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ABSTRACT

Sparse matrix-sparse matrix multiplication (spMspM) is at the heart

of a wide range of scientific and machine learning applications.

spMspM is inefficient on general-purpose architectures, making

accelerators attractive. However, prior spMspM accelerators use

inner- or outer-product dataflows that suffer poor input or output

reuse, leading to high traffic and poor performance. These prior

accelerators have not explored Gustavson’s algorithm, an alterna-

tive spMspM dataflow that does not suffer from these problems but

features irregular memory access patterns that prior accelerators

do not support.

We presentGamma, an spMspM accelerator that uses Gustavson’s

algorithm to address the challenges of prior work.Gamma performs

spMspM’s computation using specialized processing elements with

simple high-radix mergers, and performs many merges in parallel

to achieve high throughput. Gamma uses a novel on-chip storage

structure that combines features of both caches and explicitly man-

aged buffers. This structure captures Gustavson’s irregular reuse

patterns and streams thousands of concurrent sparse fibers (i.e.,

lists of coordinates and values for rows or columns) with explicitly

decoupled data movement. Gamma features a new dynamic sched-

uling algorithm to achieve high utilization despite irregularity. We

also present new preprocessing algorithms that boost Gamma’s

efficiency and versatility. As a result, Gamma outperforms prior

accelerators by gmean 2.1×, and reduces memory traffic by gmean

2.2× and by up to 13×.
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1 INTRODUCTION

Scientific and machine learning applications are increasingly com-

puting on sparse data, i.e., data where a large fraction of values are

zeros. In this work, we focus on accelerating sparse matrix-sparse

matrix multiplication (spMspM), a key kernel that lies at the heart of

many sparse algorithms, like sparse deep neural networks [18, 39],

sparse linear and tensor algebra [29, 57], graph analytics [16, 27],

and simulation [6].

spMspM has two key characteristics that make it challenging

to accelerate. First, spMspM is bottlenecked by memory traffic and

data movement: it requires far fewer arithmetic operations per

input element than dense matrix multiplication, and its inputs and

outputs typically use a compressed representation that omits zeros

but is more complicated to traverse, requiring irregular and indirect

accesses. Thus, to be effective, accelerators must minimize data

movement, rather than compute operations. Second, spMspM has a

rich algorithmic diversity: it admits a wide range of dataflows (i.e.,

computation schedules) with different tradeoffs, and some dataflows

have asymptotically worse performance on particular inputs. Thus,

accelerators must achieve efficiency though specialization while

avoiding the inefficiencies of using an inadequate spMspM dataflow.

Prior work has proposed spMspM accelerators that greatly im-

prove performance over CPUs and GPUs. And yet, these accel-

erators have focused on one of two spMspM dataflows, inner-

product [20, 43] or outer-product [37, 59], which have significant

drawbacks (Sec. 2). Inner-product maximizes output reuse but sac-

rifices reuse of input matrices, and is inefficient with highly sparse

matrices, as it is dominated by the cost of intersections that do

not produce output values. By contrast, outer-product maximizes

input reuse, but sacrifices output reuse, as it suffers from the cost

and memory traffic of merging large partial output matrices. Prior

accelerators have missed a third spMspM dataflow, Gustavson’s

algorithm [17],1 which is often the most efficient dataflow and is

widely used in CPUs and GPUs [15, 29, 52]. Gustavson’s algorithm

often achieves the least amount of memory traffic and requires

simpler operations because it avoids the extremes of inner- and

outer-product. However, Gustavson’s algorithm has more irregular

reuse across data structures, demanding a storage organization that

can exploit that reuse to reduce memory traffic.

1MatRaptor [48], which was published after the submission of this work, is an acceler-
ator that exploits Gustavson’s algorithm. We discuss it briefly in Sec. 7.
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https://doi.org/10.1145/3445814.3446702


ASPLOS ’21, April 19ś23, 2021, Virtual, USA Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

To unlock the potential of spMspM acceleration, we propose

Gamma, the Gustavson-AlgorithmMatrix-MultiplicationAccelerator

(Sec. 3). Gamma combines three key features:

(1) Gamma uses simple processing elements (PEs) that linearly

combine sparse input rows to produce each output row. PEs

implement high-radix mergers that combine many input

rows (e.g., 64 in our design) in a single pass, reducing work

and memory accesses. Instead of expensive high-throughput

mergers as in prior work [59], Gamma uses simple scalar

mergers, and relies on Gustavson’s row-level parallelism

to achieve high throughput efficiently, using tens of PEs to

perform many combinations in parallel. Thus, Gamma con-

currently processes thousands of compressed sparse fibers,

variable-sized rows from inputs or partial outputs.

(2) Gamma uses a novel storage structure, FiberCache, to effi-

ciently buffer the thousands of fibers required by PEs. Fiber-

Cache is organized as a cache to capture Gustavson’s ir-

regular reuse patterns. However, FiberCache is managed

explicitly, like a large collection of buffers, to fetch missing

fibers ahead of time and avoid PE stalls. This savesmegabytes

of dedicated on-chip buffers.

(3) Gamma dynamically schedules work across PEs to ensure

high utilization and minimize memory traffic despite the

irregular nature of Gustavson’s algorithm.

While Gustavson’s algorithm is an improvement over other

dataflows, it still incurs excessive traffic on some inputs. To ad-

dress this issue, we propose a preprocessing technique (Sec. 4).

that combines row reordering and selective tiling of one matrix

input. Preprocessing improves Gamma’s performance and avoids

pathologies across the full range of inputs.

We synthesize Gamma and evaluate its performance on a wide

range of sparse matrices (Sec. 6). Compared to state-of-the-art ac-

celerators, with a similar hardware budget, Gamma reduces total

DRAM traffic by 2.2× on average, non-compulsory DRAM traffic

by 12× on average, and achieves significantly higher DRAM band-

width utilization. Moreover, Gamma is effective on a much broader

range of sparse matrices.

In summary, we make the following contributions:

• We show that prior spMspM accelerators have missed a key

dataflow, Gustavson’s, which is often more efficient but has

less regular access patterns than previously used dataflows.

• We build Gamma, a novel spMspM accelerator that combines

specialized PEs, a novel cache-based structure to capture Gus-

tavson’s irregular reuse, and dynamic scheduling to achieve

high utilization despite irregularity.

• We propose preprocessing techniques that boost Gamma’s

effectiveness and avoid Gustavson’s pathologies.

• We evaluate Gamma under a broad range of matrices, show-

ing large performance gains and memory traffic reductions

over prior systems, as well as higher versatility.

2 BACKGROUND AND MOTIVATION

Sparse matrix-sparse matrix multiplication (spMspM) is widely used

in deep learning inference [18, 39, 54], linear algebra [5, 29, 57],

and graph analytics [16, 27] (including breadth-first search [16],

maximummatching [44], cycle detection [58], triangle counting [2],
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Figure 1: Compressed sparse matrix formats.

clustering [50], and all-pair shortest paths [7]). It is also a key

building block for many other workloads, such as parsing [41],

searching [25], and optimization [26].

We first describe the data structures used by spMspM and the

basic spMspM dataflows; then, we review prior accelerators, the

optimizations they introduce, and their limitations, motivating the

need for a Gustavson-based accelerator.

2.1 Compressed Sparse Data Structures

spMspM operates on compressed sparse data structures, i.e., struc-

tures where only nonzeros are represented. Fig. 1 shows a sparse

matrix encoded in two commonly used formats, compressed sparse

row (CSR) and compressed sparse column (CSC). In CSR, rows are

stored in a compressed format: each row is an ordered list of coor-

dinates (in this case, column indexes) and nonzero values, stored

contiguously. Indexing into a particular row is achieved through the

offsets array, which stores the starting position of each row. CSC is

analogous to CSR, but stores the matrix by compressed columns. In

general, we call each compressed row or column a fiber, represented

by a list of coordinates and values, sorted by coordinate.

Compressed sparse data structures introduce two challenges.

First, certain kinds of traversals, called concordant traversals [49],

are more efficient than others. For example, a CSR matrix can be

traversed row by row, but traversing it by columns or accessing

elements at random coordinates is inefficient. Thus, to be efficient,

different spMspM dataflows impose different constraints on the pre-

ferred representation of input and output matrices. Second, spMspM

relies on indirect accesses (through the offsets array) to variable-

sized fibers, and requires combining or intersecting those fibers.

These operations are inefficient on CPUs and GPUs.

2.2 spMspM Dataflows

Fig. 2 shows the three basic dataflows for spMspM: inner-product,

outer-product, and Gustavson. Fig. 2 also shows the abstract loop

nest corresponding to each dataflow (for simplicity, these loop

nests assume dense matrices; with compressed sparse matrices,

operations are more complex). spMspM computes𝐶𝑀𝑥𝑁 = 𝐴𝑀𝑥𝐾 ×

𝐵𝐾𝑥𝑁 using a triply-nested loop that iterates over 𝐴’s and 𝐵’s

independent dimensions,𝑀 and 𝑁 , and co-iterates over their shared

dimension, 𝐾 . The dataflow is determined by the level of this co-

iteration: in inner-product, co-iteration happens at the innermost

loop; in outer-product, at the outermost loop; and in Gustavson’s,

at the middle loop.2

2While Fig. 2 shows three loop nest orders, there are six possible orders. The remaining
three stem from swapping the𝑀 and 𝑁 loops; this merely switches the dimensions
in which inputs are traversed, but results in an otherwise identical dataflow. For
example, Fig. 2 shows an inner-product dataflow where𝐴 is traversed by rows and 𝐵
by columns; swapping the outer two loops results in an inner-product dataflow where
𝐴 is traversed by columns and 𝐵 by rows.
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Figure 2: Comparison of basic spMspM dataflows.

Inner-product is an output-stationary3 dataflow: it computes the

output matrix one element at a time, simultaneously traversing (i.e.,

co-iterating) rows (𝑚) of𝐴 and columns (𝑛) of 𝐵. This achieves good

output reuse, but poor input reuse. Since 𝐴 and 𝐵 are sparse, this

traversal requires an intersection, as only nonzeros with matching

𝑘 coordinates contribute towards the output. Inner-product is rela-

tively efficient when the input matrices are nearly dense. But with

highly sparse matrices, inner-product is dominated by the cost of

intersections, which are inefficient because all elements of the rows

and columns must be traversed, even though there are few effectual

intersections, i.e., cases where both elements are nonzero. For ex-

ample, in Fig. 2, intersecting row 𝐴1 and column 𝐵2 is completely

ineffectual, as they have no nonzeros with the same coordinate.

Outer-product, by contrast, is an input-stationary dataflow: it com-

putes the output one partial matrix at a time, traversing each col-

umn of 𝐴 (𝑘) and row of 𝐵 (𝑘) once and computing a full 𝑀 × 𝑁

matrix that incorporates all their contributions to the output. Then,

all 𝐾 partial output matrices are combined to produce the final out-

put matrix. Outer-product achieves good reuse of input matrices.

Additionally, outer-product avoids inner-product’s inefficiencies of

ineffectual intersections: each co-iteration of a column of 𝐴 and a

row of 𝐵 is ineffectual only when either is all-zeros, which is un-

likely. However, outer-product is limited by poor output reuse: the

combined size of the partial output matrices is often much larger

than the final output, so they cause significant traffic. Moreover,

combining these partial output matrices is a complex operation.

Gustavson, finally, is a row-stationary dataflow: it computes the

output matrix one row at a time, by traversing a row of 𝐴 (𝑚) and

scaling and reducing, i.e., linearly combining, the rows of 𝐵 (𝑘) for

which the row of 𝐴 has nonzero coordinates. Specifically, given a

row 𝐴𝑖 with nonzeros 𝑎𝑖 𝑗 , output row 𝐶𝑖 is produced by linearly

combining 𝐵’s rows 𝐵 𝑗 , i.e., 𝐶𝑖 =

∑
𝑗 𝑎𝑖 𝑗𝐵 𝑗 . Gustavson is more

efficient because it avoids the extremes of inner- and outer-product

dataflows. While Gustavson does not get as much reuse of a single

value as either inner- or outer-product dataflows, it gets reuse of

3We use the *-stationary terminology from Chen et al. [9].

modestly sized rows. Unlike outer-product, Gustavson requires

combining partial output rows rather than partial output matrices,

a simpler operation on much smaller intermediates that more easily

fit on-chip; and unlike inner-product, Gustavson avoids ineffectual

intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other

dataflows: its inputs and outputs are all in a consistent format,

CSR.4 By contrast, inner- or outer-product require one input to

be in CSR and the other in CSC, to support efficient concordant

traversals. We do not evaluate this issue further, but for compound

operations (e.g., matrix exponentiation), having different formats

requires expensive operand transformations, e.g., converting CSC

to CSR, that rival the cost of accelerated spMspM [11].

2.3 spMspM Accelerators
Despite the advantages of Gustavson’s algorithm, prior spMspM

accelerators have focused on inner- and outer-product dataflows,

seeking to maximize reuse of one operand. These designs incorpo-

rate different optimizations over the basic dataflow they adopt to

mitigate its inefficiencies.

Accelerators like UCNN [20] and SIGMA [43] implement inner-

product spMspM. These designs are built around hardware support

to accelerate intersections: UCNN traverses compressed sparse data

structures, while SIGMA uses a hardware-friendly bitmap-based

fiber representation to further accelerate intersections. To counter

poor input reuse, some designs also tile input matrices [19] to fit

on-chip. While these designs achieve much higher throughput than

CPUs and GPUs when matrices are relatively dense (as is typical

in e.g. deep learning inference), they suffer from the algorithmic

inefficiencies of ineffectual intersections on sparse matrices.

By contrast, accelerators includingOuterSPACE [37], SpArch [59],

and SCNN [39] implement an outer-product dataflow, and take dif-

ferent approaches to mitigate its inefficiencies. To reduce merge

complexity, OuterSPACE divides partial output matrices in rows,

then merges rows individually. However, OuterSPACE produces

a large amount of off-chip traffic due to partial outputs, which do

not fit on-chip. SpArch, by contrast, is built around a very complex

high-throughput, high-radix merger that can merge up to 64 partial

matrices per pass, and two main techniques to use this merger well:

pipelining the production of the partial output matrices and their

merging to avoid spilling them off-chip, and using a matrix condens-

ing technique that reduces the number and size of partial output

matrices. Scaling up SpArch is inefficient because its throughput is

bottlenecked by the merger, and scaling up the merger’s throughput

incurs quadratic area and energy costs. Instead, Gamma achieves

high throughput with linear cost by performing many indepen-

dent merges in parallel. On highly sparse matrices, SpArch often

achieves nearly perfect off-chip traffic because it can produce fewer

than 64 partial output matrices; however, on large or less-sparse

matrices, SpArch incurs high traffic as it needs to spill many par-

tial outputs off-chip. SpArch’s matrix condensing technique also

sacrifices reuse of the 𝐵 matrix, which can add significant traffic.

Finally, some prior work adopts a hybrid of inner- and outer-

product: ExTensor [19] is a flexible accelerator for tensor algebra

that combines outer-product at the chip level, and inner-product

4Or CSC in the alternative Gustavson dataflow; see footnote 2.
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within individual PEs. This approach requires tiling to be used well,

and though this hierarchical design eliminates more ineffectual

work than a pure inner-product design (by skipping entire ineffec-

tual tiles when possible), it still suffers from the drawbacks of the

dataflows it adopts.

Despite these optimizations, prior spMspM accelerators are sad-

dled by the fundamental inefficiencies of the dataflows they adopt.

Fig. 3 shows this by comparing the memory traffic of different

accelerators when squaring (multiplying by itself) two represen-

tative sparse matrices: gupta2 (49MB, density 1 × 10−3), which

is relatively dense, and web-Google (58MB, density 6 × 10−6),

which is highly sparse. We compare five accelerators with simi-

lar hardware budgets (see Sec. 5 for methodology details): (1) IP

uses an inner-product dataflow with optimally tiled input matrices;

(2) OS is OuterSPACE; (3) S is SpArch; (4) G is Gamma without

preprocessing; and (5) GP is Gamma with preprocessing. Each bar
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tiled inner-product (IP), Out-

erSPACE (OS), SpArch (S), and

Gamma without/with prepro-

cessing (G/GP).

shows traffic normalized to

compulsory traffic (i.e., the traf-

fic all designs would incur with

unbounded on-chip memory,

equivalent to reading the in-

puts and writing the output

matrix). Traffic is broken down

by data structure: reads of 𝐴

and 𝐵, writes of the final out-

put 𝐶 , and writes and reads of

partial outputs.

Fig. 3 shows that, despite

their optimizations, prior accel-

erators have significant draw-

backs: IP works reasonably

well on the denser matrix, but

is inefficient on the sparser one

because of many sparse tiles

resulting from the hard-to-predict distribution of nonzeros. Out-

erSPACE suffers from partial outputs, while SpArch incurs less

traffic on partial outputs, but more on matrix 𝐵. They both perform

well on the sparser matrix, but not on the denser one. Even with-

out preprocessing, Gamma outperforms them all solely by virtue

of using Gustavson’s dataflow. But Gamma supports matrix tiling

and reordering techniques like prior work, as we will see in Sec. 4.

With these preprocessing techniques, Gamma achieves even larger

traffic reductions. Finally, since spMspM is memory-bound, this

lower bandwidth translates to higher performance (Sec. 6).

3 GAMMA
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that shows how the first few elements of an output row are pro-

duced. Gamma always operates on fibers, i.e., streams of nonzero

values and their coordinates sorted by coordinate. First, the sched-

uler fetches row fibers from matrix 𝐴 and dispatches them to PEs.

Each PE then computes a linear combination of row fibers of 𝐵 to

produce a row fiber of output𝐶 . For example, in Fig. 5, the scheduler

dispatches row 𝐴1 to PE 0. Row 𝐴1 has only two nonzeros, at coor-

dinates 3 and 5. Therefore, PE 0 linearly combines rows 𝐵3 and 𝐵5.

Fig. 5 shows how the first few elements of each row are combined.

First, the 𝐵3 and 𝐵5 fibers are streamed from the FiberCache. (The

FiberCache retains these fibers, so subsequent uses do not incur

off-chip traffic.) Then, these fibers are merged into a single fiber,

with elements ordered by their shared (column, i.e., 𝑁 -dimension)

coordinate. Each element in the merged fiber is then scaled by the

coefficient of 𝐴’s row corresponding to the fiber element’s row (𝐾 )

coordinate. Finally, consecutive values with the same column (𝑁 )

coordinate are summed up, producing the output fiber. Fig. 5 shows

the values of these intermediate fibers needed to produce the first

three elements of output row 𝐶1.

Gamma PEs have a bounded radix, 𝑅: PEs can linearly combine

up to 𝑅 input fibers in a single pass (though Fig. 5 illustrates the

combination of only two fibers, Gamma PEs have a higher radix, 64

in our implementation). When a row of𝐴 has more than 𝑅 nonzeros,

the scheduler breaks the linear combination into multiple rounds.

For example, with 𝑅 = 64, processing a row of𝐴 with 256 nonzeros

would be done using four 64-way linear combinations followed by

a 4-way linear combination. Each of the initial linear combinations

produces a partial output fiber, which is then consumed by the final

linear combination. The FiberCache buffers these partial output

fibers, avoiding off-chip traffic when possible.

GammaPEsusehigh-radix,modest-throughputmergers: PEs

have two key design parameters: radix, i.e., how many input fibers

they can take; and throughput, i.e., how many input and output ele-

ments they can consume and produce per cycle. These parameters

are given by the radix and throughput of the PE’s hardware merger,

which takes 𝑅 input fibers and produces a sequence sorted by co-

ordinate (with repeats) as a step in creating a single output fiber

from all the elements of all the input fibers. Radix and throughput

choices have a substantial impact on PE and system efficiency, and

on memory system design, so we discuss them first.

Implementing high-radix merges is cheap, since merger area

grows linearly with radix. A high radix in turn makes computa-

tion more efficient: it allows many linear combinations to be done
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in a single pass, and increasing the radix reduces the number of

merge rounds and partial output fibers needed. For example, lin-

early combining 4096 fibers with radix-64 PEs would require 65

PE invocations in a depth-2 tree; using radix-2 PEs would require

4095 PE invocations in a depth-12 tree. The radix-64 PEs would

produce one set of partial output fibers, whereas the radix-2 PEs

would produce 11, increasing FiberCache traffic by about an order

of magnitude.5

Since higher-radix mergers are larger, there is a tradeoff between

the size and power cost of the merger and both PE performance

(measured in number of passes required) and FiberCache traffic

(due to partial output fibers). With current technology, the sweet

spot balancing overall PE cost and performance occurs around

𝑅 = 64.

Another consideration is the throughput of the merger. Imple-

menting high-throughput mergers is costly, since merger area and

energy grow quadratically with throughput. Producing 𝑁 output el-

ements per cycle requires the merger to consume up to 𝑁 elements

from a single input, and to perform up to 𝑁 2 comparisons. Thus,

Gamma uses simple pipelined merge units that produce one output

and consume one input per cycle, and achieves high throughput by

doing many independent linear combinations in parallel, e.g., by

using multiple PEs to process distinct rows of 𝐴.

This design tradeoff stands in contrast to SpArch [59], the spM-

spM accelerator that comes closest to Gamma’s efficiency. Because

SpArch merges partial output matrices rather than fibers, it can-

not exploit row-level parallelism, and implements a single high-

throughput merger that dominates area and limits throughput.

Gamma and SpArch both implement radix-64 mergers. However,

while in Gamma each PE’s merger is about the same area as its

floating-point multiplier, SpArch spends 38× more area on the

merger than on multipliers.

Gamma’s on-chip storage captures irregular reuse acrossmany

fibers: Although Gamma’s PEs are efficient, the combination of

high-radix and many PEs to achieve high throughput means that

Gamma’s memory system must support efficient accesses to a large

number of concurrent fibers. For example, a system using 32 radix-

64 PEs can fetch 2048 input fibers concurrently. Gamma relies on a

novel on-chip storage idiom, FiberCache, to support the irregular

reuse patterns of Gustavson’s algorithm efficiently. FiberCache

takes two key design decisions: sharing a single structure for all

fibers that may have reuse, and combining caching and explicit

decoupled data orchestration [40] to avoid large fetch buffers.

Gamma processes four types of fibers: rows of A and B, and

partial and final output rows of C. Rows of A and final output rows

of C have no reuse, so they are streamed from/to main memory.

Rows of B and partial output rows of C have reuse, but different

access patterns: rows of B are read-only and are accessed potentially

multiple times (depending on A’s nonzeros), whereas partial output

fibers, which need to be further merged to produce a final output

row, are produced and consumed by PEs, typically within a short

period of time. The FiberCache buffers both types of fibers within

a single structure, instead of having separate buffers for inputs and

5In highly sparse matrices, fibers rarely have matching coordinates, so the size of the
linear combination of 𝑅 fibers is close to the sum of the size of the partial output fibers
(whereas for dense fibers, the final output would be a factor of 𝑅 smaller).

outputs. Sharing capacity across fiber types helps because different

matrices demand a widely varying share of footprint for partial

outputs, but requires careful management to maximize reuse.

FiberCache is organized as a highly banked cache, which allows

it to flexibly share its capacity amongmany fibers or fiber fragments.

However, FiberCache is managed using the explicit data orchestra-

tion idioms common in accelerators [40]: the fibers needed by each

PE are fetched ahead of time, so that when the PE reads each input

fiber element, the data is served from the FiberCache. This avoids

PE stalls and lets the FiberCache pull double duty as a latency-

decoupling buffer. This feature is important because, due to the

large number of concurrent fibers processed, implementing such

buffering separately would be inefficient: with 32 radix-64 PEs and

an 80 ns main memory, implementing these buffers would require

about 2MB of storage, a large fraction of the 3MB FiberCache we

implement (Sec. 5).

3.1 Processing Element

Fig. 6 details the design of Gamma’s PE. The PE linearly combines

up to 𝑅 fibers incrementally. Operation begins with a request from

the scheduler, which streams up to 𝑅 input fiber descriptors: for

each input, the scheduler specifies its starting location, size, and a

scaling factor. If the input fiber is a row of 𝐵, 𝐵𝑘 , the scaling factor

is value 𝑎𝑚𝑘 ; otherwise, the input fiber is a previously generated

partial output, and its scaling factor is 1.0. The PE stores scaling

factors in a register file, and input fiber locations in the fiber fetcher.

The fiber fetcher then begins streaming input fibers from the

FiberCache. The read elements are streamed into two sets of cir-

cular buffers: coordinates (𝑁 ) are staged as inputs to the high-radix

merger, while values are buffered separately. Each set has 𝑅 buffers,

one for each way of the merger. Since the FiberCache ensures low

access latency, these buffers are small and incur low overheads.
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Figure 6: Gamma’s PE architecture.

The merger consumes the minimum coordinate (𝑁 ) among the

heads of its 𝑅 input buffers, and outputs the coordinate together

with its way index, i.e., a value between 0 and 𝑅 − 1 that identifies

which input fiber this coordinate came from.

The way index is used to read both the corresponding value from

the value buffer and the scaling factor. The PE then multiplies these

values. Finally, the coordinate and value are processed by an accu-

mulator that buffers and sums up the values of same-coordinate

inputs. If the accumulator receives an input with a different coordi-

nate, it emits the currently buffered element, which is part of the

output fiber.
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merger implementa-

tion.

Fig. 7 shows the implementation

of the merger. The merger is orga-

nized as a balanced binary tree of sim-

ple compute units. Each unit has an

integer comparator for coordinates,

and merges coordinate streams incre-

mentally. This design achieves a small

area cost, e.g., 55% of a 64-bit float-

ing point multiplier for a radix of 64,

and achieves an adequately high fre-

quency.

Unlike prior mergers [45, 59] with

throughputs that are high on average

but are very sensitive to coordinate

distribution, Gamma’s merger main-

tains a constant 1-element-per-cycle

throughput. Thus, in steady state, the

PE consumes one input fiber element per cycle and performs one

scaling operation. This achieves high utilization of its most expen-

sive components, the multiplier and the merger.

3.2 FiberCache

Fig. 8 shows the FiberCache design and interface. FiberCache

builds upon a cache: it has data and tag arrays, organizes data in

lines, and uses a replacement policy tailored to fiber access patterns.

But FiberCache has two key distinct features. First, FiberCache

extends the usual read-write access interface with primitives

that manage data movement more explicitly: fetch and consume.

fetch enables decoupled data orchestration by fetching data from

memory ahead of execution. Second, to ensure that read’s hit in

most cases, FiberCache ensures that fetched data is unlikely to

be evicted. This is achieved through the replacement policy. This

effectively turns a dynamic portion of FiberCache into buffer-

like storage, but without incurring the high overheads of separate,

statically sized buffers.

Reading rows of 𝐵 that are not cached incurs a long latency,

stalling the PE and hurting performance. FiberCache addresses

this issue by decoupling PE data accesses into two steps: fetch

and read. A fetch request is sent ahead of execution and places

the data into the FiberCache, accessing main memory if needed,

and a read request directs the actual data movement from Fiber-

Cache to the PE. This decouples the accesses to memory and the

computation on PEs.

Unlike speculative prefetching, a fetch is non-speculative: the

data accessed by a fetch is guaranteed to have a short reuse dis-

tance. FiberCache exploits this property through the replacement

policy. FiberCache assigns each line a priority in replacement.

The priority is managed as a counter: e.g., a 5-bit counter for 32

PEs. A fetch request increments the priority, while a read request

decrements it. Lower-priority lines are selected for eviction. This

guarantees that most read’s hit in the cache; effectively, the prior-

ity is a soft lock on lines that are about to be used. FiberCache uses

simple 2-bit SRRIP [22] to break ties among same-priority lines.

Reading andwriting partial outputs use the other two primitive

requests: write and consume. Both write and consume exploit

the fact that partial output fibers need not be backed up by memory.
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Figure 8: FiberCache architecture overview.

Upon a write, FiberCache allocates a line without fetching it

from memory, updates the data, and sets a dirty bit. A consume

is similar to a read, but instead of retaining the line after the

access, FiberCache invalidates the line, without writing it back

even though it is dirty.

Banks and interconnect: Since FiberCache must accommodate

concurrent accesses from multiple PEs, we use a highly banked

design (e.g., 48 banks for 32 PEs). Banks are connected with PEs

and memory controllers using crossbars.

3.3 Scheduler

The scheduler assigns compute tasks to PEs to ensure high utiliza-

tion and minimize memory traffic.

From A to tasks: The scheduler assigns work by traversing the

rows of 𝐴. Each row of 𝐴 with fewer nonzeros than the PE radix

results in a single task that produces the corresponding output row

and writes it directly to main memory.

When a row of 𝐴 has more nonzeros 𝑁 than the PE radix 𝑅,

the scheduler produces a task tree that performs an radix-𝑁 linear

combination in multiple radix-𝑅 steps. Fig. 9 shows an example

of a task tree that combines 18 fibers using radix-3 mergers. Each

node represents a fiber: the root is the output; leaves are rows of 𝐵;

and intermediate nodes are the partial output fibers. Edges denote

which input fibers (children) contribute to a partial or final output

fiber (parent).

The scheduler produces a balanced, top-full tree. Balance im-

proves merge efficiency: in the common case, the rows of 𝐵 have

similar nonzeros, so a balanced tree results in similarly sized input

fibers at each tree level. This is more efficient than a linear tree,

which would build an overlong fiber. Moreover, a balanced tree

enables more PEs to work on the same row in parallel. (SpArch [59]

uses more sophisticated dynamic selection of merge inputs based

on their lengths; this is helpful in SpArch because it purposefully

constructs uneven partial output matrices, but does not help in

Gamma.) Top-fullness keeps footprints of partial output fibers low:

by keeping the radix of the top levels full, and allowing only the

lowest level to have empty input fibers, partial fibers are kept small,

reducing the pressure on FiberCache storage.

empty B fibers

Partial output fibers

Output fiber

Figure 9: Example schedule tree (balanced and top-full) to

combine 18 input fibers on PEs with radix 3.
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Mapping tasks to PEs: The scheduler dynamically maps tasks to

PEs: when a PE becomes ready to receive a new task, the scheduler

assigns is the next available one. Tasks are prioritized for execution

in row order, to produce the output in an ordered fashion. For

multi-task rows, the scheduler follows a dataflow (i.e., data-driven)

schedule: it schedules asmany leaf tasks from a single row as needed

to fill PEs, and schedules each higher-level task as soon as its input

fibers become available. The scheduler prioritizes higher-level tasks

over lower-level ones to reduce the footprint of partial outputs.

Staging tasks and data: To avoid stalls when starting up a linear

combination, PEs can accept a new task while processing the exist-

ing one. When a PE receives a new task, it starts staging its data

into its merge buffers, so that it can switch from processing the old

task to the new task in a single cycle.

The main data structure in a scheduler implementation is a

scoreboard that buffers tasks not ready to dispatch and monitors

partial fibers that have not been produced. Additional logic and

buffers are required to fill tasks in the scoreboard by running the

outermost loop of Gustavson’s algorithm. The scheduler is 0.4% of

total chip area.

3.4 Memory Management

Prior to the execution, matrices 𝐴 and 𝐵 are loaded into memory,

and a sufficiently wide range of address space is allocated for𝐶 and

partial output fibers.

Since the lengths of partial output fibers are unknown ahead of

time, Gamma allocates them dynamically. Upon scheduling a merge

that produces a partial output fiber, the scheduler estimates the

number of nonzeros of the fiber conservatively, by using the sum of

the numbers of nonzeros in all its input fibers. The scheduler then

assigns and records the address range of the partial output fiber.

This space is only used if the FiberCache needs to evict a partial

output, a rare occurrence. The scheduler deallocates the memory

when the partial output fiber is consumed. The number of partial

outputs is limited to twice the number of PEs, so this dynamic

memory management requires negligible on-chip memory.

4 PREPROCESSING FOR GAMMA

Though Gustavson is a more efficient dataflow than inner- and

outer-product, it can incur high traffic. Consider Gustavson on

dense operands: processing each row of 𝐴 requires a complete

traversal of every row of 𝐵, and results in high memory traffic. This

phenomenon is mitigated for sparse operands, because processing

a sparse row of 𝐴 only touches a subset of rows of 𝐵, and reuse

across those subsets makes the FiberCache effective. Specifically,

rows of 𝐵 enjoy reuse in the FiberCache when multiple nonzeros

in 𝐴 with the same column coordinate appear in nearby rows of 𝐴.

However, there are two reasons this may not happen: either nearby

rows of 𝐴 contain largely disjoint sets of column coordinates (the

matrix lacks structure), so there is minimal reuse of rows of 𝐵; or a

single row of 𝐴 has many nonzeros, which requires many rows of

𝐵, thrashing the FiberCache.

Prior work has addressed improving such problematic memory

access patterns in sparse matrices and graphs using preprocessing

techniques like tiling and reordering [21, 23, 42]. Similarly, Gamma,

like prior accelerators, can exploit preprocessing tailored to its

memory system and dataflow to further reduce data movement.

To improve data reference behavior, we design two preprocess-

ing techniques for rows of 𝐴. Affinity-based row-reordering targets

disparate adjacent rows of 𝐴 by reordering rows so that similar

rows are processed consecutively. Selective coordinate-space tiling

breaks (only) dense rows of 𝐴 into subrows to avoid thrashing,

and is applied before row-reordering to extract affinity among the

subrows. Both techniques can be implemented by either relying

on auxiliary data for indirections or by modifying the memory

layout of 𝐴. These techniques improve the reuse of sets of rows of

𝐵, achieving better versatility and efficiency.

4.1 Affinity-Based Row Reordering

Problem definition: We use a score function 𝑆 (𝑖, 𝑗) to represent

the affinity of two rows 𝐴𝑖 and 𝐴 𝑗 . 𝑆 (𝑖, 𝑗) is the number of coordi-

nates for which both 𝐴𝑖 and 𝐴 𝑗 have a nonzero value.

Because on-chip storage can hold rows of 𝐵 corresponding to

several rows of 𝐴, we are interested in maximizing the affinity of a

row with the previous𝑊 adjacent rows:

𝛼 (𝑖) =

𝑖−1∑

𝑗=𝑚𝑎𝑥 (0,𝑖−𝑊 )

𝑆 (𝑖, 𝑗) (1)

We set the window size𝑊 to capture the number of rows of 𝐵 that

fit in the FiberCache on average:

𝑊 =

𝑚𝑎𝑥 𝑛𝑛𝑧 𝑖𝑛 FiberCache

𝑛𝑛𝑧 𝑝𝑒𝑟 𝑟𝑜𝑤𝐴 · 𝑛𝑛𝑧 𝑝𝑒𝑟 𝑟𝑜𝑤𝐵
(2)

The goal of the algorithm is to find a proper permutation of rows

to maximize the affinity of the whole matrix, which we call 𝛼 :

𝛼 =

𝑀−1∑

𝑖=1

𝛼 (𝑖) =

𝑀−1∑

𝑖=1

𝑖−1∑

𝑗=𝑚𝑎𝑥 (0,𝑖−𝑊 )

𝑆 (𝑖, 𝑗) (3)

Algorithm: Algorithm 1 shows the pseudocode for the affinity-

based reordering algorithm. This algorithm is greedy and uses a

priority queue (𝑄) to efficiently find the row with highest affinity.

The algorithm produces a permutation 𝑃 of A’s rows. This algorithm

has complexity 𝑂 (𝑅𝑙𝑜𝑔𝑅 · 𝑁 2), where 𝑅 is the number of rows and

𝑁 is the average number of nonzeros per row, so it scales well to

large matrices as long as they are sparse.

Algorithm 1: Affinity-based row reordering.

Result: Permutation 𝑃 of row indices

for 𝑟 ∈ 𝑟𝑜𝑤𝑠 do 𝑄 .insert(𝑟 , 0);

select some 𝑟 to start, 𝑃 [0] ← 𝑟 ,𝑄 .remove(𝑟 );

for 𝑖 ∈ [1, 𝑀) do

for 𝑢 ∈ column coords of row 𝑃 [𝑖 − 1] do

for 𝑟 ∈ row coords of column 𝑢 do

if 𝑟 ∈ 𝑄 then 𝑄 .incKey(𝑟 );

if 𝑖 >𝑊 then

for 𝑢 ∈ column coords of row 𝑃 [𝑖 −𝑊 − 1] do

for 𝑟 ∈ row coords of column 𝑢 do

if 𝑟 ∈ 𝑄 then 𝑄 .decKey(𝑟 );

𝑃 [𝑖 ] ← 𝑄.𝑝𝑜𝑝 () ;
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4.2 Selective Coordinate-Space Tiling

Tiling improves input reuse (as each input tile is sized to fit on-

chip) at the expense of additional intermediate outputs that must be

merged. Tiling dense matrices is nearly always a good tradeoff [8,

38] because each input contributes to many outputs, and tiling

introduces a large gain in input locality for a few extra fetches of

intermediate outputs. However, this no longer holds with sparse

matrices, because output traffic often dominates. In other words,

tiling sparse rows may reduce traffic to 𝐵 but produce many partial

output fibers that must be spilled off-chip and then brought back

to be merged.

Therefore, we apply tiling selectively, only to extremely dense

rows of 𝐴. Specifically, we split rows of 𝐴 whose footprint to hold

rows of 𝐵 is estimated to be above 25% of the FiberCache capacity

(the estimated footprint is the length of 𝐴’s row times the average

number of nonzeros per row of 𝐵). Each subrow resulting from this

split contributes to a partial output fiber that must be combined

eventually. Because these partial output fibers are not accessed close

in time, they are likely to be spilled. To ensure that the partial output

fibers generated by subrows can be combined in just one round,

we use the merger’s radix 𝑅 as the tiling factor, i.e., the number of

subrows. Rather than splitting rows into evenly-sized subrows, we

perform coordinate-space tiling [49]: we split evenly in coordinate

space, so if column coordinates are in the range [0, 𝐾), we create

up to 𝑅 subrows with the 𝑖th subrow having the nonzeros within

an even subrange [𝑖𝐾/𝑅, (𝑖 + 1)𝐾/𝑅). Experimentally, we find this

creates subrows with higher affinity, improving performance. In

large matrices, the resulting subrows may still be large, so this

process is repeated recursively.

5 METHODOLOGY

System:We evaluate a Gamma system sized to make good use of

high-bandwidth memory and consume similar levels of resources

compared to prior accelerators [37, 59], in order to make fair com-

parisons. Our system has 32 radix-64 PEs, a 3MB FiberCache, and

a 128GB/s High-Bandwidth Memory (HBM) interface. The system

runs at 1GHz. Table 1 details the system’s parameters. We built

a cycle-accurate simulator to evaluate Gamma’s performance and

resource utilization.

Table 1: Configuration of the evaluated Gamma system.

PEs 32 radix-64 PEs; 1 GHz

FiberCache 3MB, 48 banks, 16-way set-associative

Crossbars 48×48 and 48×16, swizzle-switch based

Main memory 128GB/s, 16 64-bit HBM channels, 8 GB/s/channel

Table 2: Area breakdown of Gamma (left) and one PE (right).

Area (𝑚𝑚2) PE component Area (𝑚𝑚2) % PE

32 PEs 4.8 Merger 0.045 30%

Scheduler 0.11 FP Mul 0.082 55%

FiberCache 22.6 FP Add 0.015 10%

Crossbars 3.1 Others 0.008 5%

Total 30.6 PE total 0.15 100%

WemeasureGamma’s area by writing RTL for the PEs and sched-

uler. We then synthesize this logic using Synopsys Design Compiler

and yosys [55] on the 45 nm FreePDK45 standard cell library [35],

with a target frequency of 1GHz at 1.25V. We use CACTI 7.0 [3] to

model the FiberCache at 45𝑛𝑚. Wemodel the same swizzle-switch

networks [46] as in prior work [37]. Table 2 shows Gamma’s area

breakdown, which we contrast with prior work in Sec. 6.

Baselines:We compare Gamma with two state-of-the-art acceler-

ators, OuterSPACE and SpArch. We built detailed memory traffic

models for OuterSPACE and SpArch to understand their key opera-

tional differences. We use the same approach as prior work [59] to

compare end-to-end performance, by using the same set of matrices

used in their evaluations. We use the original designs proposed in

OuterSPACE and SpArch papers, rather than scaling them to con-

duct iso-area or iso-power comparisons. This is because the correct

scaling strategy for each baseline is unclear. For instance, scaling

SpArch requires carefully tuning various buffer and comparator

array sizes. As a result, both baselines used in the comparisons have

larger area than Gamma at the same technology.

Each accelerator uses inputs in the right format for its dataflow

(e.g., CSC and CSR inputs for outer-product), and SpArch uses

preprocessed inputs as described by Zhang et al. [59]. We use 32-

bit integer coordinates and 64-bit, double-precision floating-point

Table 3: Characteristics of the common set of matrices (all square).

Matrix Nnz/row Rows Matrix Nnz/row Rows Matrix Nnz/row Rows

patents_main 2.33 240,547 web-Google 5.57 916,428 2cubes_sphere 16.23 101,492
p2p-Gnutella31 2.36 62,586 scircuit 5.61 170,998 offshore 16.33 259,789

roadNet-CA 2.81 1,971,281 amazon0312 7.99 400,727 cop20k_A 21.65 121,192
webbase-1M 3.11 1,000,005 ca-CondMat 8.08 23,133 filter3D 25.43 106,437

m133-b3 4.00 200,200 email-Enron 10.02 36,692 poisson3Da 26.10 13,514
cit-Patents 4.38 3,774,768 wiki-Vote 12.50 8,297
mario002 5.38 389,874 cage12 15.61 130,228

Table 4: Characteristics of the extended set of matrices.

Matrix Nnz/row Rows Cols Matrix (Square) Nnz/row Rows Matrix (Square) Nnz/row Rows

NotreDame_actors 3.75 392,400 127,823 gupta2 68.45 62,064 x104 80.4 108,384
relat8 3.86 345,688 12,347 vsp_bcsstk30_500 69.12 58,348 m_t1 99.96 97,578

Maragal_7 25.63 46,845 26,564 Ge87H76 69.85 112,985 ship_001 111.58 34,920
degme 43.81 185,501 659,415 raefsky3 70.22 21,200 msc10848 113.36 10,848

EternityII_Etilde 116.42 10,054 204,304 sme3Db 71.6 29,067 opt1 124.97 15,449
nemsemm1 267.17 3,945 75,352 Ge99H100 74.8 112,985 ramage02 170.31 16,830
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values. Because the outer-product baselines and Gamma always

consume coordinates and values, we store them together, as shown

in Fig. 1. For the memory traffic comparison in Fig. 3, the inner-

product accelerator (IP) uses separate coordinate and value arrays,

and values are only fetched on a matching intersection, since this

reduces traffic.

We also compare Gamma against the spMspM implementation

from Intel MKL [52] (mkl_sparse_spmm function), running on a

4-core, 8-thread Skylake Xeon E3-1240 v5, with two DDR4-2400

channels. We do not include GPU results because existing GPU

spMspM implementations perform similarly to MKL on CPUs [59].

Inputs:We use two sets of matrices. First, the Common set of ma-

trices is the set used in the evaluations of OuterSPACE and SpArch,

as shown in Table 3. We use the Common set for direct performance

comparisons with these accelerators. However, the Common set

covers only a fraction of the space of possible inputs: these matrices

are square, and most are very sparse, with a maximum mean of 26

nonzeros per row. This is not representative of other commonly

used matrices, and masks the inefficiencies of outer-product designs.

To evaluate the designs with a broader range of inputs, we construct

the Extended set of matrices, which includes 18 matrices from the

SuiteSparse Matrix Collection [30]. Table 4 lists these matrices,

which include non-square and square matrices with a wider range

of sparsities and sizes. We evaluate 𝐴 ×𝐴 for square matrices (like

prior work), and 𝐴 ×𝐴𝑇 for non-square matrices.

6 EVALUATION

6.1 Performance on Common-Set Matrices
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Figure 10: Gmean speedup

vs. MKL on common-set ma-

trices for OuterSPACE (OS),

SpArch (S), and Gamma with-

out and with preprocessing

(G/GP).

Fig. 10 reports the perfor-

mance of all accelerators on

common-setmatrices. Each bar

shows the gmean speedup over

our software baseline, MKL.

Note that common-set matri-

ces are highly sparse and thus

well suited for OuterSPACE

and SpArch. On these matri-

ces, Gamma (with preprocess-

ing) is gmean 2.1× faster than

SpArch, 7.7× faster than Out-

erSPACE, and 38× faster than

MKL. Even without prepro-

cessing, which makes Gamma

gmean 16% faster, Gamma

outperforms SpArch by 1.84×,

OuterSPACE by 6.6×, and MKL

by 33×.

Fig. 11 further shows the per-matrix speedups of Gamma (with

preprocessing) over MKL. Gamma outperforms MKL by up to 184×.

Fig. 12 and Fig. 13 explain how Gamma outperforms SpArch and

OuterSPACE: through a combination of reducing memory traffic

and improving memory bandwidth utilization.

Fig. 12 reports the memory traffic of OuterSPACE, SpArch, and

Gamma without and with preprocessing. Each group of bars shows

results for one matrix. Traffic is normalized to the compulsory

traffic, which would be incurred with unbounded on-chip storage:
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Figure 11: Speedups of Gammawith preprocessing overMKL

on common-set matrices.

fetching𝐴, the needed rows of 𝐵, and writing𝐶 . Each bar is broken

down into four categories: reads of 𝐴 or 𝐵, writes of 𝐶 , and reads

and writes of partial outputs.

Fig. 12 shows that Gamma incurs close-to-optimal traffic: across

all inputs, it is only 7% higher than the compulsory (i.e., minimum)

traffic with preprocessing, and 26% higher without preprocessing.

By contrast, SpArch is 59% higher, and OuterSPACE is 4× higher.

OuterSPACE suffers writes and reads to partial matrices. SpArch

reduces partial output traffic over OuterSPACE, but incurs high

traffic on 𝐵 for two reasons. First, to reduce partial output traffic,

SpArch preprocesses 𝐴 to produce a schedule that worsens the

access pattern to 𝐵. Second, SpArch splits its storage resources

across data types (e.g., merge and prefetch buffers), leaving only

part of its on-chip storage (around half a megabyte) to exploit reuse

of 𝐵. By contrast, Gamma’s shared FiberCache allows 𝐵’s rows

to use more on-chip storage when beneficial. Because Gamma’s

partial outputs are rows, it has negligible partial output traffic, and

its main overhead comes from imperfect reuse of 𝐵.

Fig. 13 further illustrates how memory bandwidth translates to

performance. Because Gamma’s PEs achieve very high throughput

(processing inputs and outputs at a peak rate of 768GB/s) and Gus-

tavson’s algorithm does not have compute-bound execution phases,

Gamma almost always saturates the available 128GB/s memory

bandwidth. By contrast, OuterSPACE and SpArch suffer from the

compute bottleneck of merging all the partial matrices, and hence

achieve lower bandwidth utilizations of 48.3% and 68.6%, respec-

tively, on the same matrices. Gamma’s higher performance stems

from its lower memory traffic and higher bandwidth utilization.

To further illustrate how FiberCache is utilized, for each ap-

plication, we sample the utilization of FiberCache every 10,000

cycles. Fig. 14 shows the average utilization of FiberCache. On

these matrices, 𝐵 fibers are dominant in FiberCache, while par-

tial result fibers consume non-negligible capacity on some inputs,

including wiki-Vote, email-Enron, and webbase-1M.

6.2 Performance on Extended-Set Matrices

To further evaluate the versatility of Gamma, we use the extended

set of matrices, which includes non-square matrices and square

matrices more diverse than the common set (Sec. 5).

Fig. 15 shows the speedups of Gamma (with preprocessing) over

MKL. By exploiting hardware specialization, Gamma outperforms

MKL by gmean 17× and by up to 50×.
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Figure 12: Off-chip traffic on common-set matrices of OuterSPACE (O), SpArch(S), andGammawithout and with preprocessing

(G/GP) (lower is better).
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Figure 13: Memory bandwidth utilization on common-set

matrices of Gamma without and with preprocessing (G/GP).

Fig. 16 compares Gamma with SpArch and OuterSPACE. The

off-chip traffic of SpArch and OuterSPACE are are 3× and 14×

greater than Gamma, respectively. This difference is much larger

than that in Fig. 12, because the extended set includes matrices

that are denser and have more nonzeros per row. Outer-product

struggles on these matrices, as it suffers from excessive memory

traffic caused by writing and reading partial output matrices. For

instance, on matrices that are relatively dense, such as msc10848

and ramage02, such memory traffic is dominant, reaching 54× over

compulsory in OuterSPACE.

Fig. 17 shows the memory bandwidth utilization of the extended-

set matrices. Compared to the extremely sparse matrices in the

common set, denser matrices are more bounded by compute. There-

fore, some matrices in the extended set do not saturate memory

bandwidth. The memory bandwidth utilization can be improved by

adding more PEs to the system, as shown in Sec. 6.7.

Fig. 18 shows the utilization of FiberCache on the extended-

set matrices. These matrices demand a widely varying share of

footprint for partial results. For instance, ND_actors does not need

capacity for partial results, while Maragal_7 spends 35% of the

capacity on partial result fibers. Having a single storage structure

for both 𝐵 fibers and partial result fibers improves the versatility of

the system.
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Figure 14: Cache utilization on common-set matrices of

Gamma without and with preprocessing (G/GP).

6.3 Effectiveness of Gamma Preprocessing

Preprocessing improves the performance of Gamma by 18% on

average. Fig. 19 further illustrates the effects of affinity-based row re-

ordering and selective coordinate-space tiling in two cases. Affinity-

based row reordering improves the reuse of 𝐵. For instance, it con-

tributes to a 6× reduction of traffic on sme3Db. As Sec. 4.2 explained,

tiling all rows of 𝐴 (+T in Fig. 19) may hurt: it does little harm to

Maragal_7 but causes 13× extra traffic on sme3Db due to excessive

partial outputs. This is why Gamma selectively tiles long rows only.

Selective coordinate-space tiling reduces traffic of 𝐵 drastically by
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Figure 15: Speedups of Gammawith preprocessing overMKL

on extended-set matrices.
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Figure 17: Memory bandwidth utilization on extended-set

matrices of Gamma without and with preprocessing (G/GP).

tiling dense rows (e.g, on Maragal_7), and also avoids performance

pathologies by not tiling sparse rows (e.g., on sme3Db).

Preprocessing takes an average time of 44 seconds and 208 sec-

onds on the common-set matrices and the extended-set matrices,

respectively. On average, the preprocessing time for a matrix is

4600× longer than using Gamma to execute spMspM on the same

matrix. Thus, preprocessing is beneficial only when the 𝐴 matrix

will be reused frequently.

6.4 Gamma Scheduling

Gamma’s scheduling algorithm (Sec. 3.3) uses multiple PEs to pro-

cess the tasks produced by the same row of 𝐴 (or, if preprocessing

tiles the row, the same subrow of 𝐴). To demonstrate its effective-

ness, we compare it against a less dynamic algorithm that always

uses a single PE to process all the tasks for each row of 𝐴. Fig. 20

shows the off-chip memory traffic on input matrix email-Enron.

With the single-PE approach, all the tasks from the same row

are serialized, so partial result fibers stay resident in FiberCache

for a longer time. By contrast, Gamma’s multi-PE algorithm al-

lows partial result fibers to be consumed as early as possible. On

email-Enron, this multi-PE scheduling algorithm reduces memory

traffic by 18%, and hence improves performance by 17%.

6.5 Gamma Roofline Analysis

To show that Gamma uses resources well, Fig. 21 presents its

roofline analysis plot. The plot presents arithmetic intensity (x-axis)
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Figure 18: Cache utilization on extended-set matrices of

Gamma without and with preprocessing (G/GP).
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Figure 21: Performance of Gammawithout andwith prepro-

cessing (G/GP) in a roofline model.

in FLOPs per byte of off-chip memory traffic, and performance (y-

axis) in GFLOPs (as is usual, one multiply-accumulate is counted as

a single FLOP, despite being performed by a separate multiplier and

adder in Gamma PEs). Note that the plot uses a logarithmic scale

for both axes. Each dot represents a single matrix; results without

preprocessing are shown in blue, while results with preprocessing

are shown in yellow. The plot also shows the design’s roofline at

32GFLOPs, which caps the maximum achievable performance: the

sloped (left) part of the roofline is set by memory bandwidth, while

the flat (right) part is set by compute (PE) throughput.

Fig. 21 shows that most matrices have low arithmetic intensi-

tiy and are memory bandwidth-bound, while some have higher

arithmetic intensity and are compute-bound. More importantly,

this shows that Gamma uses its resources well: almost all matrices

are right at or very close to the roofline, showing that the system is

driven to saturation all the time. Only three matrices are noticeably

below the roofline (gupta2, Ge87H76, and Ge99H100). By inspec-

tion, we have found that these matrices have memory-bound and

compute-bound phases, so while their average compute intensity

falls past the sloped part of the roofline, they do not saturate PEs all

the time due to memory-bound phases. Nonetheless, compared to

prior accelerators, which have memory-bound and compute-bound

phases (e.g., partial output matrix generation vs. merging in Out-

erSPACE and SpArch), this result shows that Gustavson’s algorithm

yields a more consistent behavior that uses resource better.

6.6 Gamma Area Analysis

As shown in Table 2, the total area of Gamma is 30.6𝑚𝑚2, syn-

thesized with a 45 nm standard cell library. Scaled down to 40 nm,

Gamma’s area is 24.2𝑚𝑚2, smaller than the 28.5𝑚𝑚2 of SpArch

at 40 nm and the 87𝑚𝑚2 of OuterSPACE at 32 nm. The vast major-

ity of area is used by the FiberCache. This is a good tradeoff for

spMspM, since the key bottleneck is memory traffic and data move-

ment. The PEs are simple, taking 16% of chip area, and the merger

and multiplier are its main components. By contrast, SpArch and

OuterSPACE spend far more area on compute resources, e.g., 60%

on SpArch’s merger.
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Figure 22: Results on common-set matrices of Gamma with

different number of PEs.
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Figure 23: Results on extended-set matrices of Gamma with

different number of PEs.
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Figure 24: Results on common-set matrices of Gamma with

different FiberCache sizes (in MB).
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Figure 25: Results on extended-set matrices of Gamma with

different FiberCache sizes (in MB).

6.7 Scalability Studies

Fig. 22 and Fig. 23 show Gamma’s performance and traffic on

common-set and extended-set matrices, respectively, when the num-

ber of PEs is swept from 8 to 128 (the default is 32 PEs). For common-

set matrices, 32 PEs are the right tradeoff, as all are memory-bound

at 32 PEs. Since some extended-set matrices have higher reuse
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and thus arithmetic intensity, Gamma continues to improve perfor-

mance past 32 PEs: at 128 PEs (which would increase accelerator

area by about 50%), Gamma is gmean 65% faster than at 32 PEs.

Fig. 24 and Fig. 25 show Gamma’s performance and traffic on

common-set and extended-set matrices, respectively, when Fiber-

Cache size is swept from 0.75MB to 12MB (the default is 3MB).

At and after 1.5MB, performance improves smoothly with Fiber-

Cache size, showing thatGamma can leverage additional storage to

gracefully improve performance on inputs where non-compulsory

traffic is high. However, performance is significantly degraded at

0.75MB. This performance cliff occurs because FiberCache is used

as decoupling buffers, and at this size, there is little capacity left to

capture irregular reuse. These results show that FiberCache does

indeed save significant storage on dedicated buffers.

7 ADDITIONAL RELATEDWORK

Much prior work has proposed optimized CPU and GPU implemen-

tations for spMspM, e.g., using autotuning [51], input characteris-

tics [56], or code generation [29] to pick a well-performing spMspM

implementation. Intel’s MKL [52], which we use in our evaluation,

is generally the fastest, or close to the fastest, across input matri-

ces [56]. Although GPUs have higher compute and memory band-

width than CPUs, spMspM is a poor match to the regular data paral-

lelism supported in current GPUs, so GPU frameworks [13, 32, 36]

achieve similar spMspM performance to CPUs [56, 59].

Most CPU andGPU implementations followGustavson’s dataflow;

variants differ in how they merge rows of 𝐵, e.g., using sparse

accumulators [15, 28], bitmaps [24], unordered associative con-

tainers [33, 34, 36], trees [47], or heaps [1] to hold outputs. This

algorithmic diversity arises because merging fibers is an expensive

operation in general-purpose architectures. At a high level, heaps

are space-efficient but slow, and the other data structures trade

lower compute for higher space costs. Gamma’s high-radix merges

are both space-efficient and make merges very cheap, avoiding this

dichotomy.

As explained in Sec. 2.3, to the best of our knowledge, accel-

erators earlier than Gamma did not exploit Gustavson’s dataflow.

However, MatRaptor [48], which is concurrent with Gamma, does

exploit Gustavson’s dataflow. Nonetheless, MatRaptor and Gamma

are very different. MatRaptor does not exploit the reuse of 𝐵 fibers:

it streams such fibers from DRAM and uses them once. By con-

trast, Gamma exploits the reuse of 𝐵 fibers with FiberCache. This

adds area costs, but since reusing 𝐵 fibers is the key way by which

Gustavson’s dataflow minimizes traffic, Gamma improves perfor-

mance significantly. Consequently, on the common-set matrices,

MatRaptor outperforms OuterSPACE by only 1.8× [48], worse than

SpArch’s improvement over OuterSPACE (3.6×), while Gamma out-

performs OuterSPACE by 6.6× even without preprocessing.

Preprocessing of sparse matrices [10, 12, 14, 53] has been studied

extensively on CPUs and GPUs. Matrix preprocessing on CPUs

and GPUs typically targets creating dense tiles [42] to reduce ir-

regularity of partial outputs, disjoint tiles [4] to minimize commu-

nication, or balanced tiles [21, 23] to ease load balancing. These

techniques differ from Gamma’s: our goal is to improve the locality

of 𝐵, whereas CPUs and GPUs lack high-radix mergers and have

more on-chip storage, making 𝐵’s locality a less pressing concern.

To classify on-chip storage structures, we can use the two-dimen-

sional taxonomy from Pellauer et al. [40]. Specifically, the content of

an on-chip storage structure can be managed in two styles: explicit

or implicit. Explicitly orchestrated structures allow applications to

directly control what to retain or remove, while implicitly orches-

trated structures infer such decisions implicitly based on read/write

accesses. A storage structure can be used in either coupled or decou-

pled manner depending on whether the data needed is pre-staged

ahead of processing to hide the memory access latency. Caches

are implicit and coupled. Gamma’s FiberCache combines features

of caches and explicitly managed buffers to both exploit irregular

reuse and hide memory latency through explicit decoupled data

orchestration. Stash [31] is also a hybrid of caches and scratchpads,

but with different goals: Stash maps data regions and accesses them

explicitly, with a scratchpad interface, to reduce addressing power.

Stash fetches accessed data lazily, which saves traffic when not all

mapped data is accessed, but leaves accesses coupled to users. By

contrast, Gamma knows precisely which data will be accessed so

its decoupled design hides long access latency. Following the tax-

onomy above, Stash is explicit and coupled, whereas FiberCache

is implicit and decoupled.

Finally, while we focus on spMspM, many applications use high-

dimensional tensors. For instance, TACO [28, 29] introducesworksp-

aces and proposes compiler machinery to handle complex tensor

operations. Gamma can be combined with such techniques to sup-

port a broader range of applications.

8 CONCLUSION

spMspM is the basic building block of many emerging sparse appli-

cations, so it is crucial to accelerate it. However, prior spMspM accel-

erators use inefficient inner- and outer-product dataflows, and miss

Gustavson’s more efficient dataflow. We have presented Gamma, an

spMspM accelerator that leverages Gustavson’s algorithm. Gamma

uses dynamically scheduled PEs with efficient high-radix mergers

and performs many merges in parallel to achieve high throughput,

reducing merger area by about 15× over prior work [59]. Gamma

uses a novel on-chip storage structure, FiberCache, which sup-

ports Gustavson’s irregular reuse patterns and streams thousands of

concurrent sparse fibers with explicitly decoupled data movement.

We also devise new preprocessing algorithms that boost Gamma’s

efficiency and versatility. As a result, Gamma outperforms prior

accelerators by gmean 2.1×, and reduces memory traffic by 2.2×

on average and by up to 13×.
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