
Metior: A Comprehensive Model to Evaluate Obfuscating
Side-Channel Defense Schemes

Peter W. Deutsch
MIT

Cambridge, MA, USA
pwd@mit.edu

Weon Taek Na
MIT

Cambridge, MA, USA
weontaek@mit.edu

Thomas Bourgeat
MIT

Cambridge, MA, USA
bthom@mit.edu

Joel S. Emer
MIT/NVIDIA

Cambridge, MA, USA
jsemer@mit.edu

Mengjia Yan
MIT

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT
Microarchitectural side-channels enable an attacker to exfiltrate
information via the observable side-effects of a victim’s execution.
Obfuscating mitigation schemes have recently gained in popularity
for their appealing performance characteristics. These schemes,
including randomized caches and DRAM traffic shapers, limit, but
do not completely eliminate, side-channel leakage. An important
(yet under-explored) research challenge is the quantitative study
of the security effectiveness of these schemes, identifying whether
these obfuscating schemes help increase the security level of a
system, and if so, by how much.

In this paper, we address this research challenge by presenting
Metior, a comprehensive model to quantitatively evaluate the ef-
fectiveness of obfuscating side-channel mitigations. Metior offers
a way to reason about the flow of information through obfuscat-
ing schemes. Metior builds upon existing information theoretic
approaches, allowing for the comprehensive side-channel leakage
evaluation of active attackers, real victim applications, and state-of-
the-art microarchitectural obfuscation schemes. We demonstrate
the use ofMetior in the concrete leakage evaluation of threemicroar-
chitectural obfuscation schemes (fully-associative random replace-
ment caches, CEASER-S, and Camouflage), identifying unintuitive
leakage behaviours across all three schemes.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.

KEYWORDS
hardware security, side-channels, leakage quantification

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589073

ACM Reference Format:
Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer,
and Mengjia Yan. 2023. Metior: A Comprehensive Model to Evaluate Ob-
fuscating Side-Channel Defense Schemes. In Proceedings of the 50th An-
nual International Symposium on Computer Architecture (ISCA ’23), June
17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3579371.3589073

1 INTRODUCTION
Side-channel attacks, a class of attacks which exploit shared mi-
croarchitectural state between a victim and an attacker, present a
large threat to the security of shared computing systems. Through
such attacks, an attacker can steal secrets from a victim by observ-
ing visible contention on shared microarchitectural structures [41],
including caches [12, 29, 32, 50], memory controllers [45], on-chip
networks [9, 47], and functional units [1].

A common strategy to mitigate microarchitectural side-channel
attacks is through obfuscation, altering the victim’s observable mi-
croarchitectural footprint to make it more difficult (but not impossi-
ble) for an attacker to ascertain the victim’s secrets. Examples of mit-
igation schemes employing obfuscation include randomly mapped
caches [35, 36, 48], memory traffic obfuscation schemes [55], and
degrading attacker timing granularities [31, 43].

While such schemes rightfully claim that they improve the se-
curity of computing systems, their security evaluation has pre-
sented a unique challenge to the computer architecture community.
There is a large body of work that provides boolean measures of
security, evaluating the presence or absence of leakage within a
design [3, 13, 18]. Since obfuscating defense schemes admit some
amount of leakage, boolean measures of security are not particu-
larly useful in these schemes’ evaluation. Instead, we are interested
in quantifying the amount of information an attacker can glean
after the victim’s accesses are obfuscated by the scheme under
study. This leakage is highly dependent on a wide variety of factors,
including the internal behaviours of the obfuscation scheme, the
attacker’s strategy, and the victim’s microarchitectural footprints.
Leakage quantification helps us reveal how leaky certain obfusca-
tion techniques are, which attack strategies maximize leakage, and
which applications are most vulnerable.

This paper presents Metior, a model to quantitatively evaluate
the security of microarchitectural obfuscating defense schemes.
Metior offers an extensible model that can be used to study the be-
haviour of a wide range of microarchitectural obfuscation schemes,

1

https://doi.org/10.1145/3579371.3589073
https://doi.org/10.1145/3579371.3589073
https://doi.org/10.1145/3579371.3589073

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

such as those protecting caches and DRAM buses, rather than lim-
iting itself to one specific scheme. To drive the concrete quantifica-
tion of leakage and account for the non-determinism of obfuscating
schemes, Metior encapsulates the victim and attacker’s access pat-
terns using a unified random variable model. Our formulation is
inspired by Issa et al. [49], significantly expanding the analysis
scope of prior work to cover a broad range of microarchitectural
channels and active attackers. Using random variables, Metior con-
verts the detailed study of the interactions between the attacker and
the victim’s access patterns into a mathematical exercise. Metior
leverages the Maximal Leakage metric [49] to describe an attacker’s
ability to leak information about the victim’s access patterns com-
pared to a blind guess. Doing so enables Metior to comparatively
evaluate how the effectiveness of their schemes varies across differ-
ing defense parameters, victims, and attackers, helping mitigation
designers better understand their schemes prior to deployment.

We demonstrate the use of Metior through the security evalua-
tion of three state-of-the-art obfuscation schemes. First, we study
the defense efficacy of fully-associative random replacement caches
when protecting AES, a program with a large secret space, against
cache occupancy attackers [40]. We then expand our analysis to
broadly consider different classes of attacks, including Probabilis-
tic Prime+Probe [34] and cache occupancy attacks, mounted on
Skewed-CEASER [35]. Finally, we evaluate the leakage of Camou-
flage [55], an obfuscating scheme which protects against DRAM
timing attacks.

Via these case studies, Metior has produced several insights re-
garding the properties of these state-of-the-art obfuscation schemes.
Here we highlight one of these findings: prior work [2] has at-
tributed the success of Probabilistic Prime+Probe attacks (PPP) to
targeted cache set-conflicts. Metior finds that, under certain con-
figurations, PPP attacks primarily exploit occupancy effects. This
finding demonstrates howMetior can be used to reveal new insights
into how randomized caches mitigate different attacks.

2 BACKGROUND
2.1 Side-Channel Attacks
Microarchitectural side-channel attacks leak secret information
from a victim to an attacker through the visible side-effects of a
victim’s execution. As first described in DAWG [24] and CaSA [2],
this flow of information can be described through a telecommuni-
cations analogy. The victim executes code which operates on secret
information, utilizing a shared microarchitectural resource (the
channel). The victim acts as a transmitter, with its secret-dependent
actions leaking information by modulating (i.e., changing of the
state of) this channel. These modulations are received by the at-
tacker through its observations. Once the attacker has observed
the victim’s modulations, it can then attempt to decode the secret.

2.2 Classifications of Side-Channels
To better understand the scope of Metior, we provide a brief classi-
fication of microarchitectural side-channel attacks. Microarchitec-
tural side-channels can broadly be categorized to be either persistent
or ephemeral. Further, attackers who leverage such side-channels
can be classified to be either active or passive.

Persistent vs. Ephemeral Side-Channels1. In a persistent side-
channel, the attacker attempts to observe lasting state changes
in the channel caused by the victim’s actions. In particular, these
state changes are not self-resetting and last until another microar-
chitectural event modifies them. Classic cache attacks, such as
Prime+Probe [29] and Flush+Reload [50], are examples of attacks
that exploit persistent side-channels.

Conversely, ephemeral side-channels rely on transitory state
changes in the channel that are self-resetting and become unobserv-
able after a short period of time. To observe these ephemeral state
changes, an attacker must modulate the channel at the same time
as the victim. An example of an attack class exploiting ephemeral
side-channels is memory controller timing attacks [45], wherein an
attacker attempts to observe a victim’s access patterns to a shared
DRAM memory controller. Each of the victim’s requests only occu-
pies the resources inside the memory controller for a short period
of time, after which no contention can be detected. An attacker
must thus simultaneously issue requests from a different core to
collide with the victim’s requests, observing the delays imposed
onto the timing of its own requests.
Active vs. Passive Attackers. Side-channel attackers can further
be classified to be either passive or active, depending on whether
the attacker and the victim’s actions interfere with each other or
not during an attack. Passive attackers directly observe the victim’s
microarchitectural footprint without having any effect on it, such
as physically measuring the power consumption or the termination
time of a victim program. Conversely, active attackers modulate the
channel to obtain their observations, and thus unavoidably change
the microarchitectural state and affect the victim’s activities. For
example, in cache attacks like Prime+Probe, the attacker actively
modifies the state of the cache to facilitate its observations. Similarly,
in memory controller attacks, the attacker actively issues requests
which cause contention, affecting any other requests that use the
controller.

2.3 Side-Channel Mitigation Schemes
A wide variety of side-channel mitigation schemes exist in the liter-
ature, achieving security from orthogonal approaches. For instance,
side-channel leakage can be mitigated at the application level by
writing programs that do not modulate the channel differently
for different secrets, such as constant-time approaches [7]. Side-
channel mitigations also include defenses against specific attack
classes, such as speculative execution attacks (e.g. Spectre [25] and
Meltdown [28]). In this paper, we focus on mitigation schemes that
can block both speculative and non-speculative side-channel leak-
age. Such schemes can be classified into two categories: partitioning
and obfuscating, each with varying security goals and performance
implications.

Partitioning schemes aim to offer strict isolation guarantees,
ensuring that any modulation by a transmitter can never be ob-
served by a receiver. Partitioning schemes generally guarantee a
non-interference property [52], ensuring that modulations from
differing security domains cannot influence each other. Examples

1“Persistent” and “Ephemeral” side-channels are sometimes referred to as “Stateful”
and “Stateless” side-channels respectively. However, we note that both side-channels
rely on modifications to microarchitectural states.

2

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

A4→A3→A2→A1
1 Miss

A4→A3→A2→A1
1 Miss

...
A4→A3→A2→A1

4 Misses

V1

A1
A2
A3
A4

A2
A3
A4

A3

A1
A2

V1

①
Initial Primed
Cache State

②
Victim Accesses

1 Cache Line

③
Attacker

Probes Cache

Figure 1: Amotivating example to study random replacement
policy as a simple obfuscating scheme. The example shows
the probabilistic nature of obfuscating schemes. Red blocks
are attacker accessed, green blocks are victim accessed.

of such schemes include spatially partitioned caches [15, 24, 46] and
temporally partitioned DRAM scheduling schemes such as Fixed
Service [38]. The security of partitioning schemes has been well
studied with formal tools [3, 4, 13, 17, 18, 42].

Another class of mitigation schemes implements techniques to
obfuscate the victim’s microarchitectural activities. These obfusca-
tion schemes limit, but do not completely eliminate, the attacker’s
ability to leak side-channel information through microarchitectural
observations. For instance, randomly mapped caches, including
Skewed-CEASER [35], ScatterCache [48], and MIRAGE [36], use
randomization to obfuscate the set mappings of the cache, making
it difficult for an attacker to glean information through collisions.
Other schemes such as Camouflage [55] aim to reduce leakage from
ephemeral attacks by shaping the timing of a victim’s requests to a
fixed distribution.

3 PROBLEM FORMULATION
There exists a critical research problem in the adoption of obfusca-
tion schemes for the mitigation of side-channel leakage; that is, the
security properties of these schemes has not been well understood.
Applying boolean measures of security to evaluate these schemes
does not provide much insight. Since obfuscating schemes do not
completely eliminate leakage, the community widely agrees that
these schemes do not achieve strong security properties, such as
non-interference. Instead, it is valuable to ask if we can measure by
how much they reduce leakage.

3.1 Limitations of Existing Work
To evaluate the effectiveness of an obfuscation scheme, we specifi-
cally desire a quantitative measure of an attacker’s ability to dis-
tinguish between the victim’s access patterns after they’ve been
obfuscated. A quantitative metric measuring “distinguishability”
should account for an optimal guessing strategy employed by the
attacker. Such an optimal guessing strategy should guess the most
likely victim access pattern by leveraging full knowledge of the
obfuscating scheme’s probabilistic properties.

Several previous attempts measure leakage by calculating the
correlation between a victim’s access trace and the attacker’s obser-
vation trace (as in CSV [53] and SVF [10]). Such a measurement is
not sufficient for measuring distinguishability, however. Even if an
obfuscation scheme ensures that there is no statistical correlation
whatsoever, an attacker can still learn information if it can distin-
guish between the victim’s secret-dependent modulation patterns
via its own observations.

Furthermore, an attacker’s distinguishing ability is contingent
on a large number of factors, depending on the microarchitectural
obfuscation scheme, the attacker’s methodology, and the victim’s
possible microarchitectural footprints. Prior work [2, 8, 10, 11, 14,
16, 20–22, 26, 27, 49, 53, 54] has failed to comprehensively model
these factors, relying on simplifying assumptions such as only
considering boolean victim secrets, passive attackers, or limiting
their scope to persistent cache side-channels.

3.2 A Motivating Example
We now provide a motivating example to outline the quantitative
goals of a desirable model for measuring obfuscation scheme leak-
age. In doing so, we will identify the questions that we expect a
model to answer about a mitigation’s leakage characteristics, and
concretely demonstrate how to answer these questions.
Example Overview. We compare Prime+Probe attacks on four-
line, fully-associative caches with different replacement policies.
The attacker first primes the entirety of the four-line cache, waits
for the victim to run, and then counts the number of cache misses
it observes when re-accessing the four lines. The attacker’s goal is
to learn the number of distinct cache lines accessed by the victim
during its execution.

As shown in prior work [29], the above attack is highly effective
on a cache with a least recently used (LRU) replacement policy.
By probing the cache’s four lines in reversed order to which the
lines were originally primed, the number of misses the attacker
observes during the probe step is equal to the number of distinct
victim cache line accesses (where four attacker misses represents
at least four victim accesses).

Now consider a simple obfuscation mechanism that swaps the
LRU replacement policy for a random replacement policy. The ran-
dom replacement policy introduces non-determinism, obfuscating
the characteristics of the victim’s access patterns to the attacker.
Figure 1 shows some of the possible cache states after the victim
accesses a single cache line. When the victim accesses a single line,
it randomly evicts one of the attacker’s primed lines. If the victim
evicts the attacker’s first line, the attacker only observes one probe
miss. If the victim evicts a different attacker line, however, the num-
ber of probe misses becomes non-deterministic. For instance, in
the case where the victim evicts the fourth attacker line, the at-
tacker may observe one miss (if accessing 𝐴4 evicts𝑉1), two misses
(if accessing 𝐴4 evicts 𝐴1), and so on (up to four misses). Given
this non-determinism, the attacker’s ability to learn the number
of victim accesses is degraded. As such, our security evaluation
framework needs to measure by how much our attacker’s ability
degrades when employing such an obfuscation scheme.

3

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

Question 1: How can we quantitatively compare the effective-
ness of obfuscation schemes? Does the random replacement
policy lower the effectiveness of our Prime+Probe attack com-
pared to using the LRU replacement policy?

We additionally identify several other important factors that can
affect the security evaluation of an obfuscation mechanism. In the
case of our random replacement cache, it is unclear if changing the
attacker’s number of probe addresses could improve the attacker’s
ability to learn about the victim’s behaviour. A larger number of
probing accesses may cause more victim collisions to be observ-
able by the attacker. More attacker probe accesses, however, can
result in self-collisions. A self-collision denotes the event wherein
the attacker evicts its own line, making it more difficult to discern
whether the victim evicted an attacker’s line, or the attacker them-
selves. When examining an obfuscating defense mechanism it is
thus also valuable to consider varying attack parameters, rather
than assuming a single fixed strategy.

Question 2: How can we compare different attack strategies
against an obfuscation scheme? How many lines should the
attacker probe to maximize leakage?

Moreover, it is also possible for the victim application itself to im-
pact the leakage of a mitigation scheme. Consider the side-channel
leakage of a victim program with a boolean secret. Intuitively, dis-
tinguishing between the access patterns of a victim application
which accesses 1 or 2 cache lines (depending on its secret) may be
more difficult compared to distinguishing between the patterns of
a victim application which accesses 1 or 4 cache lines. The reason
is that in the latter case, the victim emits a stronger signal which
can be easier to observe for the attacker. Furthermore, an applica-
tion which has a wide variety of secrets (and corresponding access
patterns) may leak more information than an application with a
boolean secret. Thus the victim application itself should also be
considered when assessing the leakage of an obfuscation scheme, as
some victims’ access patterns may be more susceptible to leakage
under a certain obfuscation scheme than others.

Question 3: How can we quantify the leakage of varying vic-
tim applications under a given obfuscation scheme? Are there
victim applications that issue access patterns which make them
more vulnerable to a given attacker?

Concrete Quantification. We now present the analysis results
enabled by Metior, answering the three questions posed for our
random replacement cache example. We defer the explanation of
how Metior computes the underlying leakage metric, and the math-
ematical meaning behind the metric, to the following sections.

Figure 2(a) compares the experimentally-obtained leakage of
the LRU and random replacement schemes under varying attack
strategies. In this figure, Metior measures the attacker’s ability to
distinguish between a specific victim’s access patterns using its
probe observations. The x-axis represents the number of cache lines
probed by the attacker, and the y-axis represents the leakage of the
attack. The victim application under study has a boolean secret,

1 2 3 4
a)

0

1

M
ax

im
al

 L
ea

ka
ge

 (b
its

)

1 2 3 4
b)

0

1

Victim Behaviour
1 v. 2 1 v. 4

Attacker Strategy
(Number of Distinct Cache Lines Probed)

Replacement Policy
Random LRU

Figure 2: An example of the expected quantitative analysis
result. Left: Leakage comparison of random replacement
and LRU replacement policies across attack strategies. Right:
Leakage comparison of different victims under a random
replacement policy.

and accesses one cache line if its secret is 0, and two cache lines if
its secret is 1.

As shown by the rightmost datapoints of Figure 2(a) (represent-
ing our original four-probe attack), LRU always leaks the victim’s
secret, while the attacker is only probabilistically successful under
the random replacement scheme. Figure 2(a) further demonstrates
the effectiveness of different attacker strategies against the random
replacement cache. For the strategies considered in the plot, the
attacker’s leakage is maximized when probing four lines.

Figure 2(b) compares the leakage of differing victim programs
when using our random replacement cache. In addition to the orig-
inal victim program (which either issues 1 or 2 cache accesses), we
also study a victim program which issues 1 or 4 cache accesses
depending on the secret. Observe that for each attacker strategy
studied, the leakage of the 1 or 4 victim is always higher than that
of the 1 or 2 victim.

4 METIOR: A MODEL TO EVALUATE
OBFUSCATING DEFENSE SCHEMES

In this section, we presentMetior, a model to quantitatively evaluate
obfuscating side-channel defense schemes which can be used to sat-
isfy the three evaluation goals discussed above. Metior extends the
scope of existing quantification work by considering wide ranges of
microarchitectural side-channel defense schemes, addressing three
key challenges to do so.
Challenge #1: Describing Obfuscated Information Flow. As
discussed in Section 2.2, there exists many microarchitectural
side-channel attacks, including those exploiting persistent and
ephemeral channels, and those utilizing active and passive attack
strategies. Note that microarchitectural events and interactions
exploited by attackers can widely vary across different classes of
attacks. For instance, a DRAM timing side-channel will manifest
significantly differently compared to a spatial cache attack. Con-
sequently, the obfuscating schemes that protect against different
side-channel attacks can also differ substantially. This introduces
our first research challenge: how to ubiquitously analyze a diverse
range of obfuscating schemes under a unified model. We note that
prior work has not addressed this research challenge before, as they

4

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Secret
(§4.2)

a

YXVS GXV→Y Y→G

Victim
Modulation

Pattern
(§4.3)

Probabilistic
Observation

(§4.4)

S→XV

Attacker's
Secret
Guess

Victim's Interactions
with Microarchitecture

(§4.3)

Attacker
Modulation

Pattern
(§4.3)

Probabilistic
Obfuscation

(§4.4)

Guessing
Secret
(§4.5)

Side-Channel
Components

Random Variable
Representations

Random Variable
Relationships

Figure 3: Metior Overview. For each side-channel component (top row), Metior maps the component to a random variable
representation (middle row). Metior offers methodologies to derive the relationships (bottom row) between different random
variables in order to derive a quantitative leakage metric.

either focus on a single type of channel [2, 6, 8, 11, 16, 20, 21, 54],
such as caches, or only target passive attackers [8, 49].

Metior tackles this research challenge by describing the informa-
tion flow through an obfuscating scheme using a discrete random
variable representation, inspired by [49]. Figure 3 summarizes how
we formulate each side-channel component (top row) as a random
variable (middle row) to capture the end-to-end side-channel infor-
mation flow. Each random variable represents a space of potential
values. This random variable representation is extremely flexible
and capable of considering wide classes of microarchitectural at-
tacks and defense schemes.
Challenge #2: Defining Independent Modulation Spaces.
Once we have mapped an obfuscation scheme to our random vari-
able formulation, Metior attempts to quantify information leakage
by deriving the probabilistic relationships between these random
variables. For example, we aim to examine how the victim and at-
tacker’s modulation patterns interact inside an obfuscating scheme
and lead to probabilistic observations by the attacker. This task is
complicated by the fact that the victim’s access patterns can be
influenced by an active attacker’s accesses (and vice-versa) due to
contention in the shared microarchitectural structures they both
access. This lack of independence complicates their representation,
and poses difficulties in leakage derivation.

Metior addresses this challenge by representing attackers and
victims using Directed Acyclic Request Graphs (rDAGs) [13]. In
an rDAG, a node represents a request to use a microarchitectural
resource, and an edge represents a dependency between the two
connected requests with a fixed latency. We find that rDAGs can be
used as a generic and independent representation to encapsulate
modulation patterns for both attackers and victims. Using rDAGs
enables us to use existing information theoretic metrics (which
require independence between random variables) to derive leakage.
Challenge #3: Quantifying Leakage Under Non-Determinism.
Our random variable formulation of obfuscated side-channels al-
lows us to study the probabilistic/non-deterministic nature that
often underpins obfuscating schemes. One challenge, however, lies
in making the computations of these probabilities tractable, allow-
ing the model to study real-world victim applications (e.g. AES and

RSA) and state-of-the-art obfuscation mechanisms (e.g. CEASER-S
and Camouflage).

Throughout this paper, we propose several practical solutions to
address the engineering challenges associated with making these
probability computations tractable. Using these derived probabili-
ties, we leverage the Maximal Leakage metric, introduced in [49],
to evaluate a scheme’s leakage. The Maximal Leakage metric allows
us to evaluate a defense scheme’s theoretical ability to reduce the
capability of a given attacker to distinguish between a victim’s
different behaviours.

4.1 Random Variable Representations
Metior’s random variable characterization of side-channel informa-
tion flow is summarized in Figure 3. The top row depicts a generic
communication model for microarchitectural side-channels. It be-
gins by considering a victim application with a secret. Depending
on this secret, the victim accesses an obfuscating shared resource
according to some modulation pattern. The attacker then issues its
own modulation pattern to interfere with the victim’s modulations
of the channel, and observes the side effects of its modulations (e.g.
timing). With its observations, the attacker then makes a guess of
the secret.

At the core of Metior, we formulate each component in this
side-channel model into a random variable as shown in the middle
row in Figure 3. Each box in the middle row denotes the mapping
relationship between random variables. The semantic meanings of
these mapping relationships are listed in the bottom row.

In Metior, we denote the secret used by the victim as 𝑆 , the victim
modulation pattern as 𝑋𝑉 , the attacker’s modulation strategy as 𝑎,
the attacker’s side-channel observations as 𝑌 , and the attacker’s
guess as 𝐺 . For each random variable, 𝑅, we represent its space of
possible values as ℛ, and a singular value as 𝑟 . For example, the
victim’s secret space is 𝒮 , and a concrete secret value is denoted
as 𝑠 . Note that discrete random variables are not limited to integer
values. We can encapsulate a wide variety of representations (such
as graphs or sets) within a random variable.
Secret 𝑆 . The victim’s secret 𝑆 represents the information that the
victim wishes to keep hidden from any attacker. In the case where
𝑆 is a boolean secret, the set of possible secret values is 𝒮 = {0, 1}.

5

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

𝑆 can also denote multi-bit secrets. For instance, a cryptographic
algorithm with a 256 bit key (such as AES) has a secret space of
𝒮 = [0, 2256).
Victim’s Modulation Pattern 𝑋𝑉 . The victim’s modulation pat-
tern is the characterization of the victim program’s access patterns
to a particular shared microarchitectural structure. The victim’s
modulation pattern is a function of the victim program, its inputs
(including the secret and public inputs), and the microarchitectural
details of the machine the victim is running on.
Attacker’s Modulation 𝑎. The attacker’s modulation is the char-
acterization of a fixed attacker’s access patterns to the shared struc-
ture. The attacker’s modulation can be broken down into two com-
ponents: a preconditioning pattern 𝑎𝑝𝑟𝑒 and an observation pattern
𝑎𝑜𝑏𝑠 . 𝑎𝑝𝑟𝑒 aims to put the microarchitecture into a known state
and is performed prior to the victim’s accesses. 𝑎𝑜𝑏𝑠 aims to mon-
itor the microarchitectural state via observable side effects when
issued, either during or after the victim’s accesses. For instance, for
Prime+Probe, the access pattern to prime the cache is 𝑎𝑝𝑟𝑒 , and the
pattern used to probe the cache is 𝑎𝑜𝑏𝑠 .
Attacker’s Observation 𝑌 . The attacker’s observation 𝑌 repre-
sents the (potentially non-deterministic) observation gathered via
the attacker’s observation operation (𝑎𝑜𝑏𝑠). The observation can
have different representations depending on the attacker’s modula-
tion pattern. For instance, in a Prime+Probe attack, an observation
𝑦 describes the number of misses the attacker encounters. In a mem-
ory controller timing side-channel, an observation 𝑦 is the time to
complete the attacker’s requests. Since these observations can be
non-deterministic, we note that the random variable 𝑌 encodes the
probability distributions of observing different possible observa-
tions 𝑦 ∈ 𝒴 . One key task of Metior is to concretely derive these
distributions.
Guess 𝐺 . The attacker’s guess of the secret is represented by 𝐺 .
The attacker’s goal is to guess the victim’s secret correctly, and thus
to maximize the probability that 𝑆 =𝐺 . Our security evaluation is
thus tied to how successful an attacker is towards this goal.
Section Overview. With the above formulation, we now detail
the key steps to apply Metior in the remainder of Section 4. Given
an application, we first derive the victim’s space of potential secrets
(Section 4.2), then derive the possible victim modulation patterns
for each of these secrets (Section 4.3). Next, given the mitigation
scheme, the victimmodulation pattern, and the attacker modulation
patterns, we derive the attacker’s non-deterministic observations
in the form of conditional probabilities (Section 4.4). Finally, with
these conditional probabilities in hand, we compute the amount of
information leakage to measure the effectiveness of the obfuscating
scheme under study (Section 4.5).

4.2 Step 1: Defining the Victim’s Secret Space
To model a victim application’s leakage, we first define the scope of
the victim’s secret space, which is used later to derive the victim’s
modulation patterns for each secret in this space. The victim’s
space of possible secrets is dictated by the semantics of the victim
program, denoting the aspects of its execution that an attacker
wants to extract via its observations.

v0 v1

v2

v3

v4
w01 w 12

w
13

w
24

w 34

Arrival
Time

Completion
Time

Figure 4: Example of a Directed Acyclic Request Graph
(rDAG). Nodes represent requests (experiencing variable con-
tention), edges represent request dependencies (with fixed
latencies).

When analyzing the leakage of an encryption application, the
evident secret space consists of the space of possible keys. Such
a victim program may have several valid secret spaces however,
each of which potentially having different leakage characteristics.
For instance, an attacker targeting a cryptographic application may
attempt to learn information about the victim’s plaintext directly,
rather than the encryption key.

Secret spaces can also be defined for non-cryptographic appli-
cations. Consider the analysis of a machine learning application.
If the attacker attempts to learn the number of model layers, the
secret space could be defined as 𝒮 = [1, 16] layers. If the attacker
instead attempts to learn the size of a given layer, the corresponding
secret space might be 𝒮 = {16×16, 32×32, 64×64}. Defining secret
spaces requires domain knowledge of the application under study,
and has been explored in other work [30, 39, 51].

4.3 Step 2: Defining the Modulation Spaces
After defining the victim’s secret space, we now define the modu-
lation patterns of the victim and attacker. To consider a concrete
victim and attacker in our model, we first decide on a representation
for their modulation patterns, describing these modulations in a
symbolic way.

There are three desirable properties for a modulation representa-
tion. First, it should be general enough to encapsulate a modulation
pattern’s intrinsic features, characterizing both the spatial and tem-
poral aspects of the attacker and victim’s modulations. This allows
Metior to model a wide variety of side-channels, both persistent
and ephemeral. For instance, simply representing the victim’s mod-
ulation pattern as a single number (as in our random replacement
example) is insufficient to describe the victim’s modulations when
considering an ephemeral attack. Second, the modulation repre-
sentation should be independent from the impact of any other
applications sharing the microarchitectural structure. This allows
Metior to study active attackers, avoiding the need to adjust victim
modulation patterns for each attacker modulation pattern studied.
Third, the modulation representation should be computationally
feasible to derive, allowing for the derivation of the entire victim
modulation space.

We find that there is no perfect modulation representation which
exhibits all three of these properties. Metior can leverage directed
acyclic request graphs (‘rDAGs’) to describe general and independent
access patterns (properties 1 and 2), however this representation
is often expensive to concretely compute (property 3). When this
computational complexity is too high in practice, Metior can also
leverage simpler representation patterns, such as access counts.

6

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 1: Examples of how to choose modulation representations for different obfuscating defenses.
Obfuscating Defense Scheme Attack Victim Modulation Space (𝑋𝑉)
Random Replacement (Set-Associative Cache) Prime + Probe [29] # of Distinct Accesses (per set)
Random Replacement (Fully-Associative Cache) Cache Occupancy [40] # of Distinct Accesses (total)
Randomized Cache [35, 48] Probabilistic P+P [2] # of Distinct Accesses (per set)
Traffic Shaper [55] Memory Contention [33] Memory Access rDAG
Timer Degredation [31, 43] Port Contention [1] Port Access rDAG

rDAGs: General & Independent Representations. The rDAG
notation used by Metior was first presented in DAGguise [13] for
designing secure traffic shaping mechanisms. Using directed acyclic
graphs to represent executions has also been explored in ZSim [37]
for the simulation of CPUs.

An example rDAG is shown in Figure 4. Each node in an rDAG
represents a request to a microarchitectural structure, while the
edges between nodes represent the dependencies between these
requests. Each directed edge has a weight corresponding to the
time elapsed between the completion of the source node, and the
dispatch of the destination node. For example, to describe modula-
tion patterns to a memory controller, a node represents a memory
request (a read or write) to a specific address in DRAM, and edges
between nodes represent dependencies between these requests. The
edge weights between nodes correspond only to time spent in the
core and cache hierarchy, and are thus independent of contention
in the controller.

rDAGs satisfy our first two desirable properties of a modulation
pattern representation. First, they fully characterize the properties
of modulation patterns leaked under both persistent and ephemeral
side-channels, characterizing both the spatial and timing aspects of
microarchitectural events. Second, rDAGs can describe modulation
patterns in a conflict-agnostic way, ensuring that a modulation
pattern is only a function of the program and its inputs, rather than
a function of the mitigation scheme or any co-running applications.
Such a representation allows Metior to reliably characterize both
the attacker and victim’s modulation patterns, representing them
in a format which is independent from any activity in the channel.
Alternate Modulation Representations. While rDAGs offer a
universal way to represent modulation patterns, from a computa-
tional perspective it is often desirable to use a simpler modulation
representation. To calculate leakage, we will require knowledge of
all possible victim modulation patterns for the given secret space.
Note however that determining the entire space of possible victim
rDAGs may be infeasible for large secret spaces.

In such cases, we can use alternative representations to repre-
sent victim modulation patterns. In order to avoid deteriorating the
model’s ability to consider the attacker’s true abilities, however, the
selected victim modulation representation should encapsulate all
of the characteristics exploited by the studied attacker. In our ran-
dom replacement cache example, the studied Prime+Probe attacker
only leaked information about the number of distinct cache lines
accessed by the victim. As such, the victim modulation pattern was
simply represented as a count of distinct cache line accesses.

To further clarify the trade-offs in using different modulation
representations, we show five examples in Table 1. Specifically,
when modeling different obfuscating defenses on caches, we focus
on modeling the spatial aspect of the modulation pattern and thus

choose to use an integer-based representation to either count the
number of distinct per-set accesses or total cache access as the
modulation representation. When modeling obfuscating schemes
such as traffic shapers and timer degradation, we focus on both the
temporal and spatial aspects of the modulation pattern and thus
choose to use rDAGs as the modulation representation.
Deriving Concrete Victim Modulation Patterns. Once the
representation for the victim modulation patterns has been chosen,
we then determine the concrete modulation pattern 𝑥𝑉 for each
secret in our derived secret space 𝑠 ∈ 𝒮 . The exact requirements of
this step are highly dependent on the microarchitectural structure
and modulation representation chosen. We demonstrate several
examples in the case studies, deriving cache access counts using
static program analysis (Section 7), and rDAG representations for
memory request patterns using a modified version of ZSim [37]
(Section 9).

4.4 Step 3: Deriving Obfuscation Probabilities
Using the derived modulation patterns for the victim and attacker,
we then derive the attacker’s obfuscated observations. This pro-
cess is denoted as the second box, 𝑋𝑉 → 𝑌 , in Figure 3. Given
the non-deterministic nature of obfuscating schemes, we expect
that the attacker’s observations will exhibit complex probabilistic
characteristics, which need to be precisely characterized for the
correct measurement of side-channel leakage.

Recall that, due to obfuscation, for a given attacker and victim
modulation pattern, there may be several possible observations.
Thus, Metior describes the attacker’s observation as a probabilistic
random variable 𝑌 , denoting the conditional probability distribu-
tions of the attacker’s observations for a given victim modulation
pattern 𝑥𝑉 and attacker modulation 𝑎, written as Pr[𝑦 |𝑥𝑉 , 𝑎].

For simple obfuscating schemes, it may be possible to construct
closed-form expressions to derive the conditional probabilities
Pr[𝑦 |𝑥𝑉 , 𝑎]. When examining realistic obfuscation schemes, how-
ever, Metior estimates Pr[𝑦 |𝑥𝑉 , 𝑎] via Monte Carlo simulations.
To do so, a simulator emulating the behaviour of the obfuscation
scheme under study is required. For each attacker modulation 𝑎 and
victim modulation pattern 𝑥𝑉 , we use such a simulator to observe
the incidence rate (and thus the conditional probability) of each 𝑦.

Depending on the structure, deriving Pr[𝑦 |𝑥𝑉 , 𝑎] may require
assuming an initial microarchitectural state. Metior generally as-
sumes a known initial state (e.g. a cold cache), however, if desired,
Pr[𝑦 |𝑥𝑉 , 𝑎] can be further augmented to probabilistically consider
different initial microarchitectural states.

Passive attackers are a simpler sub-problem that can also be
modeled by Metior. Since passive attackers do not perturbate the
channel, 𝑌 is not dependent on any attacker modulation 𝑎. In these

7

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

cases, the conditional probability distributions of the attacker’s
observations are simply defined as Pr[𝑦 |𝑥𝑉].

It is usually desirable to understand the effectiveness of obfusca-
tion schemes in a noise-free environment. Thus, in this paper, we do
not consider noise, unless injecting noise into the protected system
is considered as a scheme itself. In such a case, Metior’s analysis
flow can be adapted by deriving the attacker’s noisy observations
of the channel.

4.5 Step 4: Computing Leakage
As a final step, we use the derived conditional probabilities of
the attacker’s observations to evaluate the leakage of an obfus-
cation scheme. The goal of this leakage evaluation is to derive a
consistent metric to compare the leakage of different victim ap-
plications, attack strategies, and obfuscation configurations. This
process presents a maximization problem. Since different attacker
modulation patterns may result in different amounts of leakage, it
is desirable to search for an optimal attack modulation pattern in a
specified attack space in order to maximize this leakage.

To quantify leakage we use the notion ofMaximal Leakage. Max-
imal Leakage was first defined and studied by Issa et al. [23] and
later used to specifically study side-channels by Wu et al. [49].
Intuitively, Maximal Leakage measures how much an obfuscated
side-channel observation helps the attacker to make a correct guess
of the victim’s modulation pattern compared to a blind guess. Note
that this metric provides a relative measurement, rather than an
absolute number of bits being leaked.

More formally, Maximal Leakage is the upper bound of the mul-
tiplicative gain of the attacker’s ability to guess the secret after
an observation. The metric computes the multiplicative gain by
maximizing it over any possible decoding strategy and comparing
it to the success rate of an attacker taking a blind guess. Maximal
Leakage has two equivalent definitions for an operational metric,
one for intuitive reasoning and the other for computation.

Equation (1) is for intuitive reasoning, where we denote the at-
tacker’s observations when using a given attack modulation pattern

𝑎 as 𝑌𝑎 := 𝑋 → 𝑌 (𝑎,𝑋𝑉) and any possible decoding strategy

as 𝑌 → 𝐺 (·).

max
{𝑆 | (𝑆⊥⊥𝑌𝑎 |𝑋𝑉) }

log2

©­­­­­­­«

max
𝑌 → 𝐺 (·)

Pr[𝑆 = 𝑌 → 𝐺 (𝑌𝑎)]

max𝐺 Pr[𝑆 = 𝐺]

ª®®®®®®®¬
(1)

The above expression of Maximal Leakage has been shown to be
equal to the following directly computable expression (measured
in bits). One of the nice features of the formula below is that it does
not require knowledge of the distribution of 𝑋𝑉 (see [23]).

𝐿𝑚𝑎𝑥 (𝑋𝑉 → 𝑌𝑎) = log2
©­«
∑︁
𝑦∈𝒴

[
max

𝑥𝑉 ∈𝒳𝑉

Pr[𝑦 |𝑥𝑉]
]ª®¬ (2)

It is important to note that the above definition of Maximal
Leakage only considers leakage from the victim’s modulation space

X=
0Pr
(Y

|X
)

Y=0 Y=1

0.5

X=
1

X=
0

X=
1 X=

0

Pr
(Y

|X
) 1.0

Y=0

X=
1

Leakage = log2(0.5+0.5) = 0.0 bits
a)

Leakage = log2(1.0) = 0.0 bits
b)

X=
0

Pr
(Y

|X
)

1.0

Y=0 Y=1

X=
1

Leakage = log2(1.0+1.0) = 1.0 bits
c) d)

0

0.75

Y=0 Y=1

0.25 X=
1

X=
0

1

Leakage = log2(0.75+0.75) = 0.58 bits

Pr
(Y

|X
)

Figure 5: Example conditional probability distributions, and
corresponding derived maximal leakage metrics.

to the attacker’s observation space. It does not say anything about
the leakage from the victim’s secret space.
Implications of Maximal Leakage. To examine the implications
of Maximal Leakage, consider the four examples shown in Fig-
ure 5, which assume a victim modulation space of two elements
(i.e., 𝑋 = 0 and 𝑋 = 1). In (𝑎), the attacker’s observations 𝑌 are
equally likely, regardless of the victim’s modulation pattern. Apply-
ing Equation (2), we observe that this results in 0 bits of leakage.
This denotes that the attacker’s ability to guess the victim mod-
ulation pattern is 20 = 1× (e.g. the same as) the probability of a
blind guess, aligning with our intuition that no information can be
leaked.

Example (𝑏) also leaks nothing, since there is only one possible
observation for the attacker, with this observation being identical
across the two different victim modulations.

In (𝑐), there is a one-to-one correspondence between the vic-
tim’s modulation pattern and the attacker’s observation. Maximal
Leakage denotes 1 bit of leakage in this case. Note that this 1 bit of
leakage does not indicate the leakage of 1 bit of the secret. Instead,
this indicates the attacker can guess the correct victim pattern
21 = 2× better than a blind guess. Since a blind guess has a 50%
probability of being correct, 2× of it means 100% accuracy, meaning
a complete leakage of the victim’s modulation pattern.

In (𝑑), the attacker only probabilistically learns about the vic-
tim’s modulation pattern. For example, when 𝑋 = 0, there is a 25%
chance that the attacker observes 𝑌 = 0, and a 75% chance that the
attacker observes 𝑌 = 1. As a result, Maximal Leakage computes
less than 1 bit of leakage.

Maximal Leakage should be used to compare different obfus-
cation scenarios with caution, since context plays a large role in
its interpretation. When distinguishing between two modulation
patterns, a leakage derivation of 1.0 bit corresponds to complete dis-
closure of the victim’s access patterns (e.g. Figure 5(c)). Conversely,
when attempting to distinguish between 64 victim modulation pat-
terns, leakage of 1 bit denotes a marginal increase in distinguishing
ability (i.e. from a 1

64 blind guess to a 21 · 1
64 = 1

32 chance). Metior’s
Maximal Leakage derivations should not be used as an absolute
vulnerability metric to compare different defenses (e.g. comparing
a persistent cache defense vs. an ephemeral memory controller
defense), and should only be directly compared if the victim’s mod-
ulation spaces are equivalently sized.

8

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

0 1 2 3 4
Number of Probe Misses (Y)

Leakage: 0.252

0.0

0.5

Ob
se

rv
at

io
n

Pr
ob

ab
ilit

y
Pr

[Y
|X

]

aobs: 1 Access

0 1 2 3 4
Number of Probe Misses (Y)

Leakage: 0.553

0.0

0.5

aobs: 4 Accesses

Number of Victim Accesses (X)
1 2

Figure 6: Derived conditional probability distributions of
attacker observations on a random replacement cache. Left:
Attacker probing one line. Right: Attacker probing four lines.

We note that Metior can employ other information theoretic
leakage metrics if desired, such as local differential privacy [23]
or mutual information [55]. Maximal Leakage has practical ad-
vantages over these metrics by providing an intuitive measure of
leakage which can be tractably estimated via sampling. A detailed
comparison of these metrics can be found in [49].

4.6 Revisiting Random Replacement
We now revisit the random replacement example outlined in Sec-
tion 3.2 to illustrate how we can apply Metior to study end-to-end
obfuscation leakage. Recall that we studied a victim that has a one-
bit secret 𝑆 , which maps to a victim modulation of either 1 or 2
cache accesses (𝑥𝑉 = 𝑠 + 1, 𝒳𝑉 = {1, 2}). The attacker’s modulation
pattern 𝑎𝑜𝑏𝑠 describes the number of cache accesses the attacker
performs during the probing step, from 1 to 4. For each attacker
and victim modulation, we use a Monte-Carlo simulation to find
the observation probabilities (running the simulation for 20,000
rounds to allow for the probabilities to converge).

In Figure 6 we show the derived conditional probabilities for
two attacker modulation patterns (𝑎𝑜𝑏𝑠 = {1, 4}). We then derive
the Maximal Leakage by applying Equation 2 to these computed
probabilities. This computation results in Figure 2. Observe that
the leakage induced by the 4 probe attacker is significantly higher
compared to the 1 probe attacker (0.553 vs. 0.252 bits). While the
probabilities in Figure 6 were derived via Monte Carlo simulations,
we note that calculating the leakage using probabilities derived
from an analytical model of the cache (i.e. the true conditional
probabilities) results in nearly identical Maximal Leakage results
(0.562 and 0.247 bits, respectively).

5 LIMITATIONS AND CLARIFICATIONS
We note several limitations when using Metior in practice, which
we classify into two categories: Metior’s computational complexity
and the interpretation of its leakage values.
Computational Complexity. When employing Metior to study
real-world applications and defense schemes, we acknowledge that
challenges can arise when deriving large victim modulation spaces
𝒳𝑉 , or when computing the closed-form conditional probability
expressions Pr[𝑦 |𝑥𝑉 , 𝑎].

When a victim program has a huge secret space, the space of
possible victim modulation patterns 𝒳𝑉 may be correspondingly
large. For instance, deriving the rDAGs for each of the possible 2256

secret keys in a cryptographic algorithm’s secret space is infeasible.
This can sometimes be alleviated by using an alternative modula-
tion representation that solely encapsulates the information used
by the attacker, reducing the modulation space size. For instance,
in Section 7 we showcase an example where symbolic execution
is leveraged to derive an alternative representation for AES when
studying cache occupancy attackers. By applying alternative repre-
sentations and studying victim programs with smaller secret spaces,
Metior can already offer valuable insights into the effectiveness of
state-of-the-art obfuscation mechanisms.

Additionally, we do not expect to be able to analytically derive
the closed-form expression Pr[𝑦 |𝑥𝑉 , 𝑎] for nontrivial obfuscating
schemes. As such, Metior relies on Monte Carlo simulations to
derive conditional probabilities. Since Monte Carlo simulations can
yield some degree of uncertainty, we take care to ensure that the
derived probabilities converge before calculating leakage.
Interpretation of Leakage Value. The Maximal Leakage value
generated by Metior should be interpreted as a relative metric to
compare an attacker’s ability to distinguish between a victim’s ob-
fuscated modulation patterns. Metior can be used to directly com-
pare the leakage across different attacker strategy spaces (demon-
strated in Section 8). It cannot, however, reason about attacks out-
side of an examined space, nor can it generate novel attack classes.
Despite this, we find that studying existing attack strategies on
complex obfuscation mechanisms already leads to new insights.

When interpreting the leakage value of a victim application,
one should note that the semantic meanings of “the secret being
leaked” and “the modulation pattern being distinguished” are two
related, but different things. For instance, determining the victim’s
modulation pattern may result in the direct leakage of a secret bit
(such as in RSA), or may leak some second-order information (e.g.,
narrow down the set of possible AES keys). By decoupling from
the semantics of the studied program, only measuring the level of
distinguishability of obfuscated modulation patterns, Metior can
focus on the leakage from the obfuscation defense scheme itself.

6 CASE STUDY OVERVIEW
To demonstrate Metior’s ability to study obfuscating defenses, we
use the remainder of this paper to provide three case studies show-
casing Metior. Throughout these case studies, we focus on dis-
cussing how various engineering challenges can be addressed when
using Metior, including how to map real programs to concrete se-
cret and modulation spaces which make leakage computations
tractable, and how to concretely derive observation probabilities
via simulation.

We provide a preview of the three case studies below. For each
case study we describe the concrete questions that drove us to
design it, and summarize new and insightful findings that we think
could benefit the community.

In Case Study I (Section 7), we aim to offer a case study that
exhibits many of the possible engineering challenges in the eval-
uation of obfuscating schemes. In doing so, we try to answer the
following two questions. First, is it feasible to study a victim pro-
gram with a large secret space? Second, can Metior indeed be used
to quantitatively compare different attack strategies and identify an
optimal strategy that maximizes leakage? To this end, we choose

9

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

to study the effectiveness of random replacement caches in obfus-
cating an AES victim’s memory access patterns against a cache
occupancy [40] attacker.

In Case Study II (Section 8), we extend our security analysis
to compare different classes of attacks. Specifically, we study a
state-of-the-art randomly mapped cache, Skewed-CEASER [35],
comparing the leakage of cache occupancy attacks and Probabilis-
tic Prime+Probe (PPP) attacks [34]. We note that the community
has considered these two attacks to be distinct, and has often sepa-
rated them into distinct threat models [36]. Our evaluation results
offer new insights to help understand the working mechanisms
behind PPP, casting doubt onto this claim. We find that, under cer-
tain obfuscating configurations, PPP works by primarily exploiting
cache occupancy effects, rather than exploiting targeted conflicts.

Finally, in Case Study III (Section 9), we are driven to show
whether Metior can be used to evaluate obfuscating schemes
that mitigate ephemeral side-channels. As there exists obfuscating
schemes that involve tunable parameters to trade-off between secu-
rity and performance, we are additionally curious to see whether
Metior can explore this trade-off space. With the above pursuit
in mind, we choose to evaluate Camouflage [55], a DRAM traffic
shaper which shapes a victim’s traffic patterns to a tunable timing
distribution. The presumption of such a tunable scheme is that by
slightly relaxing security, we expect to see some small performance
benefits with a marginal amount of security loss. However, Metior
reveals that Camouflage has a complex security/performance trade-
off space, identifying scenarios where a significant amount of in-
formation can be leaked even with a small amount of relaxation.

7 CASE STUDY I: COMPARING ATTACK
STRATEGIES

We first set out to provide an end-to-end demonstration of Metior in
studying the effectiveness of randomly mapped caches in protecting
the S-Box implementation of AES [44], an application with a large
secret space. To this end, we choose to study the side-channel leak-
age of fully-associative caches which employ random replacement
policies. The use of fully-associative random replacement schemes
has been a desirable choice to attain security since they do not
allow for fine-grained set-conflict attacks. While fully-associative
random replacement schemes (and schemes which emulate their
properties, such as MIRAGE [36]) block set-conflict attacks, their
lack of strict partitioning still leaves them vulnerable to cache occu-
pancy attacks [40]. As noted in Section 3.2, a cache’s replacement
policy plays a large role in the amount of leakage observed in a
fully-associative cache. We are curious to know by how much ran-
dom replacement can help mitigate cache occupancy attacks which
target real-world victims with small memory footprints.
Defining the Victim’s Spaces 𝒮 and𝒳𝑉 . We examine an attacker
who is trying to learn about the victim’s secret key, thus the secret
space examined is 𝒮 = [0, 2256). An occupancy attacker attempts
to distinguish the number of distinct cache lines accessed by the
victim (a function of the secret key), thus 𝑥𝑉 can be represented by
an integer access count (avoiding the complexity of rDAGs).

Since the secret space is very large, it is infeasible to directly
derive the access counts for each possible secret key via brute-force
simulation. Instead, to determine the set of possible access counts

0 500 1000 1500 2000
Number of Lines Primed

0.00

0.25

0.50

0.75

1.00

M
ax

im
al

 L
ea

ka
ge

 (b
its

)

Number of Priming Iterations
1 2 4 8

Figure 7: Leakage across varying attacker strategies when
distinguishing between AES access patterns. Increasing prim-
ing iterations increases leakage, but priming too many lines
can result in a leakage decrease due to self-conflicts.

𝒳𝑉 we use KLEE [5], a program-level symbolic execution frame-
work. KLEE derives the relationship between a symbolic input (the
secret key) and the number of distinct cache line accesses the vic-
tim performs (assuming 64B cache lines). For every possible cache
access count (bounded between zero and the maximum number of
memory accesses issued by the program), KLEE uses a SMT solver
to determine if it is possible for the victim to issue a given count.
If a concrete key is found which results in a given distinct cache
line count, that count is included in 𝒳𝑉 . Using our KLEE workflow
to study the AES program under evaluation, we determine that
between 15 and 26 distinct cache lines (inclusive) are accessed in
the first round of encryption.
Attacker Modulation 𝑎 and Observation Space 𝒴 . A cache
occupancy attacker’s modulation 𝑎 consists of two steps, 𝑎𝑝𝑟𝑒 and
𝑎𝑜𝑏𝑠 . Using 𝑎𝑝𝑟𝑒 , the attacker primes (pre-conditions) the cache
by sequentially accessing a set of addresses (the priming set). As
the attacker does not target specific cache sets, these addresses
(with distinct tags) are chosen arbitrarily. The addresses can be
accessed multiple times to increase the probability of installing all
lines before the victim runs. After the victim runs, the attacker
probes the cache by re-accessing the primed addresses (i.e. 𝑎𝑜𝑏𝑠).
The attacker’s observation 𝑦 denotes the number of misses during
this probing step.
Comparing Leakage of Varying Attack Parameters. We com-
pare the leakage of a space of cache occupancy attacks, varying two
parameters. First, we vary the number of elements in the attacker’s
priming set, increasing the number of cache lines monitored. Sec-
ond, we vary the number of times the attacker iterates over the
priming set, raising the likelihood that more of the priming set is
installed before probing.

We simulate a 128kB fully-associative cache with random re-
placement. We estimate the conditional probability distributions by
simulating the outlined attack 10,000 times for each victim modula-
tion pattern 𝑥𝑉 and attacker modulation pattern 𝑎, then estimate
the values of Pr[𝑦 |𝑥𝑉 , 𝑎].

The Maximal Leakage results derived byMetior are shown in Fig-
ure 7, highlighting key insights about different attacker strategies.

10

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

0 1000
0.00

0.25

0.50

0.75

M
ax

im
al

 L
ea

ka
ge

 (b
its

) 1 Way/HG

0 1000 2000
0.00

0.25

0.50

0.75
4 Way/HG

of Probing Lines

Occupancy PPP

Figure 8: Leakage comparison between Probabilistic
Prime+Probe and occupancy attacks for different Skewed-
CEASER configurations.

Across all attackers considered, Metior denotes an optimized leak-
age of 1.03 bits when priming 1319 out of 2048 total lines, with 8
priming iterations. Recall that this is a multiplicative leakage, repre-
senting an upper-bound on the theoretical gain of distinguishibility
compared to a blind guess. That is, the 1.03 bit attacker is about
twice (21.03) as successful than a blind guess in guessing the victim
access pattern. Again, we emphasize that this leakage derivation
does not equate to leaking 1.03 bits of the secret key directly.
Key Takeaways. By sweeping attacker parameters, Metior of-
fers several key insights into the underlying leakage behaviour
of fully-associative random replacement caches during occupancy
attacks. Increasing the number of priming iterations monotonically
increases leakage, as more priming iterations increases the expected
number of primed lines resident in the cache. Increasing the size of
the priming set, however, sometimes reduces leakage. Since increas-
ing the size of the priming set increases the number of self-conflicts,
it is more difficult for an attacker to distinguish conflicts caused by
the victim, and conflicts caused by its own accesses.

8 CASE STUDY II: COMPARING ATTACK
CLASSES

In the second case study, we showcase the use of Metior in the
quantitative comparison of different defense scheme configura-
tions, and the vulnerability of these configurations against different
classes of attacks. We choose to analyze the leakage of Skewed-
CEASER (CEASER-S) [35], a popular randomly mapped cache de-
fense scheme.We compare the effectiveness of two classes of attacks
against CEASER-S: Probabilistic Prime + Probe [34] (PPP) and cache
occupancy. In doing so, we gain a better understanding of how PPP
attacks leak information, revealing new insights that prior work [2]
did not offer.
Evaluation Setup. In line with prior work [2] that evaluates the
security property of CEASER-S against PPP attacks, we examine
attackers who attempt to leak a single key bit of an RSA victim
(𝒮 = {0, 1}). The victim accesses 10 distinct lines if the secret key
bit is 0, and 26 distinct lines otherwise (thus, 𝒳𝑣 = {10, 26}). We
examine two 16-way 128KB cache configurations of CEASER-S:
one configuration using 1 way per hash group (HG), and the other
using 4 ways per HG (with an LRU policy inside each HG).
Comparing PPP and Occupancy Attacks. In Figure 8, we show
the Maximal Leakage of PPP and occupancy attacks when varying
the number of probing lines used in each attack. In a PPP attack, the

attacker constructs an eviction set using an eviction set generation
strategy [34, 35] to find addresses that map to the same sets as the
victim’s accesses. This step is referred to as the calibration step.
With the eviction set, PPP can only probabilistically collide with
the victim’s addresses. Prior work [2, 34] considers the calibration
step to be key in the success of PPP attacks.

In line with CaSA [2], we configure the PPP attacker to use
1024 candidate addresses and repeat the calibration steps up to 200
times to ensure calibration can be completed within the scheme’s
re-keying window. The maximum number of probing lines that
PPP can generate within this interval is denoted using the vertical
red dotted line. The attacker uses the eviction set generated during
calibration to Prime+Probe the cache, aiming to observe targeted
collisions with the victim.

We observe that the leakage characteristics for the attacks target-
ing the 1 way/HG Skewed-CEASER configuration are practically
indistinguishable under the PPP and occupancy attacks studied.
This indicates that the occupancy effects dominate the attacker’s
ability to distinguish between the victim’s modulation patterns,
with little to no leakage improvement gained from calibration. This
new observation suggests that a PPP attack on a 1 way/HGCEASER-
S configuration may primarily exploit leakage via occupancy.

In the 4 way/HG case, when probing the cachewith an equivalent
number of addresses, the leakage of PPP is significantly higher than
an occupancy attack, indicating that calibration is indeed successful
in improving a PPP attack’s ability to distinguish between the
victim’s modulation patterns. Observe however that occupancy
attacks leak a roughly equivalent amount when a larger number of
probing addresses are used.
Key Takeaways. By quantifying and comparing the leakage of
different attack strategies, Metior can help to identify the underly-
ing mechanisms which make an attack strategy successful. Prior
work [2] presumed that Probabilistic Prime+Probe (PPP) attacks
relied on targeted collisions with the victim’s accesses to leak infor-
mation. This led to major efforts towards constructing eviction sets.
Based on our analysis, however, we find that the attack primarily
exploits occupancy effects under certain obfuscation configurations
(e.g. 1 way/HG CEASER-S). In these cases, extra eviction set con-
struction efforts do not help increase leakage. This observation
suggests that when designing obfuscating schemes for certain real-
world victim applications, we should take occupancy attacks into
consideration, as they can sometimes achieve a similar level of
leakage as set-conflict attacks.

9 CASE STUDY III: STUDYING EPHEMERAL
OBFUSCATION SCHEMES

In the last case study, we demonstrate Metior’s use in analyzing the
leakage of Camouflage [55], an obfuscation scheme which targets
ephemeral channels. Camouflage defends against memory timing
side-channels by shaping the victim’s traffic patterns to a tunable,
secret-independent distribution. While the selection of this distri-
bution provides a trade-off between security and performance, no
prior work has studied the security implications of Camouflage’s
different defense configurations.
Camouflage Overview. Camouflage obfuscates the timing of a
victim’s DRAM requests by shaping their inter-request timing to

11

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

Victim Shaper's
Target Distribution

(a)

Time
0 100 200 300

Victim's Shaped
Request Pattern

(b)

①

②1 1

100 200

Fr
eq

ue
nc

y

Injection Interval

Memory Request

Figure 9: An example of Camouflage’s inability to hide fine-
grained request patterns.

a secret-independent distribution, delaying the victim’s requests
and issuing fake requests when necessary. The shaping distribu-
tions are represented using a histogram, with each histogram bin
containing a number of credits. Each histogram bin represents a
certain inter-arrival time interval, and each credit represents one
memory transaction that can be issued to fulfill that interval.

We evaluate an implementation of Camouflage which shapes
the memory requests of the victim. The shaper enforces the desired
timing distribution by delaying a memory transaction if there are
no credits available in the bin representing the request’s current
inter-arrival time. Requests which are issued between bin intervals
are delayed until the next bin, and a fake request is always issued if
the current inter-arrival time matches the last remaining bin with
credits (ensuring that the shaping histogram is always adhered to).
Bin credits are replenished to recover the shaping distribution after
all have been consumed.
Camouflage’s Ordering Vulnerability. As discussed in the Cam-
ouflage paper [55] (and further in [13]), Camouflage still leaks some
information through the fine-grained ordering of the selected mem-
ory request intervals, despite faithfully shaping traffic to a secret-
independent distribution. Since the ordering of the timing intervals
drawn from the distribution is not fixed by Camouflage, the output
of the shaper is not independent from the victim’s secret-dependent
traffic. Thus, two different victim access patterns may be shaped
to two different shaped access patterns. Consider the shaping ex-
ample shown in Figure 9, wherein the shaping distribution (shown
in Figure 9a) allows for one 100-cycle interval and one 200-cycle
interval. Depending on the underlying victim modulation pattern
to be shaped, the shaper may generate one of two access patterns
(Figure 9b 1 or 2). An attacker who can distinguish between these
two shaped access patterns can thus learn information about the
victim’s original modulation pattern (i.e. the DRAM access pattern
being obfuscated by the shaper).

Camouflage’s existing security evaluation derives the mutual
information between the overall traffic distributions before and
after the shaper, ignoring the ordering effect. As such, this existing
evaluation only provides high-level insights into the leakage of
attackers who cannot observe fine-grained timing information. We
are interested in using Metior to improve upon and extend this
analysis, studying the leakage of attackers which leak information
via the fine-grained latencies of their own accesses.
Evaluation Setup. We study the leakage of nine different shaping
histograms, each containing 20 credits distributed over five bins,

100 200 300
Histogram Bin

0
5

10

of
 C

re
di

ts

0.0 2.5 5.0
Maximal Leakage (bits)

0
15

0
30

0

of
 A

tta
ck

s

Figure 10: Left: (8,4,6,2,2) shaping configuration. Right: Leak-
age for varying attack strategies under (8,4,6,2,2) config.

A0 A1 AN
50

,00
0 /

 N

50
,00

0 /
 N

tstart tend

... AN-1

Figure 11: Attacker Modulation Pattern Template

which are selected to represent the wide variety of shaping distribu-
tions available. Each histogram configuration is defined by a 5-tuple,
where each element of the tuple is the number of credits for a bin
representing an inter-arrival time of 100, 150, 200, 250, or 300 cycles.
Figure 10(a) shows the histogram configuration (8, 4, 6, 2, 2), repre-
senting a timing distribution obtained via profiling a representative
execution. Alternatively, the (20, 0, 0, 0, 0) histogram represents a
configuration where Camouflage issues requests at a constant rate
of 100 cycles.

We study the ability of Camouflage to protect DocDist [19], a
program calculating the euclidian distance between words in a
public and private document. We measure the attacker’s ability
to discern between the DRAM access patterns of 64 different pri-
vate documents (𝒮 = [0, 64)). For each of the 64 documents, we
generate a memory access pattern rDAG representing the first
fifty-thousand instructions of the secret-dependent region using
a modified version of ZSim [37]. The attacker attempts to discern
which modulation pattern (rDAG) the victim issued, thus the high-
est leakage an attacker could possibly observe is 6 bits (representing
a 26 = 64× multiplicative improvement of guessing correctly after
its observation, compared to a blind guess). To derive observation
probabilities, wemodel amemory controller employing Camouflage
using a first-come first-serve scheduling policy with an unpipelined
access latency of 100 cycles.

We examine varying ephemeral attackers which issue a series
of dependent DRAM accesses. We consider the space of attacker
rDAGs representing modulation patterns containing between 2
and 500 memory requests, with uniform edge weights summing to
50,000 cycles. This space of considered attacker rDAGs is shown
in Figure 11. The attacker’s observation 𝑦 is the total number of
cycles needed to complete its accesses.
Results. A summary of the observed leakage for all nine shaping
distributions considered is shown in Figure 12. We report the mean
and the maximum value of the Maximal Leakage observed when
sweeping across the entire space of considered attacker modulation
patterns. When no shaping is employed (denoted by the horizontal
lines), an optimized attacker leaks all six bits of information (5.93
bits on average). When shaping is employed, the optimized Maxi-
mal Leakage of all shaping histograms considered exceeds 4 bits,

12

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

(0
, 0

, 0
, 0

, 2
0)

(0
, 0

, 0
, 1

8,
 2

)
(0

, 0
, 1

6,
 2

, 2
)

(0
, 1

0,
 6

, 2
, 2

)
(8

, 4
, 6

, 2
, 2

)
(8

, 4
, 6

, 4
, 0

)
(8

, 4
, 8

, 0
, 0

)
(8

, 1
2,

 0
, 0

, 0
)

(2
0,

 0
, 0

, 0
, 0

)

Shaping Histogram

0

2

4

6

M
ax

im
al

 L
ea

ka
ge

 (b
its

)

Mean
Max

No Shaping (Max)
No Shaping (Mean)

Figure 12: Leakage of Camouflage employing different shap-
ing distributions, considered over differing attack strategies.

indicating significant amounts of leakage across all (non-constant-
rate) shaping distributions considered. Note that while single-bin
configurations guarantee no leakage, they are undesirable since
they do not consider the victim’s dynamic memory requirements
(potentially resulting in poor performance). A detailed breakdown
of the leakage observed for a selected histogram (8,4,6,2,2) across
all attacker strategies considered is shown in Figure 10(b).

Intuitively, one might expect that by increasing the flexibility of
the shaping distribution (improving performance), Camouflage’s
leakage will gradually increase in tandem. However, we observe
that such an intuition can sometimes be incorrect. Considering the
highest observed leakage across all attacker strategies, the single-
bin distributions leak 0 bits, while a slightly relaxed distribution (e.g.
(0,0,0,18,2)) leaks 4.5 bits about the victim’s modulation pattern. We
observe relatively similar maximized leakage across the remaining
non-constant-rate distributions considered.
Key Takeaways. The above analysis demonstrates that the trade-
off space between security and performance in a tunable obfusca-
tion scheme can be non-linear. In the case of Camouflage, one may
presume that slightly relaxing the constraint of the traffic shaper
will buy the user a small amount of performance benefit with a
small amount of security loss. However, our analysis demonstrates
that even when the shaping distribution is slightly relaxed from
the constant-rate case, significant amounts of information about
the victim’s modulations could still be leaked. This demonstrates
that great care should be taken when employing Camouflage, since
significant amounts of information about the victim’s modulations
could still be leaked by a side-channel attacker – even when the
shaping distribution is slightly relaxed from the constant-rate case.

10 RELATEDWORK
We now compare Metior with prior work on side-channel analysis,
focusing on the modeling of the victim program space, the attackers
considered, and their leakage derivations.
Modeling Victim Space. Very little work comprehensively consid-
ers the victim’s secret space and modulation patterns. CSV [53] and

SVF [10] do not have a notion of victim spaces. Hunger et al. [22]
focus on analyzing covert channels communicating a boolean se-
cret. CacheFx [20] evaluates randomly-mapped caches assuming a
boolean secret. This overly simplified modeling is also used by He
et al [21]. CaSA [2] and Domnitser et al. [14] consider more diverse
cache access patterns, but still in boolean secret context. Köpf and
Basin [26, 27] present a model studying the direct leakage of a se-
cret, however their model can only be applied to study deterministic
systems/side-channels.
Modeling Different Attack Classes. Prior work on modeling the
attacker space is also far from comprehensive. Wu et al. [49] and
CHALICE [8] can only target passive (rather than active) attacks.
A line of work exists analyzing cache side-channel attacks [2, 6,
8, 11, 16, 20, 21, 54]. These approaches are limited to studying
persistent side-channels, and cannot be applied to ephemeral ones.
CacheAudit [16] over-approximates a program’s possible cache
states via static analysis to derive conservative leakage estimates –
we note that deriving the possible states for randomized caches (a
large space) will not lead to useful bounds.
Leakage Metric. Metior uses Maximal Leakage [49] as its metric,
which offers a tractable and interpretable leakage value. Hunger
et al. [22] uses mutual information to analyze covert channels.
CSV [53] and SVF [10] uses the correlation between the victim
and the attacker’s traces, however these metrics are not useful in
analyzing obfuscation techniques which distort the victim’s modu-
lations. CaSA [2], He et al. [21], and Domnitser et al. [14] use the
probabilities of observing certain cache events as a leakage metric
assuming a boolean secret space.

11 CONCLUSION
We presented Metior, a comprehensive random variable model
that evaluates the effectiveness of obfuscating side-channel de-
fense schemes. Metior offers key contributions in describing the
side-channel information flow through these schemes for wide
classes of attacks, including those which leverage both persistent
and ephemeral side-channels. By extending existing work from in-
formation theory to quantify this flow, we have shown that Metior
reveals interesting leakage behaviours of state-of-the-art obfuscat-
ing schemes. We hope to further inspire the community to leverage
Metior to explore how different defense parameters, victims, and
attacker classes affect the side-channel leakage of new and existing
obfuscation schemes.

ACKNOWLEDGMENTS
This work was funded in part by the NSF under grants CNS-2046359
and CCF-2217099, and the Air Force Office of Scientific Research
under grants FA9550-20-1-0402 and FA9550-22-1-0511. Additional
funding was provided via a gift from Intel, and anMIT RSC research
fund. We thank the anonymous reviewers and our shepherd for all
of their valuable feedback during the review process.

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact is comprised of a cache model, an occupancy attack
implementation, and a Maximal Leakage calculator. The cache

13

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

model can be configured to simulate various different cache ar-
chitectures (including fully-associative random replacement caches
and CEASER-S) under varying configurations. The occupancy at-
tack implementation leverages this cache model to simulate the
attacker’s (probabilistic) observations for a given attacker/victim
scenario. The top-level script (runSweep.py) samples a large num-
ber of observations from this implementation, sweeping across
varying attacker strategies for a given victim space. Using these
samples, our artifact provides an estimate of an attack’s Maximal
Leakage.

We have provided an end-to-end flow to replicate the results of
Case Study I/Figure 7, demonstrating the leakage of cache occu-
pancy attacks waged against an AES implementation for a glob-
ally random-replacement cache architecture. The provided scripts
sweep varying cache occupancy attacker strategies (including the
number of lines primed, and the number of priming iterations). This
flow can be extended by researchers to easily derive the Maximal
Leakage values for their own simulations.

A.2 Artifact check-list (meta-information)
• Algorithm: Maximal Leakage derivation via Monte Carlo simulation.
• Run-time environment: Python 3.
• Output: Maximal Leakage value (in bits) for varying attacker configura-
tions, presented in a format identical to Figure 7.

• Experiments: Cache occupancy attack attempting to leak AES victim
modulation patterns.

• How much disk space required (approximately)?: 100KB
• How much time is needed to prepare workflow (approximately)?:
5 minutes

• How much time is needed to complete experiments (approxi-
mately)?: 24-48 Hours (on 96 core machine).

• Publicly available?: Yes, available at https://github.com/CSAIL-Arch-
Sec/Metior

• Code licenses (if publicly available)?: MIT License.
• Archived (provide DOI)?: 10.5281/zenodo.7823897.

A.3 Description
A.3.1 How to access. Our cache models, simulator, and Maximal
Leakage calculator is available at https://github.com/CSAIL-Arch-
Sec/Metior.

A.4 Installation
Our infrastructure is built using Python 3. We require several
Python dependencies for execution and figure plotting, which can
be installed by running:

pip3 install -r requirements.txt

A.5 Experiment workflow
The entire experimental workflow is managed by the top-level
runSweep.py script, which is run by calling:

python3 runSweep.py

The ‘Experiment Parameters’ section of this script defines the
attacker strategies and victim access patterns to be examined. For
each unique attacker strategy and victim access pattern, an instance

of singleSub (in runSweep.py) will run on a single core. Thus,
varying attacker strategies will simultaneously run on all cores
on the experiment machine. A single instance of singleSub will
examine the leakage of the victim for its assigned attacker strategy,
performing aMonte Carlo simulations of an occupancy attack. Once
the Monte Carlo simulations have completed, the leakage value for
the studied attacker/victim pair is returned by singleSub.

Once the simulations for all attacker strategies have com-
pleted, the Maximal Leakage results are saved to an archive file
(results.pkl). The results can be visualized (as in Figure 7) by
running:

python3 plotResults.py results.pkl

A.6 Evaluation and expected results
The results generated/plotted from this artifact should match those
shown in Figure 7. Some negligible statistical noise may be observed
(due to the probabilistic sampling nature of Metior), however they
should not impact the overall trends and takeaways observed.

A.7 Experiment customization
If desired, additional attacker strategies can be examined by aug-
menting the ‘Experiment Parameters’ section of runSweep.py.

It is important to note that the simulation time is heavily influ-
enced by the number of Monte Carlo iterations performed by the
cache occupancy algorithm. Figure 7 was derived by running the
algorithm with 20,000 iterations (cache.iterations = 20000),
however this takes several days on a 96 core server. Since this may
not be desirable for rapid evaluation, we suggest running the script
with far fewer iterations (e.g. cache.iterations = 1000), which
will result in a noisier plot, but with the same overall trends.

A.8 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE. https://doi.org/10.1109/SP.2019.
00066

[2] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer, and Mengjia
Yan. 2020. CaSA: End-to-end Quantitative Security Analysis of RandomlyMapped
Caches. In Proceedings of the 53th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE. https://doi.org/10.1109/MICRO50266.2020.
00092

[3] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order Pro-
cessor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing
Machinery, New York, NY, USA, 42–56. https://doi.org/10.1145/3352460.3358310

[4] M. Busi, J. Noorman, J. Bulck, L. Galletta, P. Degano, J. Muhlberg, and F. Piessens.
2020. Provably Secure Isolation for Interruptible Enclaved Execution on Small
Microprocessors. In 2020 IEEE 33rd Computer Security Foundations Symposium
(CSF). IEEE Computer Society, Los Alamitos, CA, USA, 262–276. https://doi.org/
10.1109/CSF49147.2020.00026

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

14

https://github.com/CSAIL-Arch-Sec/Metior
https://github.com/CSAIL-Arch-Sec/Metior
https://github.com/CSAIL-Arch-Sec/Metior
https://github.com/CSAIL-Arch-Sec/Metior
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/MICRO50266.2020.00092
https://doi.org/10.1109/MICRO50266.2020.00092
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1109/CSF49147.2020.00026

Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[6] Pablo Cañones, Boris Köpf, and Jan Reineke. 2017. Security Analysis of Cache
Replacement Policies. CoRR abs/1701.06481 (2017). arXiv:1701.06481 http:
//arxiv.org/abs/1701.06481

[7] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang,
Ranjit Jhala, and Deian Stefan. 2017. FaCT: A Flexible, Constant-Time Pro-
gramming Language. In 2017 IEEE Cybersecurity Development (SecDev). 69–76.
https://doi.org/10.1109/SecDev.2017.24

[8] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. 2019.
Quantifying the information leakage in cache attacks via symbolic execution.
ACM Transactions on Embedded Computing Systems (TECS) 18, 1 (2019), 1–27.

[9] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and
Mengjia Yan. 2022. Don’t Mesh Around: Side-Channel Attacks and Mitigations
on Mesh Interconnects. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 2857–2874. https://www.usenix.org/
conference/usenixsecurity22/presentation/dai

[10] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.
Side-channel vulnerability factor: A metric for measuring information leakage.
In 2012 39th Annual International Symposium on Computer Architecture (ISCA).
106–117. https://doi.org/10.1109/ISCA.2012.6237010

[11] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Analysis of secure caches
using a three-step model for timing-based attacks. Journal of Hardware and
Systems Security 3, 4 (2019), 397–425.

[12] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2020. A Benchmark Suite for
Evaluating Caches’ Vulnerability to Timing Attacks. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM. https://doi.org/10.1145/3373376.3378510

[13] Peter W Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S Emer,
and Mengjia Yan. 2022. DAGguise: mitigating memory timing side channels. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 329–343.

[14] Leonid Domnitser, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2010. A Pre-
dictive Model for Cache-Based Side Channels in Multicore and Multithreaded
Microprocessors. In Computer Network Security, Igor Kotenko and Victor Skormin
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 70–85.

[15] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-Monopolizable Caches: Low-Complexity Mitigation of
Cache Side Channel Attacks. ACM Trans. Archit. Code Optim. 8, 4, Article 35 (jan
2012), 21 pages. https://doi.org/10.1145/2086696.2086714

[16] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke.
2013. CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In 22nd
USENIX Security Symposium (USENIX Security 13). USENIX Association, Wash-
ington, D.C., 431–446. https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/paper/doychev

[17] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward
Suh. 2017. Verification of a Practical Hardware Security Architecture Through
Static Information Flow Analysis. SIGPLAN Not. 52, 4 (apr 2017), 555–568. https:
//doi.org/10.1145/3093336.3037739

[18] Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. 2018.
HyperFlow: A Processor Architecture for Nonmalleable, Timing-Safe Information
Flow Security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 1583–1600. https://doi.org/10.1145/3243734.
3243743

[19] Hazem Gamal. 2020. Document Distance. https://github.com/Hazem-Gamall/
document-distance.

[20] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou, Thomas Unter-
luggauer, and Yuval Yarom. 2022. CacheFX: A Framework for Evaluating Cache
Security. https://doi.org/10.48550/ARXIV.2201.11377

[21] Zecheng He and Ruby B Lee. 2017. How secure is your cache against side-channel
attacks?. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. 341–353.

[22] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath,
and Mohit Tiwari. 2015. Understanding contention-based channels and using
them for defense. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). 639–650. https://doi.org/10.1109/HPCA.2015.
7056069

[23] Ibrahim Issa, Sudeep Kamath, andAaron B.Wagner. 2016. An operationalmeasure
of information leakage. In 2016 Annual Conference on Information Science and
Systems (CISS). 234–239. https://doi.org/10.1109/CISS.2016.7460507

[24] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE. https://doi.org/10.1109/MICRO.2018.00083

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/
SP.2019.00002

[26] Boris Köpf and David Basin. 2007. An Information-Theoretic Model for Adaptive
Side-Channel Attacks. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (Alexandria, Virginia, USA) (CCS ’07). Association
for Computing Machinery, New York, NY, USA, 286–296. https://doi.org/10.
1145/1315245.1315282

[27] Boris Köpf and David Basin. 2011. Automatically Deriving Information-Theoretic
Bounds for Adaptive Side-Channel Attacks. J. Comput. Secur. 19, 1 (jan 2011),
1–31.

[28] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

[29] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy (SP). IEEE. https://doi.org/10.1109/SP.2015.43

[30] Mulong Luo, Andrew C. Myers, and G. Edward Suh. 2020. Stealthy Tracking
of Autonomous Vehicles with Cache Side Channels. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 859–876. https://www.
usenix.org/conference/usenixsecurity20/presentation/luo

[31] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 118–129.

[32] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-driven Cache
Attacks on AES. In Selected Areas in Cryptography. Springer.

[33] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security). USENIX Association.

[34] Antoon Purnal and Ingrid Verbauwhede. 2019. Advanced profiling for prob-
abilistic Prime+Probe attacks and covert channels in ScatterCache. CoRR
abs/1908.03383 (2019). arXiv:1908.03383 http://arxiv.org/abs/1908.03383

[35] Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address
cache. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 360–371.

[36] Gururaj Saileshwar and Moinuddin Qureshi. 2021. MIRAGE: Mitigating Conflict-
Based Cache Attacks with a Practical Fully-Associative Design. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 1379–1396. https:
//www.usenix.org/conference/usenixsecurity21/presentation/saileshwar

[37] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[38] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and
Mohit Tiwari. 2015. Avoiding Information Leakage in the Memory Controller
with Fixed Service Policies. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO). ACM. https://doi.org/10.1145/2830772.2830795

[39] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2021. Database
Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on SQLite.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
1019–1035. https://www.usenix.org/conference/usenixsecurity21/presentation/
shahverdi

[40] Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru, Yarden Haskal, Lachlan
Kang, Dvir Levi, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom.
2021. Website Fingerprinting Through the Cache Occupancy Channel and its
Real World Practicality. IEEE Transactions on Dependable and Secure Computing
18, 5 (2021), 2042–2060. https://doi.org/10.1109/TDSC.2020.2988369

[41] Jakub Szefer. 2016. Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses. Journal of Hardware and Systems Security (2016).

[42] Daniel Townley, KeremArıkan, YuDavid Liu, Dmitry Ponomarev, and Oguz Ergin.
2022. Composable Cachelets: Protecting Enclaves from Cache Side-Channel
Attacks. In 2022 USENIX Security Symposium.

[43] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating Fine
Grained Timers in Xen. In Proceedings of the 3rd ACM Workshop on Cloud Com-
puting Security Workshop (Chicago, Illinois, USA) (CCSW ’11). Association for
Computing Machinery, New York, NY, USA, 41–46. https://doi.org/10.1145/
2046660.2046671

[44] Paulo Barreto Vincent Rijmen, Antoon Bosselaers. [n. d.]. Optimised ANSI C
code for the Rijndael cipher. https://opensource.apple.com/source/BerkeleyDB/
BerkeleyDB-15/db/crypto/rijndael/rijndael-alg-fst.c.auto.html

[45] Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. 2014. Timing Channel
Protection for a Shared Memory Controller. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE. https:
//doi.org/10.1109/HPCA.2014.6835934

[46] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the 34th annual
international symposium on Computer architecture. 494–505.

[47] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner,
Frederic T. Chong, and Timothy Sherwood. 2013. SurfNoC: A Low Latency and
Provably Non-interfering Approach to Secure Networks-on-chip. In Proceedings
of the 40th Annual International Symposium on Computer Architecture (ISCA).

15

https://arxiv.org/abs/1701.06481
http://arxiv.org/abs/1701.06481
http://arxiv.org/abs/1701.06481
https://doi.org/10.1109/SecDev.2017.24
https://www.usenix.org/conference/usenixsecurity22/presentation/dai
https://www.usenix.org/conference/usenixsecurity22/presentation/dai
https://doi.org/10.1109/ISCA.2012.6237010
https://doi.org/10.1145/3373376.3378510
https://doi.org/10.1145/2086696.2086714
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://doi.org/10.1145/3093336.3037739
https://doi.org/10.1145/3093336.3037739
https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/3243734.3243743
https://github.com/Hazem-Gamall/document-distance
https://github.com/Hazem-Gamall/document-distance
https://doi.org/10.48550/ARXIV.2201.11377
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/CISS.2016.7460507
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/1315245.1315282
https://doi.org/10.1145/1315245.1315282
https://doi.org/10.1109/SP.2015.43
https://www.usenix.org/conference/usenixsecurity20/presentation/luo
https://www.usenix.org/conference/usenixsecurity20/presentation/luo
https://arxiv.org/abs/1908.03383
http://arxiv.org/abs/1908.03383
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://doi.org/10.1145/2830772.2830795
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi
https://www.usenix.org/conference/usenixsecurity21/presentation/shahverdi
https://doi.org/10.1109/TDSC.2020.2988369
https://doi.org/10.1145/2046660.2046671
https://doi.org/10.1145/2046660.2046671
https://opensource.apple.com/source/BerkeleyDB/BerkeleyDB-15/db/crypto/rijndael/rijndael-alg-fst.c.auto.html
https://opensource.apple.com/source/BerkeleyDB/BerkeleyDB-15/db/crypto/rijndael/rijndael-alg-fst.c.auto.html
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1109/HPCA.2014.6835934

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and Mengjia Yan

ACM. https://doi.org/10.1145/2485922.2485972
[48] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. {ScatterCache}: Thwarting Cache Attacks via
Cache Set Randomization. In 28th USENIX Security Symposium (USENIX Security
19). 675–692.

[49] Benjamin Wu, Aaron B. Wagner, and G. Edward Suh. 2020. A Case for Max-
imal Leakage as a Side Channel Leakage Metric. CoRR abs/2004.08035 (2020).
arXiv:2004.08035 https://arxiv.org/abs/2004.08035

[50] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In 23rd USENIX Security Symposium
(USENIX Security). USENIX Association.

[51] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022. Automated Side Channel Anal-
ysis of Media Software with Manifold Learning. In 31st USENIX Security Sympo-
sium (USENIX Security 22). USENIX Association, Boston, MA, 4419–4436. https:
//www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan

[52] Tianwei Zhang and Ruby B. Lee. 2014. New Models of Cache Architectures
Characterizing Information Leakage from Cache Side Channels. In Proceedings

of the 30th Annual Computer Security Applications Conference (New Orleans,
Louisiana, USA) (ACSAC ’14). Association for Computing Machinery, New York,
NY, USA, 96–105. https://doi.org/10.1145/2664243.2664273

[53] Tianwei Zhang, Fangfei Liu, Si Chen, and Ruby B. Lee. 2013. Side Channel
Vulnerability Metrics: The Promise and the Pitfalls. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (Tel-Aviv, Israel) (HASP ’13). Association for Computing Machinery, New
York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/2487726.2487728

[54] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2018. Analyzing cache side
channels using deep neural networks. In Proceedings of the 34th Annual Computer
Security Applications Conference. 174–186.

[55] Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Camou-
flage: Memory Traffic Shaping to Mitigate Timing Attacks. In 2017 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE.
https://doi.org/10.1109/HPCA.2017.36

16

https://doi.org/10.1145/2485922.2485972
https://arxiv.org/abs/2004.08035
https://arxiv.org/abs/2004.08035
https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan
https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan
https://doi.org/10.1145/2664243.2664273
https://doi.org/10.1145/2487726.2487728
https://doi.org/10.1109/HPCA.2017.36

	Abstract
	1 Introduction
	2 Background
	2.1 Side-Channel Attacks
	2.2 Classifications of Side-Channels
	2.3 Side-Channel Mitigation Schemes

	3 Problem Formulation
	3.1 Limitations of Existing Work
	3.2 A Motivating Example

	4 Metior: A Model to Evaluate Obfuscating Defense Schemes
	4.1 Random Variable Representations
	4.2 Step 1: Defining the Victim's Secret Space
	4.3 Step 2: Defining the Modulation Spaces
	4.4 Step 3: Deriving Obfuscation Probabilities
	4.5 Step 4: Computing Leakage
	4.6 Revisiting Random Replacement

	5 Limitations and Clarifications
	6 Case Study Overview
	7 Case Study I: Comparing Attack Strategies
	8 Case Study II: Comparing Attack Classes
	9 Case Study III: Studying Ephemeral Obfuscation Schemes
	10 Related Work
	11 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	References

