity, fabrication, and prototyping support.
This research was, in part, funded by the U.S. Government under the
DARPA CRAFT program. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the U.S. Government. Distribution Statement "A" (Approved for
Public Release, Distribution Unlimited).

Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture MICRO-52, October 12–16, 2019, Columbus, OH, USA

REFERENCES
[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-neuron-free Deep
Neural Network Computing. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN Accelerators. In Proceedings of the International Symposium on Microarchi-
tecture (MICRO).

[3] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

[4] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[5] Manu Awasthi, Kshitij Sudan, Rajeev Balasubramonian, and John Carter. 2009.
Dynamic Hardware-assisted Software-controlled Page Placement to Manage
Capacity Allocation and Sharing within Large Caches. In Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA).

[6] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2015. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. CoRR
abs/1511.00561 (2015). arXiv:1511.00561

[7] Noah Beck, Sean White, Milam Paraschou, and Samuel Naffziger. 2018. Zeppelin:
An SoC for Multichip Architectures. In Proceedings of the International Solid State
Circuits Conference (ISSCC).

[8] Bradford M. Beckmann and David A. Wood. 2004. Managing Wire Delay in Large
Chip-Multiprocessor Caches. In Proceedings of the International Symposium on
Microarchitecture (MICRO).

[9] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable Software-Defined
Caches. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT).

[10] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski,
Bernhard Firner, Lawrence D. Jackel, and Urs Muller. 2017. Explaining How a
Deep Neural Network Trained with End-to-End Learning Steers a Car. CoRR
abs/1704.07911 (2017).

[11] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L.
Sangiovanni-Vincentelli. 1999. A Methodology for Correct-by-construction La-
tency Insensitive Design. In Design Automation Conference.

[12] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille. 2016. DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs. CoRR abs/1606.00915
(2016). arXiv:1606.00915

[13] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Ac-
celerator for Ubiquitous Machine-learning. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operation
Systems (ASPLOS).

[14] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, JiaWang, Ling Li, Tian-
shi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. DaDianNao: A Machine-learning
Supercomputer. In Proceedings of the International Symposium on Microarchitec-
ture (MICRO).

[15] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

[16] Zeshan Chishti, Michale D. Powell, and T.N. Vijaykumar. 2005. Optimizing
Replication, Communication, and Capacity Allocation in CMPs. In Proceedings of
the International Symposium on Computer Architecture (ISCA).

[17] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, Christian Boehn, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi
Ghandi, Stephen Heil, Kyle Holohan, Tamas Juhasz, Ratna Kumar Kovvuri,
Sitaram Lanka, Friedel van Megan, Dima Mukhortov, Prerak Patel, Steve Rein-
hardt, Adam Sapek, Raja Seera, Balaji Sridharan, Lisa Woods, Philip Yi-Xiao,
Ritchie Zhao, and Doug Burger. 2017. Accelerating Persistent Neural Networks
at Datacenter Scale. In HotChips.

[18] William J. Dally, C. Thomas Gray, John Poulton, Brucek Khailany, John Wil-
son, and Larry Dennison. 2018. Hardware-Enabled Artifical Intelligence. In
Proceedings of the International Symposia on VLSI Technology and Circuits (VLSI).

[19] Reetuparna Das, Soumya Eachempati, Asit K. Mishra, Vijaykrishnan Narayanan,
and Chita R. Das. 2009. Design and Evaluation of A Hierarchical On-chip Inter-
connect for Next-Generation CMPs. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA).

[20] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, andOlivier Temam. 2015. ShiDianNao: Shifting Vision
Processing Closer to the Sensor. In Proceedings of the International Symposium
on Computer Architecture (ISCA).

[21] Marc Erett, Declan Carey, James Hudner, Ronan Casey, Kevin Geary, Pedro
Neto, Mayank Raj, Scott McLeod, Hongtao Zhang, Arianne Roldan, Hongyuan
Zhao, Ping-Chuan Chiang, Haibing Zhao, Keehian Tan, Yohan Frans, and Ken
Chang. 2018. A 126mW 56Gb/s NRZ Wireline Transceiver for Synchronous
Short-reach Applications in 16nm FinFET. In Proceedings of the International Solid
State Circuits Conference (ISSCC).

[22] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culur-
ciello, and Yann LeCun. 2011. Neuflow: A Runtime Reconfigurable Dataflow
Processor for Vision. In Computer Vision and Pattern Recognition Workshops
(CVPRW).

[23] Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Stephen G.
Tell, Brian Zimmer, Tezaswi Raja, Kevin Zhou, William J. Dally, and Brucek
Khailany. 2019. A Fine-Grained GALS SoC with Pausible Adaptive Clocking in
16nm FinFET. In International Symposium on Asynchronous Circuits and Systems
(ASYNC).

[24] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, G. Weisz, Lisa Woods, Sitaram Lanka,
Steve Reinhardt, Adrian Caulfield, Eric Chung, and Doug Burger. 2018. A Con-
figurable Cloud-Scale DNN Processor for Real-Time AI. In Proceedings of the
International Symposium on Computer Architecture (ISCA).

[25] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
Tetris: Scalable and Efficient Neural Network Acceleration with 3D Memory. In
Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operation Systems (ASPLOS).

[26] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
Tangram: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators. In
Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operation Systems (ASPLOS).

[27] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR).

[28] David Greenhill, Ron Ho, David Lewis, Herman Schmit, Kok Hong Chan, Andy
Tong, Sean Atsatt, Dana How, Peter McElheny, Keith Duwel, Jeffrey Schulz,
Darren Faulkner, Gopal Iyer, George Chen, Hee King Phoon, Han Wooi Lim,
Wei-Yee Koay, and Ty Garibay. 2017. A 14nm 1GHz FPGA with 2.5D Transceiver
Integration. In Proceedings of the International Solid State Circuits Conference
(ISSCC).

[29] Linley Gwennap. 2018. Graphcore Makes Big AI Splash. Microprocessor Report
618 (September 2018).

[30] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

[31] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2009.
Reactive NUCA: Near-optimal Block Placement and Replication in Distributed
Caches. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

[32] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Peter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiangdong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA).

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).

[34] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861

[35] Jaehyuk Huh, Changky Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and
Stephen W. Keckler. 2005. A NUCA Substrate for Flexible CMP Cache Shar-
ing. In Proceedings of the International Conference on Supercomputing (ICS).

[36] Subramania S. Iyer. 2016. Heterogeneous Integration for Performance and Scaling.
IEEE Transactions on Components, Packaging and Manufacturing Technology 6, 7
(July 2016), 973–982.

[37] Natalie Enright Jerger, Ajaykumar Kannan, Zimo Li, and Gabriel H. Loh. 2014.
NoC Architectures for Silicon Interposer Systems. In Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO).

[38] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional Architecture for Fast Feature Embedding. CoRR abs/1408.5093 (2014).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1704.04861

MICRO-52, October 12–16, 2019, Columbus, OH, USA Shao, et al.

arXiv:1408.5093
[39] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

[40] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh. 2015. Enabling
Interposer-based Disintegration of Multi-core Processors. In Proceedings of the
International Symposium on Microarchitecture (MICRO).

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet Classifi-
cationwith Deep Convolutional Neural Networks. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS).

[42] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Programmable Intercon-
nects. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS).

[43] Yann LeCun. 2019. The Next Challenge in AI: Self-Supervised Learning. In
Proceedings of the International Solid State Circuits Conference (ISSCC).

[44] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep Learning.
Nature 521 (2015), 436–444.

[45] Gabriel H. Loh, Natalie Enright Jerger, Ajaykumar Kannan, and Yasuko Eckert.
2015. Interconnect-MemoryChallenges forMulti-chip, Silicon Interposer Systems.
In Proceedings of the International Symposium on Memory System (MEMSYS).

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully Convolutional
Networks for Semantic Segmentation. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[47] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yue-
feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.
2017. Device Placement Optimization with Reinforcement Learning. In Proceed-
ings of the International Conference on Machine Learning (ICML).

[48] NVIDIA 2018. NVIDIA TensorRT: Programmable Inference Accelerator. https:
//developer.nvidia.com/tensorrt.

[49] NVIDIA. 2019. NVIDIA Tesla Deep Learning Product Performance. https://
developer.nvidia.com/deep-learning-performance-training-inference.

[50] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS).

[51] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

[52] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, and Mark A. Horowitz. 2013. Convolution Engine: Balancing Effi-
ciency & Flexibility in Specialized Computing. In Proceedings of the International
Symposium on Computer Architecture (ISCA).

[53] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling Low-power, Highly-accurate Deep Neural Network Ac-
celerators. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

[54] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only
Look Once: Unified, Real-time Object Detection. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR). 779–788.

[55] Kirk Saban. 2012. Xilinx Stacked Silicon Interconnect Technology De-
livers Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency.
http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_
Silicon_Interconnect_Technology.pdf.

[56] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-situ Analog Arith-
metic in Crossbars. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

[57] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit Fusion: Bit-Level Dynamically Com-
posable Architecture for Accelerating Deep Neural Network. In Proceedings of
the International Symposium on Computer Architecture (ISCA).

[58] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN
Accelerator Efficiency Through Resource Partitioning. In Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA).

[59] Frans Sijstermans. 2018. The NVIDIA Deep Learning Accelerator. In Hot Chips.
[60] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional

Networks for Large-scale Image Recognition. CoRR abs/1408.1556 (2014).
arXiv:1408.1556

[61] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A Pipelined
ReRAM-Based Accelerator for Deep Learning. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA).

[62] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H. Loh. 2017. Cost-effective
Design of Scalable High-performance Systems using Active and Passive Inter-
posers. In International Conference on Computer-Aided Design (ICCAD).

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS).

[64] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).

[65] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).

[66] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. 2017. Data
Movement Aware Computation Partitioning. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

[67] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-
Defined Cache Hierarchies. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

[68] Po-An Tsai, Changping Chen, and Daniel Sanchez. 2018. Adaptive Scheduling for
Systemswith Asymmetric Memory Hierarchies. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

[69] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw Audio. CoRR
abs/1609.03499 (2016). arXiv:1609.03499

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762

[71] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat
Kaul, Pradeep Dubey, and Anand Raghunathan. 2017. ScaleDeep: A Scalable Com-
pute Architecture for Learning and Evaluating Deep Networks. In Proceedings of
the International Symposium on Computer Architecture (ISCA).

[72] John M. Wilson, Walker J. Turner, John W. Poulton, Brian Zimmer, Xi Chen,
Sudhir S. Kudva, Sanquan Song, Stephen G. Tell, Nikola Nedovic, Wenxu Zhao,
Sunil R. Sudhakaran, C. Thomas Gray, and William J. Dally. 2018. A 1.17pJ/b
25Gb/s/pin Ground-referenced Single-ended Serial Link for Off- and On-package
Communication in 16nm CMOS Using a Process- and Temperature-adaptive
Voltage Regulator. In Proceedings of the International Solid State Circuits Conference
(ISSCC).

[73] Xuan Yang,MingyuGao, Jing Pu, Ankita Nayak, Qiaoyi Liu, Steven Bell, Jeff Setter,
Kaidi Cao, Heonjae Ha, Christos Kozyrakis, and Mark Horowitz. 2018. DNN
Dataflow Choice Is Overrated. CoRR abs/1809.04070 (2018). arXiv:1809.04070

[74] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muhammad
Shoaib Bin Altaf, Natalie Enright Jerger, and Gabriel H. Loh. 2018. Modular
Routing Design for Chiplet-based Systems. In Proceedings of the International
Symposium on Computer Architecture (ISCA).

[75] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An Accelerator for Sparse
Neural Networks. In Proceedings of the International Symposium on Microarchi-
tecture (MICRO).

[76] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer,
C. Thomas Gray, Stephen W. Keckler, and Brucek Khailany. 2019. A 0.11 pJ/Op,
0.32-128 TOPS, Scalable Multi-Chip-Module-based Deep Neural Network Acceler-
ator with Ground-Reference Signaling in 16nm. In Proceedings of the International
Symposia on VLSI Technology and Circuits (VLSI).

http://arxiv.org/abs/1408.5093
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
http://arxiv.org/abs/1408.1556
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1809.04070

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DNN Basics
	2.2 Multi-Chip-Module Packaging
	2.3 Non-Uniformity in MCM-based Design

	3 SIMBA Architecture and System
	3.1 Simba Architecture
	3.2 Simba Silicon Prototype
	3.3 Simba Baseline Tiling

	4 SIMBA Characterization
	4.1 Methodology
	4.2 Overview
	4.3 Mapping Sensitivity
	4.4 Layer Sensitivity
	4.5 NoP Bandwidth Sensitivity
	4.6 NoP Latency Sensitivity
	4.7 Weak Scaling Sensitivity
	4.8 Comparisons with GPUs

	5 SIMBA Non-Uniform Tiling
	5.1 Non-Uniform Work Partitioning
	5.2 Communication-Aware Data Placement
	5.3 Cross-Layer Pipelining

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

