
WACO: Learning Workload-Aware Co-optimization of the Format
and Schedule of a Sparse Tensor Program
Jaeyeon Won

MIT CSAIL

Cambridge, MA, USA

jaeyeon@mit.edu

Charith Mendis

UIUC

Urbana and Champaign, IL, USA

charithm@illinois.edu

Joel S. Emer

MIT CSAIL / NVIDIA

Cambridge, MA, USA

emer@csail.mit.edu

Saman Amarasinghe

MIT CSAIL

Cambridge, MA, USA

saman@csail.mit.edu

Abstract
In this paper, we present WACO, a novel method of co-optimizing

the format and the schedule of a given sparsity pattern in a sparse

tensor program. A core challenge in this paper is the design of a

lightweight cost model that accurately predicts the runtime of a

sparse tensor program by considering the sparsity pattern, the for-

mat, and the schedule. The key idea in addressing this is exploiting

a sparse convolutional network to learn meaningful features of the

sparsity pattern and embedding a coupled behavior between the for-

mat and the schedule using a specially designed schedule template.

In addition, within the enormous search space of co-optimization,

our novel search strategy, an approximate nearest neighbor search,

efficiently and accurately retrieves the best format and schedule

for a given sparsity pattern. We evaluated WACO for four different

algorithms (SpMV, SpMM, SDDMM, and MTTKRP) on a CPU using

726 different sparsity patterns. Our experimental results showed

that WACO outperformed four state-of-the-art baselines, Intel MKL,

BestFormat, TACO with a default schedule, and ASpT. Compared to

the best of four baselines, WACO achieved 1.43×, 1.18×, 1.14×, and
1.27× average speedups on SpMV, SpMM, SDDMM, and MTTKRP,

respectively.

CCS Concepts
• Software and its engineering→ Compilers;Domain specific
languages.

Keywords
Sparse Tensor, Auto-Scheduling, Tensor Compiler

ACM Reference Format:
Jaeyeon Won, Charith Mendis, Joel S. Emer, and Saman Amarasinghe.

2023. WACO: Learning Workload-Aware Co-optimization of the Format and

Schedule of a Sparse Tensor Program. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575742

BC, Canada. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3575693.3575742

1 Introduction
Sparse tensor algebra is an indispensable tool in many domains,

such as graph analytics [23], scientific computing [2], and deep

learning [20]. Unlike in dense tensor algebra, where only the shape

of the tensor matters, the performance of sparse tensor algebra

depends heavily on the sophisticated sparsity pattern of the tensor.

Over the last several decades, many sparse formats have been pro-

posed, but none of them was universally optimal across all sparsity

patterns. A different schedule that transforms the traversal order

of the iteration space can lead to significant performance changes

depending on the sparsity pattern. For example, a sparse matrix

with a skewed distribution of non-zeros must exploit fine-grained

load balancing, whereas coarse-grained load-balancing must be

applied to a sparse matrix with uniformly distributed non-zeros.

Recently, Kjolstad et al. presented TACO [25], a compiler for

sparse tensor algebra, which generalizes many proposed sparse

formats by introducing a format abstraction [12]. In addition, a

sparse iteration space transformation framework was implemented

on top of TACO [41]. This framework allows the compiler to gen-

erate a code with schedules that perform loop splitting, reordering,

parallelizing, and other tasks to explore different traversal orders

of iteration space. Although prior studies had built the mechanism
of the compiler that enables the code generation supporting many

different formats and schedules, the policy of the compiler that

decides the best format and the best schedule for a given sparsity

pattern, has not yet been designed. Unfortunately, a single format

or fixed implementation cannot be globally optimal for all sparsity

patterns. Thus, designing this policy is closely related to a program

auto-tuning problem.

Program auto-tuning has been heavily used to optimize dense

tensor programs the performance of which depends on the input

size. It started with traditional high-performance scientific libraries

such as ATLAS [47] and FFTW [15]. They self-optimize their inter-

est routines by empirically transforming the program for the given

input shape. Recently, languages such as Halide [39], Tiramisu [5],

and TVM [9] decouple algorithms from schedule primitives to trans-

form the structure of the loop in dense tensor programs. Such

scheduling languages allow the expression of a broader range of

https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3575693.3575742

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

algorithms (compared to the limited BLAS routines in ATLAS) and

the introduction of a huge search space due to schedules.

Auto-tuning sparse computation is not new [29, 32, 34, 42, 46];

even production systems are introducing auto-tuning workflows

for sparse computations. For example, Intel MKL uses an inspector-

executormodel to auto-tune a few popular sparse computations [34].

However, the current production as well as the state-of-the-art re-

search systems have the following limitations.

Limitations in capturing the sparsity pattern. For a dense ten-
sor program, an auto-tuner only needs the tensor’s shape. However,

a shape alone fails to capture the sophisticated sparsity pattern. Cap-

turing the sparsity pattern with the entire sparse matrix is costly

because the number of non-zeros can reach billions. To summarize

the sparsity pattern, much more information is required, such as

the density, the size of dense blocks, and the existence of symmetry.

Designing features that accurately summarize the sparsity pattern

is critical for optimal decision-making in auto-tuning. Existing ap-

proaches fall short of fully capturing the pattern because they rely

either on manually crafted features [27, 40] or a convolutional neu-

ral network with a downsampled matrix [42, 48], both of which

result in significant information loss of the sparsity pattern.

Absence of co-optimization. The joint optimization of the data

layout and the schedule is critical even in dense tensor programs,

which are simpler than sparse tensor programs [22]. Nevertheless,

prior auto-tuning studies on sparse tensor programs mainly tackled

only one of two problems: choosing the best schedule or the best

format. For instance, Intel MKL supports the inspector-executor

sparse BLAS routines [34] that the executor calls the routine tuned

by an inspector. However, MKL inspector misses optimization op-

portunities because it limits the tuning space by fixing the format.

It is necessary to consider a coupled behavior between the format

and the schedule to get the good performance.

Our approach. This paper presents the Workload-Aware Co-
Optimization (WACO), a framework for automatically and jointly

optimizing the format and the schedule of a given sparsity pattern.

WACO uses a deep-learning based cost model that accurately and

efficiently predicts the performance of the sparse tensor program.

The cost model uses a novel sparse convolutional network, WA-
CONet, to extract rich features of a sparsity pattern and uses a

unified schedule template, SuperSchedule, to understand both the

format and the traversal order of the iteration space. WACO further

utilizes an approximate nearest neighbor search to quickly search

for the optimal format and schedule over the huge search space.

Overall, our main contributions are as follows:

• To the best of our knowledge, WACO is the first auto-tuner

that co-optimizes the format and the schedule in a workload-

aware manner for a sparse tensor program.

• WACO is the first autotuner with a cost model that considers

the coupled behavior of the sparsity pattern, the format, and

the schedule.

• WACO introduces a sparsity pattern feature extractorWA-
CONet, a novel sparse convolutional network architecture to
effectively learn meaningful features to represent a sparsity

pattern.

Figure 1: Overview of WACO. In the training dataset in (a),
(MTX, SS, TIME) is the abbreviation for (Sparse Matrix, Su-
perSchedule, Ground Truth Runtime). SuperSchedule defines
the format and the schedule together.

• WACO uses an extremely fast search strategy, an Approxi-

mate Nearest Neighbor Search (ANNS), to retrieve the near-

optimal format and schedule.

• We compared WACO against four state-of-the-art baselines,

Intel MKL, BestFormat, TACO with a fixed format and sched-

ule, andASpT.WACOoutperformed the best of four baselines

by achieving 1.43×, 1.18×, 1.14×, and 1.27× average speedups

on SpMV, SpMM, SDDMM, and MTTKRP, respectively.

1.1 Overview of WACO
Figure 1 shows an overview of WACO. We designed our cost model

to predict the runtime of the program. The cost model takes a sparse

matrix and a SuperSchedule, a unified template that defines the

format and the schedule together, as inputs (Figure 1-(a), details in

Section 4.1).

After training the cost model, WACO builds a KNN graph that

helps with the search later. The KNN graph is built on program

embeddings of uniformly sampled SuperSchedules (Figure 1-(b),

details in Section 4.2).

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

pli TSOPF_RS_b2052_c1 sparsine

Name Rows Cols Nonzeros Density
pli 22,695 22,695 1.35M 0.26%

TSOPF 25,626 25,626 6.76M 1.03%

sparsine 50,000 50,000 1.55M 0.06%

Figure 2: Sparse matrices used for the motivation.

Finally, when the input matrix comes in, WACO uses a novel

search strategy, an approximate nearest neighbor search (ANNS),

to search for the optimal format and schedule for a given input

sparse matrix. ANNS repeats the picking of the next candidate

SuperSchedule using a KNN graph and receives the candidate’s

predicted runtime as feedback until it converges to a locally optimal

SuperSchedule (Figure 1-(c), details in Section 4.2).

2 Motivating Example
In this section, we will describe how the co-optimization can impact

the performance of a sparse tensor program. In addition, we will

show that the performance of a sparse tensor program strongly

depends on the sparsity pattern. This demonstrates the strong need

for an auto-tuning framework for sparse tensor programs.

2.1 Impact of the Co-optimization
Table 1 shows the impact of co-optimization in a sparse tensor pro-

gram by comparing results of auto-tuning on three different tuning

spaces: the format, the schedule, and both the format and the sched-

ule. For the baseline, we used CSR, one of the most popular sparse

matrix formats, with the default schedule generated by TACO. For

the F., we only tuned the format while keeping the iteration order

identical to the baseline, except that we made the traversing order

to be concordant [43] with how the tuned format is aligned. For

the S., we only tuned the schedule to transform the iteration order

while keeping the format identical to the baseline (CSR). For the

F.+S., we co-optimized both the format and the schedule.

Jointly optimizing the format and the schedule yields the most

significant speedup for all the matrices in Figure 2, in contrast to the

restricted search space. Restricting the tuning space to either choose

the optimal format or the optimal schedule can miss optimization

opportunities. Especially for TSOPF, co-optimization boosts the

performance (2.02×), whereas considering only the format or the

schedule yields a slight performance improvement (∼1.1×).

2.2 Sparsity Pattern-Dependent Nature
The performance of sparse tensor programs is very sensitive to

the sparsity pattern of the input matrix. No single format or im-

plementation can show the optimal performance for all sparsity

patterns, even for highly optimized handwritten libraries of ex-

perts. Table 2 demonstrates this nature. We ran a sparse matrix -

Name Base F. S. F.+S.
pli 1× 1.03× 1.03× 1.21×
TSOPF 1× 1.11× 1.12× 2.02×
sparsine 1× 2.4× 1.02× 2.5×

Table 1: SpMM speedup over the base implementation af-
ter auto-tuning. The three rightmost columns represents
different tuning spaces of a sparse tensor program. F., S.,
F.+S. mean format-only tuning, schedule-only tuning, and
co-optimization.

Name opt-pli opt-TSOPF opt-sparsine
pli 1.21× 0.82× 0.98×
TSOPF 1.14× 2.02× 0.96×
sparsine 0.81× 0.37× 2.5×

Table 2: SpMM speedup over the base implementation for
different optimization methods. opt-X indicates the format
and the schedule that are optimized for matrix X (as a result
of F.+S. in Table 1).

dense matrix multiplication (SpMM) with the format and schedule

optimized for different sparse matrices. As expected, the diagonal

of the table shows the best performance because it is a result of

the co-optimization that corresponds to the input matrix. A signifi-

cant performance drop often occurs when other optimizations are

applied.

These examples strongly indicate the need to co-optimize the

format and schedules according to the input sparsity pattern. From

the perspective of auto-tuning, three challenges stand out compared

to dense applications. ❶ While considering the sparsity pattern, our

framework should automatically decide❷which format to store the

tensor in and ❸ which schedules should be applied to transform the

iteration order. To address these challenges, the auto-tuner should

understand the complex interactions among the sparsity pattern,

the format, and the schedule.

3 Background
In this section, we describe how TACO generates codes that sup-

port various formats and iteration space transformations. Then,

we describe existing sparsity pattern-aware cost models for sparse

tensor program auto-tuning.

3.1 Tensor Algebra Compiler
TACO is a sparse tensor algebra Domain Specific Language (DSL)

with an accompanying compiler that decouples the algorithm from

the data representation and schedule [12, 25, 41]. Its algorithm is

specified by an Einsum notation, for example, C[i,j] = A[i,k] * B[k,j]
represents a matrix multiplication. Chou et al. introduced a format

abstraction that describes how a sparse tensor is stored in different

formats with coordinate hierarchies and level formats [12]. A sparse

tensor can be viewed as a hierarchy of coordinates where each level

is stored in one of the level formats. Chou et al. presented six level

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

Figure 3: Identical tensors stored in two different formats, UC
and UCUU. U and C mean Uncompressed and Compressed
level format, respectively. The shaded level indicates the
Compressed level format.

formats to represent various formats, but we will mainly focus on

two level formats, Uncompressed and Compressed.
Format abstraction. Figure 3 illustrates how the CSR and BCSR

formats are represented in the format abstraction. Any sparse tensor

can be viewed as a coordinate hierarchy, which is a tree where each

node contains nonzero coordinates at the level. The order of the

levels (𝐼 → 𝐽 or 𝐼1 → 𝐽1 → 𝐼0 → 𝐽0) indicates the order in which

tensor is stored (e.g., row-major or column-major). By specifying

all level formats in the hierarchy, we can define a complete format.

A level format determines what physical storage is used to store

the coordinates of that level. An Uncompressed(U) level format

stores the dimension (𝑁) of the level and encodes a dense coordi-

nate interval [0, 𝑁). A Compressed(C) level format stores only the

coordinates that have non-zeros by explicitly storing coordinates

that appear in the hierarchy. A combination of level splitting, level

reordering, and level format selection can create tens of thousands

of data representations. For instance, the coordinate hierarchy in

Figure 3-(b) can have a total of 4! ∗ 24 representations, where 4!
indicates the number of possible level orders and 2

4
indicates the

number of level format choices. More formats can be formulated

depending on the number of levels in the hierarchy.

Iteraion space transformation via schedules. In addition to

format abstraction, schedules decide how to traverse the tensor

stored in a particular format by transforming the iteration space. For

example, as shown in Figure 4, the split schedule splits a specified
loop level into two nested levels, reorder specifies the order of

the nested loops, and parallelize controls the load-balancing

across multiple threads. A good choice of transformations enables

parallelism and/or better data locality (e.g., register/cache blocking).

In sparse computation, however, such loop transformation must be

chosen deliberately while considering the format. For instance, if

a loop order is discordant [43] with how the format is ordered, its

generated code may involve an inefficient traversal routine such as

Figure 4: Loop transformation of C[i,j]=A[i,k]*B[k,j] by
schedules. It changes the traversal order of the iteration

space. A[i,k] is stored in the UC format.

a binary search over the Compressed level format. Thus, an auto-

tuner must understand the coupled behavior between the format

and the traversal order of the iteration space.

3.2 Cost Model for Auto-Scheduling
In scheduling languages [39], auto-scheduling is the task that finds

the best schedule for a given input [10, 35, 51]. Auto-scheduling

mainly has two parts. The first part is a cost model that quickly

predicts the performance of the program, and the second is a search

strategy that finds the best schedule according to the cost model.

Although the actual hardware measurement can be used as a cost,

it is very time-consuming, so designing an efficient and accurate

cost model is crucial. For the sparse tensor program, understanding

the sparsity pattern is the most critical design consideration of the

cost model.

3.2.1 Sparse Tensor Feature Extraction

When designing the cost model of a sparse tensor program,

two methods of extracting the features of a sparse tensor have

been commonly used: ❶ human-crafted features [27, 40] and ❷ a

convolutional network over downsampled tensors [42, 48].

Human-crafted features. A feature vector is designed manually

by considering the statistical properties of tensors. Typical features

are the total number of non-zeros, the mean or variance of the

number of non-zeros per row, and format-specific features such

as the average distance from the diagonal for DIA format. Never-

theless, the usefulness of human-crafted features for determining

the accuracy is unknown. The features also have to be manually

redesigned whenever a new format to be considered.

Convolutional neural network (CNN). Another approach uses

a CNN to extract the features by viewing a sparse tensor as an

image. A sparse tensor can have many different shapes, but since

the CNN is limited to taking a fixed-size shape as an input, the

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Sparse Matrix1
Sparse Matrix2

Downsampled

Figure 5: Different sparse tensors downsampled into the same
3×3 tensor.

sparse tensor is downsampled into a fixed shape. Figure 5 illustrates

how tensor downsampling works for arbitrary sparse tensors. In

practice, the sparse tensors are usually downsampled to 128x128.

To provide additional information to the CNN, a non-zero location

in a downsampled tensor may contain a corresponding number of

non-zeros in the original sparse tensors. However, as the shape of

the sparse tensor increases, downsampling leads to a significant

loss of the information on the local pattern. For example, while the

Sparse Matrix2 in Figure 5 only has dense blocks, both matrices are

downsampled into the samematrix. In addition, there are real-world

sparse tensors with shapes in the millions scale, which cannot be

helped by downsampling.

The aforementioned methods have deficiencies in accurately

extracting the features of a sparsity pattern. In the case of human-

crafted features, it is impossible to manually design all the format-

specific features in TACO’s format abstraction. In the case of down-

sampling, it only works for small sparse tensors or it will lose sig-

nificant information, which often leads to sub-optimal decisions.

4 Workload-Aware Co-Optimization
In this section, we introduce WACO, an auto-tuning framework for

sparse tensor programs. WACO automatically searches for the best

format and schedule for a given sparse matrix from among what

TACO can generate.

First, we will describe how WACO uses a novel cost model that

understands a complex interaction of the sparsity pattern, format,

and schedule (Figure 1-(a)). Then, we will explain how WACO

efficiently searches over the large search space using a novel search

strategy, ANNS (Figure 1-(b,c)).

4.1 Cost Model Design
Our cost model has three parts (Figure 6). The first part, the fea-

ture extractor, captures the sparsity pattern of the input matrix.

The second part, the program embedder, understands the coupled

behavior of the format and the schedule. Finally, the runtime pre-

dictor predicts the runtime through multiple linear-ReLU layers by

concatenating the results of the previous parts.

4.1.1 Feature Extractor: WACONet

Challenges. As described in 3.2.1, extracting features of a sparsity

pattern is non-trivial. The core idea of our approach is to use a

sparse CNN to learn good features. We propose a novel feature

extractor, WACONet, based on a sparse CNN with a novel network

architecture. In Section 5.3, our evaluation shows that WACONet

Figure 6: Overview of WACO’s cost model. It predicts the pro-
gram’s runtime by taking a sparse matrix and SuperSchedule
as inputs. SuperSchedule contains information on both the
format and the schedule.

improves the training and validation loss by roughly 50% when

compared to a conventional CNN feature extractor.

Exploring different architectures. We first tried a conventional

CNN that treated a sparse matrix as a dense matrix, where all levels

were stored in the Uncompressed format. However, as the shape of

the matrix grew, it ran out of computational resources very quickly.

For example, if there is a sparse matrix of shape 10
5 ∗ 105, it will

need a total of 4 ∗ 1010 bytes (assuming 4 bytes single-precision)

regardless of the number of non-zeros. Another approach that we

tried is using a recurrent neural network by viewing a sparse tensor

as a sequence of coordinates. However, since the sequence length (a

number of non-zeros) is in the millions scale, the recurrent neural

network cannot remember everything and easily forgets the early

sequences. It is also difficult to decide in which order to put the

coordinate sequences such as the row-major or the column-major.

We ended up using CNN for our feature extractor, but instead of a

dense convolution, we used a sparse convolution on the raw sparse

matrix itself.

Sparse convolutional layer. A sparse convolutional layer [17]

(often called as submanifold sparse convolution) performs a convo-

lution operation over a sparse input. There is amarked difference be-

tween the sparse convolution and conventional convolution. While

conventional convolution operates over all the input activations, a

sparse convolution operates only when the filter’s center is located

on a non-zero input activation (Figure 7). This peculiar behavior

prevents the activations from becoming dense as the layers are

stacked, thus keeping the computation relatively cheap. However,

this behavior also has an issue when the non-zeros are distributed

far apart. As shown in Figure 8-(a), this behavior can only capture

the local pattern but not the global pattern because the non-zeros

are not close enough to propagate information. Sparse convolution

has shown a powerful ability to understand 3D point clouds when

their non-zeros are close enough [13]. However, real-world sparse

matrices often have a distant non-zero distribution, so we need

to design a network architecture that addresses this issue while

utilizing the advantage of sparse convolution.

WACONet.We proposeWACONet, a novel sparse CNN architec-

ture that learns the rich features of a sparsity pattern effectively

(Figure 9). Except for the first layer, we used a strided convolution

with a filter size of 3x3 for every sparse convolutional layer. Multi-

ple stacks of strided convolution help distant non-zeros because a

strided behavior forces the receptive field to increase (Figure 8-(b)).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

Figure 7: Difference between conventional convolution and
sparse convolution.

Figure 8: When non-zeros are distributed far apart, the re-
ceptive field does not increase even with multiple layers if
the stride of sparse convolution is 1. Filter’s center is located
at red circles in the stride of 2 as used in WACONet.

Due to the limited memory size of the GPU, the number of chan-

nels in the sparse convolutional layer is small (32) to fit a sparse

matrix with a large number of non-zeros up to 10 million, unlike in

a typical vision CNN model (e.g., 256 and 512). To compensate for

decreased network capacity due to a limited number of channels,

WACONet concatenates all 14 intermediate results after the global

average pooling rather than using a result of the final layer.

WACONet minimizes the loss of information of the sparsity pat-

tern because it takes a raw sparse matrix as an input without any

downsampling. Due to the nature of the convolution operation, a

small filter (3x3) recognizes the local pattern, and a global pattern

is captured while passing through multiple strided layers. In addi-

tion, WACONet can be easily extended for high-dimensional sparse

tensors by simply changing the dimension of the filter. In section 5,

we demonstrate that WACONet extracts the rich features for both

2D and 3D sparse tensors.

4.1.2 Program Embedder : SuperSchedule

We will now consider the second part of the cost model, a pro-

gram embedder. In a dense tensor program, a program embedder

only needs to encode a traversal order of the iteration space re-

flected by the low-level loop abstract syntax tree [4, 10, 35]. In a

12
8-

d

SpConv 5x5, Stride1,
Channel 32

SpConv 3x3, Stride2,
Channel 32

SpConv 3x3, Stride2,
Channel 32

SpConv 3x3, Stride2,
Channel 32

Global Avg Pooling

Global Avg Pooling

Global Avg Pooling

Global Avg Pooling

C
on

ca
te

na
te

Sp
ar

si
ty

 P
at

te
rn

 F
ea

tu
re

Li
ne

ar
s…

Input Matrix
Feature Extractor (WACONet)

14
 L

ay
er

s

Figure 9: Network architecture of WACONet. We omitted
non-linear activation layers in the figure.

sparse tensor program, however, a program embedder must encode

both the traversal order and the format to accurately understand

the coupled behavior for the joint optimization.

Challenges. Encoding a loop order is non-trivial because the num-

ber of levels in a nested loop varies due to the schedule split.
The search space expands as well after splitting, as seen in Fig-

ure 4, where the number of loop reorderings increased to 4! from

3!. To deal with the variableness due to the split, we adopted a

template-guided auto-scheduling [10]. In addition, our template

specifies both the format and the schedule and creates the program

embedding directly on top of that template.

SuperSchedule. The unified schedule template, which we call Su-
perSchedule, defines the format and the schedule at the same time.

Figure 10-(a) shows how the SuperSchedule template is defined in

a matrix-vector multiplication (MV). The SuperSchedule consists

of a compute schedule and a format schedule. A compute schedule

defines the traversal order of the iteration space and a format sched-

ule that defines how tensors will be stored. While reorder in the

format schedule determines the level order of the tensor (e.g., the

row-major or the column-major), reorder in the compute schedule

decides the traversal order of the tensors.

One observation is that a schedule template that already has

multiple splits can be reduced into a schedule that has fewer

splits. This reduction can be done by specifying the split size as

1. To support this, the compute schedule splits each index(i and
k) once, making the MV algorithm (C[i] = A[i,k] * B[k]) a split

MV algorithm (C[i1,i0] = A[i1,i0,k1,k0] * B[k1,k0]). Within this

SuperSchedule, we can sample all the schedules from

(1) C[i1] = A[i1,k1] * B[k1]
(2) C[i1,i0] = A[i1,i0,k1] * B[k1]
(3) C[i1] = A[i1,k1,k0] * B[k1,k0]
(4) C[i1,i0] = A[i1,i0,k1,k0] * B[k1,k0]

by appropriately choosing the split size as 1.

From these split algorithms, SuperSchedule can also derive vari-

ous formats. For instance, the UC format in Figure 3 can be derived

by choosing both split sizes as 1 and specifying level formats as

UC according to the level order of i1 and k1. Similarly, the UCUU

format can be derived by choosing both split sizes greater than

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 10: (a,b) MV/MM SuperSchedules. (c) The sampled schedule showed how C[i1,i0] = A[i1,k1,i0] * B[k1] with a BCSR
format can be sampled from the SuperSchedule by choosing the k split size as 1. The shaded lines in the generated code indicate
those can be ignored due to the split size 1. The SuperSchedule for SDDMM(D[i,j] = A[i,j] * B[i,k] * C[k,j]) can also be defined
similarly.

Schedule Parameters Description
split [1, 2, ..., 32768] Split Size

reorder 𝑃 (𝑖1, 𝑖0, 𝑘1, 𝑘0) Loop Order

parallelize
[𝑖1, 𝑖0] Parallelized Index

[24, 48] # Threads

[1, 2, ..., 256] OMP Chunksize

C.reorder 𝑃 (𝑖1, 𝑖0) Level Order of C

A.reorder 𝑃 (𝑖1, 𝑖0, 𝑘1, 𝑘0) Level Order of A

B.reorder 𝑃 (𝑘1, 𝑘0) Level Order of B

format [U, C] Level Format

Table 3: MV SuperSchedule parameters. 𝑃 () indicates a
permutation of indices. For parallelize, we used the
OpenMP work-sharing policy (#pragma omp parallel for
schedule(dynamic, chunksize)).

1 and specifying the level format as UCUU according to the level

order.

SuperSchedule is a superset of all possible schedules under a

fully split algorithm. For example, the MV and MM SuperSchedule

in the Figure 10 can represent a total of 4 and 8 split algorithms,

respectively, but SuperSchedule can represent more algorithms

depending on how many splits are defined. We chose a maximum

of one split per dimension since we have found out that more

than one split yields diminishing returns.

Network architecture. Such a template-based schedule allowed

us to embed the program more easily. Rather than extracting each

loop’s features from the low-level loop abstract syntax tree, Super-

Schedule allowed us to embed the format schedule and the compute

schedule directly from the parameters of the template. Table 3 de-

scribes each schedule and its possible parameter choices used in

our evaluation. All the parameters are categorical except for the

reorder, which take a permutation of indices. Our program embed-

der (Figure 11) takes parameters of a SuperSchedule and outputs

the program embedding. It first calculates the embeddings of each

parameters. Each categorical parameter passes a learnable lookup

table (green box) that maps the one-hot categorical parameter to a

high-dimensional real-valued vector. Each permutation parameter

is converted into a corresponding permutation matrix and passes

multiple linear-ReLU layers (orange box). When the embeddings

for the all schedule parameters are calculated, they are concate-

nated and pass multiple linear-ReLU layers into the final program

embedding.

4.1.3 Training Cost Model

Data generation. Our training dataset was a set of tuples (Sparse
Matrix, SuperSchedule, Ground Truth Runtime). We designed our

dataset to include various sparsity patterns. We augmented the

2,893 real-world sparse matrices in the SuiteSparse matrix collec-

tion [14] by arbitrarily resizing them into 21,400 sparse matrices

while restricting the number of rows to less than 131,072 and the

number of non-zeros to less than 10 million.

For eachmatrix, we randomly sampled 100 formats and schedules

from the SuperSchedule. Then, we generated a corresponding code

using TACO for each sample, repeated the program for 50 rounds,

and reported the median time. We excluded formats and schedules

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

Figure 11: Network architecture of the program embedder. The parameters of the SuperSchedule are used as the inputs. The
green embedder takes a categorical parameter, while the orange embedder takes a permutational parameter.

that take more than a minute. We repeated this process for the three

algorithms used in evaluations (SpMV, SpMM, and SDDMM), so we

collected about 6 million tuples (2 million tuples for each algorithm).

Collecting the dataset took two weeks with 10 computing nodes.

During the training, we divided the total dataset into the training

dataset and the validation dataset at an 80:20 ratio.

Training objective. For a given input sparse matrix𝑚𝑖 and Super-

Schedule 𝑠 𝑗 , the goal of our cost model 𝑦 (𝑚𝑖 , 𝑠 𝑗) is not to accurately
predict the ground truth runtime 𝑦𝑖 𝑗 . Instead, we want our cost

model to learn the ranking of different SuperSchedules. Therefore,

we used a pairwise ranking loss [8] to reflect the relative order of

performance of the schedules instead of using the L1 or L2 loss.

𝐿 =
∑︁
𝑚𝑖

∑︁
(𝑠 𝑗 ,𝑠𝑘)

𝑠𝑖𝑔𝑛(𝑦𝑖 𝑗 − 𝑦𝑖𝑘) ∗ 𝜙 (𝑦 (𝑚𝑖 , 𝑠 𝑗) − 𝑦 (𝑚𝑖 , 𝑠𝑘))

where 𝑠𝑖𝑔𝑛(𝑥) is 1 if 𝑥 > 0, or 0 otherwise. 𝜙 (𝑥) can be defined as

various functions, such as the hinge function𝑚𝑎𝑥 (0, 1 − 𝑥) or the
logistic function 𝑙𝑜𝑔(1 + 𝑒−𝑥). We adopted the hinge function for

our model. We used a SuperSchedule (𝑠 𝑗 , 𝑠𝑘) batch size of 32 for

each sparse matrix𝑚𝑖 and an Adam optimizer [24] with a learning

rate of 0.0001.

4.2 Efficient Schedule Search via Nearest
Neighbor Search

Besides the design of the cost model, a search strategy is also an

essential component of auto-scheduling. Many auto-schedulers or

tuners rely on black-box optimization algorithms to find the best

parameters in the schedule template [3, 18, 50].

Challenges. Traditional black-box optimization algorithms are

often slow because besides evaluating black-box (cost model), they

must manage the metadata required for optimization. For example,

Bayesian optimization trains a surrogate model internally that fa-

cilitates the procedure during the search. To speed up the search,

we cast the auto-scheduling problem as a Nearest Neighbor Search

(NNS) [36]. We then exploit an existing high-performance NNS

library to search for the optimal parameters of the SuperSchedule.

In our experiment, the proportion of evaluating costs in the whole

search was only 3.9% and 8.1% on two famous black-box optimiz-

ers, HyperOpt [6] and OpenTuner [3], while our search strategy

improved the proportion to 93.9%.

4.2.1 Relationship between auto-scheduling and NNS

Here, we will show that auto-scheduling can be reduced into the

NNS. The definition of the NNS is as follows :

Definition 4.1 (Nearest Neighbor Search). Suppose we have
a dataset 𝑆 = {𝑥1, 𝑥2, ..., 𝑥𝑛} where 𝑥𝑖 ∈ R𝑑𝑠 . Nearest Neighbor Search
retrieves a point 𝑝 ∈ 𝑆 which is nearest to a given query 𝑞 ∈ R𝑑𝑞 .

Here, nearest can be defined with various metrics such as the

Euclidean distance or cosine similarity. Then NNS will retrieve the

point that minimizes a distance metric for a given query. In terms

of auto-scheduling, the main objective is to find a schedule 𝑠 that

minimizes the predicted runtime 𝑦 (𝑚, 𝑠) for a given input matrix𝑚.

Therefore, we can cast an auto-scheduling as an NNS by setting the

dataset 𝑆 to be all the formats and the schedules in SuperSchedule

template, and the query q to be the input matrix m. If we define

a distance metric as a cost ŷ(m, s), NNS will retrieve the best

SuperSchedule 𝑠 for a given input matrix 𝑚 that minimizes the

𝑦 (𝑚, 𝑠).
Approximate Nearest Neighbor Search. Retrieving an exact

nearest neighbor requires exhaustive distance calculations all over

the points in 𝑆 , which is intractable. In practice, Approximate Near-

est Neighbor Search (ANNS) [28] has been widely used instead

of an exact NNS. For a given query, ANNS cleverly searches the

subset of 𝑆 that speeds up the search while guaranteeing high recall.

While there are several approaches to achieve ANNS, we used a

graph-based algorithm.

4.2.2 Graph-based ANNS

Graph-based ANNS for auto-scheduling has two phases: building

a KNN graph and searching on the KNN graph, as shown in Figure 1-

(b,c) and Figure 12. The first phase builds a KNN graph whose

vertex is the SuperSchedule, and the edge between two vertices is

connected only if two program embeddings of the vertices are top-K

closest to each other in the 𝑙2 distance. The second phase starts

once the query (the input matrix𝑚) comes in. In the second phase,

ANNS starts retrieving the schedule 𝑠 in the graph that minimizes

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 12: Our search strategy via ANNS. In the stage of build-
ing the KNN graph, the graph is built by connecting the
edge between the schedules with close embeddings in the
Euclidean distance. During searching, a query (input matrix
𝑚) traverses the graph in the direction predicted runtime
𝑦 (𝑚, 𝑠) minimizes.

the cost 𝑦 (𝑚, 𝑠) by traversing the KNN graph in the direction at

which the cost decreases. ANNS can search efficiently because it

merely traverses the pre-built KNN graph that guides the direction,

whereas other black-box optimizations require expensive metadata

updates.

Discussions. The distance metric used in each phase is different.

The 𝑙2 distance between two program embeddings of SuperSched-

ules is used in the building phase, and the cost itself is used in the

searching phase (∥𝑒 (𝑠𝑖) − 𝑒 (𝑠 𝑗)∥2 vs. 𝑦 (𝑚, 𝑠)). The reason for using

completely different metrics is that the KNN graph built upon an 𝑙2
distance has a property that guarantees retrieval of top-K candidates

at any generic distance (𝑦 (𝑚, 𝑠) in our case) in the searching phase,

while promising high recall [44]. In Section 5.4, we empirically

show that graph-based ANNS efficiently and accurately retrieves

the optimal SuperSchedule for a given input matrix.

One intuitive explanation of graph-based ANNS is a gradient-

based search over discretized space. In fact, our cost model based

on a neural network is differentiable, which means we can cal-

culate the gradient for it. Therefore, when searching for the best

SuperSchedule, we can actually find the local optima SuperSched-

ule using the first-order iterative optimization algorithm such as

gradient descent. However, there is no guarantee that the local

optima we found is a valid encoding of parameters. Specifically,

most gradient-based searches will end up with invalidly encoded

parameters because we encoded the categorical parameter of Su-

perSchedule as a one-hot vector and the permutation parameter as

a permutation matrix. On the other hand, if we build a KNN graph

with valid SuperSchedules, we can think of the ANNS on the KNN

graph as a gradient-based search over valid encodings. Projected

gradient descent [18] is another way to resolve this, but it was not

able to find a good local minimum in our experiments.

Implementation details. In practice, ANNS libraries build a vari-

ant of the KNN graph and traverse it with complicated heuristics

to improve the search efficiency. We implemented our search strat-

egy using a state-of-the-art graph ANNS algorithm, HNSW [31].

Although HNSW can support up to a billion-scale graph, it is in-

tractable to build a graph with all formats and schedules in the

SuperSchedule as it contains an astronomical number of parameter

choices. Therefore, we built the graph with the SuperSchedules

which appeared in our training dataset.

5 Evaluation
5.1 Experimental Setup
Algorithms. We choose four sparse tensor algebra algorithms for

our evaluation. All the algorithms were performed with single-

precision data.

• SpMV(C[i] = A[i,k] * B[k]): This multiplies sparse ma-

trix(A) by dense vector(B) and stores the product in dense

vector(C).

• SpMM(C[i,j] = A[i,k] * B[k,j]): This multiplies sparse ma-

trix(A) by dense matrix(B) and stores the product in dense

matrix(C). We set the number of columns of dense matrices

(|j| in B, C) at 256, and forced both dense matrices’ level

order to be row-major.

• SDDMM(D[i,j] = A[i,j] * B[i,k] * C[k,j]): This performs a

sampled matrix multiplication of two dense matrices(B and

C). The output matrix D and the input matrix A are sparse

matrices. We set the dimension |k| in B, C at 256. We fixed

B’s level order to be row-major and C’s level order to be

column-major.

• MTTKRP(D[i,j] = A[i,k,l]*B[k,j]*C[l,j]): This performs

a matricized tensor times Khatri-Rao product between a 3D

sparse tensor(A) and two dense matrices(B and C). We set |j|
at 16 and both dense matrices’ level order to be row-major.

We followed a prior work’s approach [42] to generate the

training dataset for 3D sparse tensors.

Baselines.We compareWACOwith the following four state-of-the-

art baselines. MKL and BestFormat are auto-tuning-based baselines.

FixedCSR and ASpT are baselines with a fixed format and schedule.

• MKL: IntelMKL sparse BLAS routines [34] utilize an inspector-

executor model that auto-tunes a computation on a fixed

format. Because it does not support SDDMM and MTTKRP,

we only compare it with SpMV and SpMM using the CSR

format.

• BestFormat: BestFormat automatically selects the appropri-

ate format among a handful candidates for a given sparsity

pattern. The candidates were chosen by the five most fre-

quently appearing formats among WACO’s search results in

the test matrices. We’ve used prior works’ artifacts to predict

the best format for a 2D sparse matrix [48] or a 3D sparse

tensor [42].

• Fixed CSR: Fixed CSR is a code with a fixed format and

schedule generated by TACO. We used the CCC format(CSF)

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

0 200 400 6000.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.7

40.0
Speedup over MKL

geomean
MKL

0 200 400 6000.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.2

40.0
Speedup over BestFormat

geomean
BestFormat

0 200 400 6000.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.3

40.0
Speedup over Fixed CSR

geomean
Fixed CSR

0 200 400 600
Matrix ID

0.1

1.0

10.0

Sp
ee

du
p

of
 W

AC
O

1.4

40.0
Speedup over ASpT

geomean
ASpT

Figure 13: Performance comparison on SpMM.

for MTTKRP and UC format(CSR) for the rest. We set the

OpenMP chunk size at 128, 32, 32, and 32 for SpMV, SpMM,

SDDMM, and MTTKRP.

• ASpT: ASpT [19] is the state-of-the-art sparse format that

directly reorders the sparse matrix to make dense regions.

While ASpT is not limited to a specific algorithm, we only

compare it only with SpMM and SDDMM because these are

the only formats publicly released by the authors.

Implementations. We used TACO to generate the code for the

best format and schedule that WACO has found. Then we com-

piled the generated code with icc-2021.3.0 with -march=native
-mtune=native -O3 -qopenmp options. All the experiments were

conducted on a dual-socket, 24-core with 48 threads, 2.5 GHz In-

tel Xeon E5-2680 v3 machine with 30 MB of L3 cache per socket

and 128 GB of main memory with Ubuntu 18.04.3 LTS. We used

numactl –interleave=all to control the NUMA policy.

We implemented our cost model architecture using PyTorch and

MinkowskiEngine for sparse convolution. We trained four separate

models for each algorithm, and it took four days to train up to 70

epochs for each model on a single GPU, NVIDIA GeForce RTX 3090

24GB.

Auto-tuning based baselines
vs. Format-only vs. Schedule-only

SpMV 1.43x 2.32x

SpMM 1.18x 1.68x

SDDMM Not Impl. Not Impl.

MTTKRP 1.27x Not Impl.

Table 4: Geomean speedup of WACO over other auto-tuners.
Format-only and Schedule-only auto-tuner correspond to
the BestFormat and MKL, respectively.

Fixed Implementations
vs. Fixed CSR vs. ASpT

SpMV 1.54x Not Impl.

SpMM 1.26x 1.36x

SDDMM 1.29x 1.14x

MTTKRP 1.35x Not Impl.

Table 5: Geomean speedup of WACO over other state-of-the-
art implementations with a fixed format and schedule.

5.2 Performance Results
We first evaluated the performance of the format and the schedule

that WACO has found. Experiments were conducted on 726 real-

world sparse matrices from SuiteSparse that were not included

in the training dataset. We picked matrices that had less than 10

million non-zeros and less than 100,000 rows. Among the top-10

SuperSchedules selected by WACO according to the cost model, we

report the fastest after we measured them on the hardware. Before

we explain the results in detail, the geomean of the speedups on

each algorithm are shown in Table 4 (vs. auto-tuners) and Table 5 (vs.

fixed implementations). Overall, WACO performed better than the

baselines as it successfully found a specialized format and schedule

together for each sparse matrix. This improvement is not limited to

a specific algorithm; WACO can find a better format and schedule

for all four algorithms.

Figure 13 show the speedups of WACO over four baselines across

the test matrices on SpMM. The y axis indicates the speedup of

WACO against baselines. All x axes of figures are sorted according to

the speedup. The dots below the𝑦 = 1.0 showmatrices in which the

baseline performed better than WACO. For MKL and BestFormat,

there are more matrices below this line than compared to other

baselines because they are able to adopt a larger portion of the

space though still not as much as of WACO. Thus, auto-tuning

based baselines perform better at a few patterns when they find a

better format or schedule than WACO.

5.2.1 Discussion on Speedup

We further analyze the source of the speedups on SpMV, SpMM,

and SDDMM. We picked the matrices with a speedup > 1.5× than

the Fixed CSR and classified the speedup factors into five categories.

Table 6 shows these categories and their proportions.

SpMV. First, half of the matrices benefitted from choosing the

appropriate OpenMP chunk size, which controls the load balancing

across multiple processors. Another half benefits from storing the

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Factor SpMV SpMM SDDMM
OpenMP Chunk Size 51% 66% 47%

Dense Block >50% Filled 30% 26% 15%

Dense Block <50% Filled 19% - -

Sparse Block - 8% -

Parallelize over Column - - 38%

Table 6: Speedup analysis of WACO. The number shows the
corresponding factor’s percentile among matrices that had a
speedup of over 1.5× than the Fixed CSR.

Figure 14: icc generated assembly for SpMV with the UCU
format. b decides the size of the one-dimensional dense block.
icc starts to use the AVX instructions(vfmadd213ps) from
b=16.

matrix into a dense blocked format which exploits the register reuse

in the dense block. A dense blocked format can be represented UCU

or UCUU in a format abstraction like Figure 3-(b). One counter-

intuitive factor is the speedup of a matrix with the non-zeros filling

less than 50% of the dense block. Storing such matrices into a

dense blocked format usually results in memory increase due to

unnecessary zeros. Nevertheless, a speedup occurs because of the

heuristic decision in the Intel icc compiler regarding utilizing SIMD

instructions. As shown in the Figure 14, we found out that icc
starts to exploit the SIMD instructions when the block size is larger

than 16. It is surprising to see that WACO learned the compiler’s

heuristics and intentionally chose the larger block size to utilize

the vector registers despite the memory increase.

SpMM. Like SpMV, most matrices benefit from better load balanc-

ing by choosing an appropriate chunk size. Other than that, some

matrices benefit from a unique format, which we call a sparse block
format. Compared to the dense block format where the level for-

mat of the inner split level is Uncompressed (e.g., UCU or UCUU),

a sparse block format stores the inner level into the Compressed

format (e.g., UUC). Splitting the level into the Compressed level

format with a large split size helps improve the cache locality in

SpMM. For instance, the LLC miss rate was reduced to 7% from 36%

and the performance improved about 2.5×when we stored sparsine
(Figure 2) into the 𝑘1(𝑈) → 𝑖 (𝑈) → 𝑘0(𝐶) format by splitting 𝑘

by 16,384.

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

Train-Validation Loss
HumanFeature train
DenseConv train
MinkowskiNet train
WACONet train

HumanFeature val
DenseConv val
MinkowskiNet val
WACONet val

Figure 15: Train-validation losses of the SpMM cost models
using four different feature extractors.

SDDMM. Other than better load balancing and a dense block for-

mat, SDDMM can take an advantage of the use of a column-major

format. One difference between SDDMM and other algorithms is

that it is safe to parallelize both rows and columns of the sparse

matrix in SDDMM. For SpMV(C[i] = A[i,k] * B[k])) or SpMM(C[i,j]
= A[i,k] * B[k,j]), it is inefficient to parallelize over the column of

the sparse matrix(k in A[i,k]) because the reduction occurs along

that dimension. Therefore, WACO flexibly chose the row-major or

column-major format without any restriction in the parallelizing

dimension on SDDMM.

5.3 Cost Model Exploration
We conducted the experiment to test how effectively our feature ex-

tractor learns meaningful features of the sparsity pattern. The train-

validation losses of four alternative cost models, each of which uses

a different feature extractor, are shown in Figure 15. HumanFeature

uses three simple statistics of the sparsity pattern, (# rows, # cols,

and # non-zeros). DenseConv [48] uses a conventional CNN after

downsampling an input matrix into 256×256. MinkowskiNet [13] is

a popular deep learning model based on sparse convolution layers

for 3D point clouds. Due to the limited size of GPU memory, we re-

duced the number of channels in MinkowskiNet to support a matrix

with 10 million non-zeros. WACONet is our feature extractor that

described in Section 4.1.1. There is a marked difference between

the HumanFeature and the remaining three networks using convo-

lution. WACONet and MinkowskiNet, networks that use a sparse

convolutional layer, learn better than DenseConv because DenseC-

onv causes the loss of pattern information during downsampling as

explained in Section 3.2.1. Finally, as the strided convolution accom-

modates distant non-zeros, WACONet retrieved more meaningful

features than MinkowksiNet.

5.4 Search Strategy Exploration
Different search strategies. We compared ANNS with two other

black-box optimization search strategies, HyperOpt [6] and Open-

Tuner [3]. HyperOpt utilizes Bayesian optimization, and OpenTuner

utilizes an ensemble of search techniques that use multi-armed ban-

dit. For each search strategy, we ran 3,000 trials to search for the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

(a) Comparing Different Strategies

(b) Search Time Breakdown

Figure 16: Exploring different search strategies and breaking
down the search time of WACO on SpMM

optimal parameters of SuperSchedule on the SpMM cost model with

a bcsstk29 matrix. As shown in Figure 16-(a), ANNS found the low-

est cost within an equal number of trials. OpenTuner also found a

comparable cost to that of ANNS, but the search time is much longer.

We can summarize why ANNS is substantially faster than the oth-

ers into three reasons. First, ANNS does not require any metadata

update, which is common in machine learning-based black-box

optimization, such as a training surrogate model in Bayesian op-

timization. ANNS can efficiently search for different formats and

schedules merely by traversing the KNN graph. Second, a KNN

graph memorizes the program embedding of each SuperSched-

ule(vertex) during the building phase. Thus, it does not have to run

for the entire cost model; it only needs to run for the final part of

the cost model (Figure 1-(c)). Finally, ANNS is implemented in C++,

whereas most black-box optimization libraries are built on Python.

Search time breakdown. Since the sparsity pattern feature is

reusable when calculating the cost of the different schedules,WACO

does not run the feature extractor multiple times for an input matrix.

Instead, the search can be divided into two phases (Figure 1-(c)):

(1) extracting the sparsity pattern feature and (2) ANNS with the

final part of the cost model. Figure 16-(b) shows the search time

breakdown of five different matrices with varying numbers of non-

zeros. When the number of non-zeros is less than 1.5 million, ANNS

dominates the entire search time, but the feature extractor becomes

more expensive when the number of non-zeros increases. This is

because the computational cost of sparse convolution depends on

the number of non-zeros.

Speedup
over FixedCSR

Trained on
Intel CPU AMD CPU

Tested on Intel CPU 1.26x 1.12x

AMD CPU 1.08x 1.21x

Table 7: WACO’s SpMM geomean speedup over FixedCSR
with a cost model trained on same/different hardware.

41 113 614 5K
Search Time (MKL-Naive SpMV Invocations)

0.1

1.2
2.0
2.9

10

Sp
ee

du
p

ov
er

 M
KL

-N
ai

ve

SpMV overhead and speedup
MKL
BestFormat
WACO

2 3 40 1K
Search Time (MKL-Naive SpMM Invocations)

0.1

1.1
1.61.8

10
Sp

ee
du

p
ov

er
 M

KL
-N

ai
ve

SpMM overhead and speedup
MKL
BestFormat
WACO

Figure 17: Tuning overhead of the MKL inspector-executor,
the BestFormat, and the WACO. We compared all methods
against the auto-tuning disabled MKL (MKL-Naive).

5.5 Generalization on Other Hardware
WACO’s cost model is somewhat hardware-specific as it does

better when trained on target hardware. However, the cost model

does transfer general optimization patterns between hardware. For

example, a sparsity pattern with skewed non-zero distribution will

generally prefer a fine-grained load-balancing. To demonstrate

this generalization, we trained a SpMM cost model on different

hardware and compiler: 8-core(16 threads) AMD EPYC 7R32 with a

16MB L3 cache and gcc-11. Data collection took about 4 days on

8 nodes, and training a cost model took about 3 days on a single

GPU. Table 7 shows the speedup of WACO under 2×2 possible

configurations. As expected, the diagonal of the table shows the

best performance because the cost model is trained for the target

hardware. WACO, in general, found a better format and schedule

than a baseline with a model trained on a different hardware.

5.6 Search Overhead and Usage Scenarios

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a) SpMV

End-to-end Execution Time

(in MKL-Naive SpMV calls)

Label 𝑁𝑟𝑢𝑛𝑠 WACO BestFormat MKL

Initial Cost 0 821 277 113
PageRank [49] 50 838 302 153
WACO=MKL 1,546 1,356 1,044 1,356

WACO=BestFormat 3,627 2,075 2,075 3,028

GMRES [30] 517K 180K 257K 416K

Mesh sim. [26] 1.8M 623K 892K 1.4M

(b) SpMM

End-to-end Execution Time

(in MKL-Naive SpMM calls)

Label 𝑁𝑟𝑢𝑛𝑠 WACO BestFormat MKL

Initial Cost 0 46 7 3
WACO=MKL 115 109 80 109

WACO=BestFormat 412 271 271 382

GNN [7] 10K 5,511 6,432 9,224

Pruned NN [16] 1.0M 546K 642K 922K

Table 8: Real-world applications that require repetitive (a)
SpMVs and (b) SpMMs. Green cells indicate that the cor-
responding auto-tuner wins. Initial cost is computed as
𝑇𝑡𝑢𝑛𝑖𝑛𝑔 +𝑇𝑓 𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡 , but only 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 for MKL.

Tuning overhead. Because the program auto-tuning pays for the

search or tuning time(𝑇𝑡𝑢𝑛𝑖𝑛𝑔) for the speedup, we will discuss

the search overhead of WACO. Figure 17 shows the search time

- speedup plot of three auto-tuning frameworks, MKL inspector-

executor, BestFormat, and WACO. We compared these frameworks

against naive MKL without an inspector-executor. For the matrices

with a speedup >1.0×, SpMV and SpMM must be repeatedly run

for 919 and 101 times to amortize the WACO’s tuning cost on

average. As pointed out in section 5.4, a feature extractor must be

more lightweight to reduce this amortization cost. When comparing

BestFormat and MKL, BestFormat showed better performance on

both search overhead(𝑇𝑡𝑢𝑛𝑖𝑛𝑔) and speedup than MKL. However,

when comparing WACO and BestFormat, there was a clear trade-

off; WACO achieves a better speedup by paying for more search

time than BestFormat.

Real-world scenarios. Real-world applications that utilize an

auto-tuner should consider both the tuning cost and the format

converting cost. To be specific, the end-to-end execution time

(𝑇𝑡𝑢𝑛𝑖𝑛𝑔 +𝑇𝑓 𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡 +𝑇𝑡𝑢𝑛𝑒𝑑𝑘𝑒𝑟𝑛𝑒𝑙 ∗ 𝑁𝑟𝑢𝑛𝑠) needs to be con-

sidered [49, 52]. The auto-tuner with a significant search overhead,

such as WACO, is only advantageous over other prior auto-tuners

in applications requiring repetitive runs. We list some real-world

applications with tens of thousands of runs of sparse routines in

Table 8. We set 𝑇𝑓 𝑜𝑟𝑚𝑎𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 0 for MKL as it only tunes the

schedule while fixing the format. Although BestFormat has the

fastest 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 (Figure 17), MKL is advantageous when N is small

due to no format conversion. It is better to use other auto-tuners if

an application does not require many repetitions, such as PageRank.

WACO is beneficial in scenarios that require a lot of runs, such as

mesh simulation or GNN.

6 Related Works
Auto-scheduling and cost model. Halide auto-scheduler [1, 35]
uses a cost model with hand-crafted program features and searches

for the best schedule through a beam search. AutoTVM [10] uses a

cost model that embeds the low-level loop AST. While AutoTVM

automates the search process, its search space must be manually

defined by the user’s template. Recently, Ansor [50] allowed the

auto-scheduler to find this template automatically by rewriting

rules. Tiramisu auto-scheduler uses LSTM to embed the low-level

loop AST [4]. There have also been many cost models that tried to

predict the behavior of accelerator or x86 basic blocks [21, 33, 37, 38].

All these schemes attempted to design a cost model to embed a

traversing order of iteration space alone since they usually targeted

a dense tensor program, while WACO’s cost model considers the

sparsity pattern, the format and the schedule all together.

Auto-tuning sparse tensor programs. Previous auto-tuner of
sparse tensor programs can be divided into two categories: format

selection studies and schedule optimization studies. There has been

a format selection approach designed a classifier, which took a

downsampled tensor and predicted which format would be optimal

for the input [42, 48]. However, the features extracted over the

downsampled tensor did not capture the pattern well and consid-

ered only a few output classes, for example, five formats, whereas

WACO considers a large number of formats from the TACO’s ab-

straction. Some other frameworks estimate the number of non-

zeros in the dense block to choose the optimal block size in the

BCSR [11, 46]. Mehrabi et al. utilized a predictive model to learn

the optimal permutation of rows for better load balancing [32].

Regarding auto-tuning of the schedule, ESB [29] suggested choos-

ing an optimal load-balancing scheme by running a kernel several

times, each time with different load-balancing schemes. Venkat et

al. proposed an inspector-executor method to transform a sparse

loop and data with polyhedral optimizations [45]. Their three pro-

posed transformations make-dense, compact, and compact-and-pad
can actually demonstrate the same search space as TACO’s trans-

formation framework [41] provided there is a single sparse input

among all input operands. However, they only suggested how to

transform the sparse loop but not how to transform it automatically.

Therefore, WACO can be used as an auto-tuner to automatically

transform the code by replacing TACO with their framework.

7 Conclusion
This paper presented WACO, a technique co-optimizing the format

and the schedule for a given sparsity pattern. In the sparse tensor

programs, it is crucial to design the cost model to consider various

sparsity patterns. To address this, we proposed a novel feature ex-

tractor that employs a sparse convolutional network. Its obtained

features were universal across various formats and were useful for

predicting the coupled behavior between the format and the sched-

ule. Furthermore, a graph-based ANNS, a discretized version of the

gradient-based search, efficiently and accurately finds the best for-

mat and schedule in the large search space of the co-optimization.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Jaeyeon Won, Charith Mendis, Joel S. Emer, Saman Amarasinghe

Acknowledgments
We thank anonymous reviewers for their valuable suggestions. We

thank Teodoro Collin, Stephen Chou, and Willow Ahrens for read-

ing early draft of this paper and providing feedback. This work

was supported by the Application Driving Architectures (ADA) Re-

search Center, a JUMP Center cosponsored by SRC and DARPA; the

U.S.Department of Energy, Office of Science, Office of Advanced Sci-

entific Computing Research under Award Numbers DE-SC0008923

and DE-SC0018121; and DARPA under Awards HR0011-18-3-0007

and HR0011-20-9-0017; and NSF Award CCF-2107244. Any opin-

ions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect

the views of the aforementioned funding agencies.

References
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-

rand, et al. 2019. Learning to optimize halide with tree search and random

programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–12.
[2] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet,

Anders Logg, Chris Richardson, Johannes Ring, Marie E Rognes, and Garth N

Wells. 2015. The FEniCS Project Version 1.5. Archive of Numerical Software Vol 3
(2015).

[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:

An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[4] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel

Abdous, Taha Arbaoui, Karima Benatchba, et al. 2021. A Deep Learning Based

Cost Model for Automatic Code Optimization. Proceedings of Machine Learning
and Systems 3 (2021).

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-

durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman

Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and

portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 193–205.

[6] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of

model search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In International conference on machine learning. PMLR, 115–123.

[7] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral clus-

tering with graph neural networks for graph pooling. In International Conference
on Machine Learning. PMLR, 874–883.

[8] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan

Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 579–594.

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize

Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates

Inc., Red Hook, NY, USA, 3393–3404.

[11] Jee W Choi, Amik Singh, and Richard W Vuduc. 2010. Model-driven autotuning

of sparse matrix-vector multiply on GPUs. ACM sigplan notices 45, 5 (2010),

115–126.

[12] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstrac-

tion for sparse tensor algebra compilers. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–30.

[13] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4d spatio-temporal

convnets: Minkowski convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3075–3084.

[14] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),

1–25.

[15] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-

tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.

IEEE, 1381–1384.

[16] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse gpu

kernels for deep learning. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–14.

[17] Benjamin Graham and Laurens van der Maaten. 2017. Submanifold sparse

convolutional networks. arXiv preprint arXiv:1706.01307 (2017).

[18] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,

and Christopher W. Fletcher. 2021. Mind Mappings: Enabling Efficient Algorithm-

Accelerator Mapping Space Search. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Virtual, USA) (ASPLOS 2021). 16 pages.

[19] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P

Sadayappan. 2019. Adaptive sparse tiling for sparse matrix multiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming.
300–314.

[20] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm:

General-purpose sparse matrix-matrix multiplication on gpus for graph neural

networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[21] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh, John

Wawrzynek, Thomas Norell, and Yakun Sophia Shao. 2021. CoSA: Scheduling

by Constrained Optimization for Spatial Accelerators. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). 554–566.

[22] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic

generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47–62.

[23] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti, John

Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyer-

henke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski, Timothy

Mattson, and Jose Moreira. 2016. Mathematical foundations of the GraphBLAS.

In 2016 IEEE High Performance Extreme Computing Conference (HPEC). 1–9.
[24] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[25] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-

inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–29.

[26] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro

Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech

Matusik, et al. 2016. Simit: A language for physical simulation. ACM Transactions
on Graphics (TOG) 35, 2 (2016), 1–21.

[27] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013. SMAT: an

input adaptive auto-tuner for sparse matrix-vector multiplication. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 117–126.

[28] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and

Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional

data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[29] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Effi-

cient sparse matrix-vector multiplication on x86-based many-core processors. In

Proceedings of the 27th international ACM conference on International conference
on supercomputing. 273–282.

[30] Jennifer A. Loe, Heidi K. Thornquist, and Erik G. Boman. 2019. Polynomial

Preconditioned GMRES to Reduce Communication in Parallel Computing. https:

//doi.org/10.48550/ARXIV.1907.00072

[31] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[32] Atefeh Mehrabi, Donghyuk Lee, Niladrish Chatterjee, Daniel J. Sorin, Benjamin C.

Lee, and Mike O’Connor. 2021. Learning Sparse Matrix Row Permutations

for Efficient SpMM on GPU Architectures. In IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2021, Stony Brook, NY, USA,
March 28-30, 2021. IEEE, 48–58.

[33] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin. 2019.

Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using

Deep Neural Networks. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 97). PMLR.

[34] Intel MKL. 2022. Inspector-executor Sparse BLAS Routines. (2022).

https://www.intel.com/content/www/us/en/develop/documentation/onemkl-

developer-reference-c/top/blas-and-sparse-blas-routines/inspector-executor-

sparse-blas-routines.html

[35] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and

Kayvon Fatahalian. 2016. Automatically scheduling halide image processing

pipelines. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–11.
[36] Sameer A Nene and Shree K Nayar. 1997. A simple algorithm for nearest neighbor

search in high dimensions. IEEE Transactions on pattern analysis and machine

https://doi.org/10.48550/ARXIV.1907.00072
https://doi.org/10.48550/ARXIV.1907.00072
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/inspector-executor-sparse-blas-routines.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/inspector-executor-sparse-blas-routines.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/inspector-executor-sparse-blas-routines.html

WACO: Learning Workload-Aware Co-optimization of the Format and Schedule of a Sparse Tensor Program ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

intelligence 19, 9 (1997), 989–1003.
[37] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to

DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315.

[38] Mangpo Phothilimthana, Mike Burrows, and Samuel J. Kaufman. 2019. Learned

TPU Cost Model for XLA Tensor Programs. InWorkshop on ML for Systems at
NeurIPS.

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for

optimizing parallelism, locality, and recomputation in image processing pipelines.

Acm Sigplan Notices 48, 6 (2013), 519–530.
[40] Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, and P

Sadayappan. 2015. Automatic selection of sparse matrix representation on GPUs.

In Proceedings of the 29th ACM on International Conference on Supercomputing.
99–108.

[41] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen

Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A sparse

iteration space transformation framework for sparse tensor algebra. Proceedings
of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[42] Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan, Guang-

wen Yang, and Depei Qian. 2020. SpTFS: sparse tensor format selection for

MTTKRP via deep learning. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 1–14.

[43] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2020. Efficient

processing of deep neural networks. Synthesis Lectures on Computer Architecture
15, 2 (2020), 1–341.

[44] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2020. Fast item ranking

under neural network based measures. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 591–599.

[45] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transforma-

tions for Sparse Matrix Code. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Portland, OR, USA) (PLDI
’15). Association for Computing Machinery, New York, NY, USA, 521–532.

[46] Richard Vuduc, James W Demmel, and Katherine A Yelick. 2005. OSKI: A library

of automatically tuned sparse matrix kernels. In Journal of Physics: Conference
Series, Vol. 16. IOP Publishing, 071.

[47] R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned linear algebra

software. In SC’98: Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing. IEEE, 38–38.

[48] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging the gap

between deep learning and sparse matrix format selection. In Proceedings of the
23rd ACM SIGPLAN symposium on principles and practice of parallel programming.
94–108.

[49] Yue Zhao, Weijie Zhou, Xipeng Shen, and Graham Yiu. 2018. Overhead-conscious

format selection for SpMV-based applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 950–959.

[50] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer

Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. Ansor:

Generating high-performance tensor programs for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 863–879.

[51] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for Tensor
Computation on Heterogeneous System. Association for Computing Machinery,

New York, NY, USA, 859–873.

[52] Weijie Zhou, Yue Zhao, Xipeng Shen, and Wang Chen. 2019. Enabling runtime

SpMV format selection through an overhead conscious method. IEEE Transactions
on Parallel and Distributed Systems 31, 1 (2019), 80–93.

Received 2022-07-07; accepted 2022-09-22

	Abstract
	1 Introduction
	1.1 Overview of WACO

	2 Motivating Example
	2.1 Impact of the Co-optimization
	2.2 Sparsity Pattern-Dependent Nature

	3 Background
	3.1 Tensor Algebra Compiler
	3.2 Cost Model for Auto-Scheduling

	4 Workload-Aware Co-Optimization
	4.1 Cost Model Design
	4.2 Efficient Schedule Search via Nearest Neighbor Search

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Results
	5.3 Cost Model Exploration
	5.4 Search Strategy Exploration
	5.5 Generalization on Other Hardware
	5.6 Search Overhead and Usage Scenarios

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

