
UNIFIED CONVOLUTION FRAMEWORK: A COMPILER-BASED APPROACH TO
SUPPORT SPARSE CONVOLUTIONS

Jaeyeon Won 1 Changwan Hong 1 Charith Mendis 2 Joel S. Emer 1 Saman Amarasinghe 1

ABSTRACT
This paper introduces a Unified Convolution Framework (UCF) that incorporates various existing sparse convolu-
tions in a unified abstraction. This work is in contrast to the common library-based approach that requires much
engineering effort because each different sparse convolution must be implemented separately. Instead, it employs
a tensor compiler approach that can flexibly explore convolutions with various program transformations; however,
no compiler can currently support various sparse convolutions flexibly to our knowledge. In particular, the Tensor
Algebra Compiler (TACO) can support a variety of sparse formats but cannot declare convolutions because a
tensor cannot be accessed by a linear combination of index variables. We extend TACO’s Einsum language to
support an affine index expression to declare a convolution. Our method is also compatible with TACO’s format
and scheduling language, enabling various sparse convolution implementations to be explored. Our experimental
results demonstrate that TACO-UCF achieves 1.32× and 8.3× average speedups on a filter sparse convolution
and a submanifold sparse convolution, respectively, over state-of-the-art libraries on CPU. TACO-UCF on GPU
outperforms the state-of-the-art GPU library on filter sparse convolution of ResNet50 by an average of 1.47×
at 80% sparsity. We also demonstrate TACO-UCF outperforms on a neighbor retrieval of a submanifold sparse
convolution by an average of 2.55× and 3.34× over MinkowskiEngine and TorchSparse on GPU, respectively.

1 INTRODUCTION

In deep neural networks, a convolution is one of the most
important computations. However, a convolution is com-
putationally expensive and is usually a performance and
memory bottleneck of the entire network (Sze et al., 2020).
Therefore, there have been many efforts to make convolu-
tions as lightweight as possible. Among them, a popular
approach is sparsifying the convolution because it effec-
tively reduces the network size and computational cost.

There are many ways to introduce sparsity in a convolution.
For example, a filter can have a lot of zeros after pruning a
network (Han et al., 2015; Mao et al., 2017). An activation
after the ReLU layer can have a large number of zeros (Gong
et al., 2020; Kurtz et al., 2020). Submanifold sparse con-
volution (Graham et al., 2018) is another example, which
restricts the points at which a convolution is performed to
reduce the number of convolution operations.

While sparsifying a convolution can improve performance
theoretically, writing sparse convolution code that achieves
a speedup over a dense counterpart is not trivial. Devel-
opers have to optimize code that involves many indirect

1Massachusetts Institute of Technology, Massachusetts, USA
2University of Illinois at Urbana-Champaign, Illinois, USA. Corre-
spondence to: Jaeyeon Won <jaeyeon@mit.edu>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

accesses to data stored in a sparse data representation. In ad-
dition, different operands must be stored in different sparse
formats for each class of sparse convolution. Therefore,
various sparse convolutions are viewed independently and
implemented separately in different libraries.

While the libraries have a very individual and narrow focus,
tensor compilers such as Halide (Ragan-Kelley et al., 2013),
TVM (Chen et al., 2018), Tiramisu (Baghdadi et al., 2019),
and TACO (Kjolstad et al., 2017) can support a wide range
of tensor computations by exploring various optimizations.
However, existing tensor compilers currently cannot gen-
erate efficient code for sparse convolutions in various
formats. For instance, Halide, TVM, and Tiramisu excel
at generating an efficient dense convolution but do not sup-
port most sparse formats. TACO, on the other hand, is
capable of supporting various sparse formats. However, its
language can only declare simple computations, such as
matrix multiplication, and does not accept a full affine index
expression, which is essential in defining a sliding window
in convolution, e.g., Ci =

∑
k Ai+k ∗Bk.

We introduce the Unified Convolution Framework (UCF),
which can express all types of sparse convolutions, including
sparse filter convolution, sparse activation convolution, and
submanifold sparse convolution. We implemented TACO-
UCF by extending TACO’s Einsum language to allow defin-
ing a convolution and support the UCF. Furthermore, TACO-
UCF can explore multiple sparse formats and loop trans-

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

Sparse Convolutions Formats Backends

Name Filter
SpConv

Activation
SpConv

Submanifold
SpConv

Dual
SpConv CPU GPU

SkimCaffe ✓ ✗ ✗ ✗ 1 ✓ ✗

TorchSparse ✗ ✗ ✓ ✗ 1 ✓ ✓

DeepSparse ✓ ✓ ✗ ✗ 1 ✓ ✗

TACO ✗ ✗ ✗ ✗ > 100 ✓ ✓

Our Work
(TACO-UCF) ✓ ✓ ✓ ✓ > 100 ✓ ✓

Table 1. Comparison of existing sparse convolution libraries and compiler with our work. SkimCaffe (Park et al., 2016), TorchSparse (Tang
et al., 2022), and DeepSparse (Kurtz et al., 2020) are library-based, and TACO (Kjolstad et al., 2017) is a compiler-based approach. Activ.
and Subm. mean an activation and submanifold sparse convolution, respectively. Dual Sparse. means a dual sparse convolution where
both operands are sparse. A yellow checkmark indicates it is performant in some instances.

formations by utilizing TACO’s format and scheduling lan-
guage. Table 1 compares TACO-UCF with existing sparse
convolution libraries and tensor compilers. The contribu-
tions of this paper are as follows:

• We extend sparse tensor algebra compiler theory, which
currently only supports a single index variable, to han-
dle full affine index expressions.

• We introduce the Unified Convolution Frame-
work(UCF) that can express all different kinds of
sparse convolutions. We implement TACO-UCF by
extending the TACO compiler to support the UCF.

• We show that TACO-UCF has comparable perfor-
mance to hand-implemented best of class convolutions
on CPUs. TACO-UCF outperforms SkimCaffe on filter
sparse convolutional layers of ResNet50 by an average
of 1.32× at 80% sparsity. TACO-UCF significantly
surpasses MinkowskiEngine on a submanifold sparse
convolution by 8.3× on average.

• We also can produce GPU code that outperforms best
of class in certain cases. TACO-UCF outperforms
cuDNN and Escort on filter sparse convolutional lay-
ers of ResNet50 by an average of 1.61× and 1.47×
at 80% sparsity, respectively. TACO-UCF outper-
forms MinkowskiEngine and TorchSparse on retriev-
ing neighbors as part of a submanifold sparse convolu-
tion by 2.55× and 3.34× on average, respectively.

2 BACKGROUND

This section describes the abstractions and accompanying
languages used in tensor compilers.

2.1 Tensor Expression Language
Some tensor compilers, such as Halide (Ragan-Kelley et al.,
2013) and TVM (Chen et al., 2018), use a tensor expression
language to describe a deep learning operator as a tensor
computation. A tensor expression language allows the user
to write a full affine index expression to describe tensor
access. For example, a 1D convolution can be written in a
tensor expression language : Ci = Ai+k ∗Bk

2 5 4
3

1 7
6

1

0 1 3

3

0 2 0 3 0 1

3

2 1 5 6 4 3

4

0 1 3 3 0 2 1
0 3 4 6 7

2 5 4 3 1 7 6

size

pos

crd

vals
0 1 2 3

0
1

2

3

J

I

I

J

Matrix

Fiber-tree : Layout IJ I!J"

0

0 3

2 4

1

5

2

0 2

1 7

3

1

6

J

I

2

2

7
0 2 0 3 2 0 1
0 2 4 5 7

2 1 5 6 7 4 3

pos

crd

vals

J"I"

0 1 2 3
0 3pos

crd

Fiber-tree : Layout JI

Fiber

Payload

Figure 1. A sparse matrix with dimensions I and J, its fibertree
abstraction (in both level orders) and concrete representations for
two data layouts, IUJC and JCIC .

In a tensor expression language, a computation is a traversal
of all coordinates in the index variables. It performs the indi-
cated tensor expression with a reduction if the same output
is referred to more than once. In other words, a reduction
happens along the index variable (k) not appearing in the
output. The reduction can occur with various operations
such as sum, min, and max. The reduction along the k
indicates the sum in the convolution.

Conversely, TACO (Kjolstad et al., 2017; Henry et al., 2021)
uses an Einsum language, a more restrictive subset of tensor
expression language, that accepts only a single index vari-
able to describe access in a single dimension. Thus, TACO
can express a matrix multiplication (Ci,j = Ai,k ∗Bk,j) or
a stride access (Ci = A2∗i), but not a convolution.

2.2 Format Language
While the tensor expression language describes what to com-
pute, a format language describes how to store the tensor.
Some format languages are based on the coordinate tree
abstraction, which was first described in the format abstrac-
tion (Chou et al., 2018) in TACO and later abstracted further
and formalized as the fibertree abstraction (Sze et al., 2020).

Figure 1 shows how the fibertree abstraction represents a
matrix. Any tensor is first viewed as a tree with each fiber
carrying a set of coordinates and a payload that is either a
fiber at the next level or a value at the bottom of the tree.

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

The order of the levels indicates the data layout such as row-
major or column-major. Once the layout is specified, a level
format specifies what physical storage is used to store the
fiber. An Uncompressed (U) level format encodes a dense
coordinate interval [0, N). A Compressed (C) level format
encodes only non-zero coordinates in the fiber by explicitly
storing coordinates. A format language IUJC in the Figure 1
says the matrix is stored in the I → J layout (row-major),
and level formats where I and J are Uncompressed and
Compressed, respectively. We refer to a position as the
index of an element in the concrete data representation. For
example, the color-highlighted coordinate=3 in level J of
the IUJC has a position=2 in the crd array (assuming zero-
based indexing).

A combination of level splitting, fusing, reordering, and
level format choice can express many representations. For
example, if we fuse two levels I and J and then store them
with Compressed format ((IJ)C), it represents a list of pairs
of row and column coordinates, known as the COO format.

2.3 Scheduling Language
A scheduling language describes how to compute an algo-
rithm defined by a tensor expression and format. Inspired by
Halide (Ragan-Kelley et al., 2013), many tensor compilers
decouple the schedule (how to compute) from the algorithm
(what to compute). A scheduling language is often a set of
basic program transformation primitives, such as loop tiling
and reordering. Decoupling algorithms from schedules al-
lows tensor compilers to explore many ways to traverse the
iteration space defined by nested loops. The appropriate
schedule will maximize data locality and parallelism in the
code, and the appropriate data representation will store a
sparse tensor compactly in memory.

3 RELATED WORKS

3.1 Library-based Approach
Different sparse convolutions are implemented in separate
libraries. Since hand-crafted libraries requires significant
engineering effort, they often support a limited number of
formats, architectures, and layer shapes.

Filter Sparse Convolution. While XNNPACK (Elsen et al.,
2020) implements the convolution by converting into SpMM
via im2col, SkimCaffe (Park et al., 2016) implements
a direct sparse convolution that avoids redundant input
caused by im2col. Studies have also made pruning more
hardware-friendly, making a sparsity pattern more struc-
tured (Wen et al., 2016; Mao et al., 2017; Niu et al., 2020).
Both libraries support only a single format and specific layer
shapes. For example, XNNPACK only supports a 1×1 filter,
and SkimCaffe is not optimized for stride convolution.

Activation Sparse Convolution. Because of the nature of

I[N,H,W,C]N x H

W

C
R

C

S

R

C

S

O[N,P,Q,M]P

Q

M
Filter 1

Filter M

…∗ = N x
batch batch

Figure 2. Visualization of 2D Convolution.

Rectified Linear Unit (ReLU), a non-trivial portion of the ac-
tivations are sparse (Kurtz et al., 2020). DeepSparse (Gong
et al., 2020) implements an efficient vectorized format con-
version routine for sparse activation to reduce the conversion
cost incurred during the inference. However, their imple-
mentation only supports the CPU as a backend.

Submanifold Sparse Convolution. A submanifold sparse
convolution (Graham et al., 2018) takes a sparse input,
such as 3D point clouds, and restricts the output spar-
sity pattern to match the input sparsity pattern, prevent-
ing the number of nonzeros from increasing (Figure 3).
The key is to quickly find neighbors inside the filter win-
dow on the input stored in a sparse format. Existing li-
braries such as MinkowskiEngine (Choy et al., 2019) and
TorchSparse (Tang et al., 2022) achieve this using a hash
table. While TorchSparse outperforms MinkowskiEngine,
their implementation is limited to 3D data and their CPU
performance is not as streamlined as the GPU’s.

3.2 Compiler-based Approach
TVM (Chen et al., 2018) and Tiramisu (Baghdadi et al.,
2019) offer basic supports for generating sparse loops, but
they are designed to optimize dense loops. Taichi (Hu et al.,
2019) provides a format-agnostic programming language
and compiler, allowing users to use sparse formats flexibly.
However, Taichi does not support a co-iteration between
multiple sparse operands, such as an intersection of two co-
ordinate lists. TACO (Kjolstad et al., 2017), COMET (Tian
et al., 2021), and sparse tensor MLIR dialect (Bik et al.,
2022) support efficient co-iteration between various sparse
formats. However, these compilers use the Einsum as an
interface, which does not support convolution. In this paper,
we are bringing TACO’s Einsum closer to a tensor expres-
sion language of TVM and Halide to express a convolution.

4 UNIFIED CONVOLUTION FRAMEWORK

In this section, we show how to extend existing tensor com-
pilers to express all different sparse convolutions. This
framework consists of a tensor expression language with full
affine index expression, a format language, and a scheduling
language. In Table 2, we unify existing implementations of
sparse convolution. We first classify convolutions into two
categories regarding mathematical equivalence: a conven-
tional and a masked convolution.

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

Category Name Tensor Expression Language Format Language Detail

Conventional
Convolution

Dense
On,p,q,m = In,p+r,q+s,c ∗ Fr,s,c,m

All Dense -
SkimCaffe (Park et al., 2016) F : MU (CRS)C Section 4.1.1

DeepSparse (Kurtz et al., 2020) I : NUHUWUCC Section 4.1.2

XNNPACK (Elsen et al., 2020)
Im2col: I ′n,p,q,r,s,c = In,p+r,q+s,c

SpMM: O(n,p,q),m = I ′(n,p,q),(r,s,c) ∗ F(r,s,c),m
F : MU (RSC)C Section 4.1.1

Masked
Convolution

(Submanifold
Convolution)

Direct approach On,p,q,m = Maskn,p,q ∗ In,p+r,q+s,c ∗ Fr,s,c,m

O : NUPUQCMU

Mask : NUPUQC

I : NUHUWCCU

F : RUSUCUMU

Section 4.2.1

MinkowskiEngine (Choy et al., 2019)
TorchSparse (Tang et al., 2022)

Mapi,j,k = Maskn,p,q ∗ In,p+r,q+s,: ∗ Fr,s,:,:

(i = pos(Maskn,p,q), j = pos(In,p+r,q+s,:),
k = pos(Fr,s,:,:))

OV ali,m = Mapi,j,k ∗ IV alj,c ∗ FV alk,c,m

Map : (KIJ)C
O : (NPQ)CMU

Mask : (NPQ)C
I : (NHW)CCU

F : RUSUCUMU

Section 4.2.2

Table 2. Various sparse convolutions described in a unified convolution framework (UCF).

4.1 Conventional Convolution
Although prior works view a filter sparse convolution and
activation sparse convolution separately, we found that
they are expressed identically in the tensor expression
language, but are expressed differently in the format lan-
guage. In a tensor expression language, a 2D conven-
tional convolution (Figure 2) is defined as : On,p,q,m =
In,p+r,q+s,c ∗ Fr,s,c,m There are variants of convolutions
such as a strided, dilated (Yu & Koltun, 2015), and grouped
convolution (Howard et al., 2017), which can also be de-
scribed in a tensor expression language. However, this paper
will mainly focus on the conventional convolution.

4.1.1 Filter Sparse Convolution

A pruned filter should be stored in a sparse data representa-
tion to leverage its sparsity. For example, SkimCaffe flattens
(C, R, S) levels and stores a filter in MU (CRS)C format.
However, flattening a 4D filter into 2D may lose the in-
formation of the high-dimensional sparsity pattern. Many
previous works (Wen et al., 2016; Mao et al., 2017) have in-
vestigated storing a pruned filter in more hardware-friendly
sparsity structures. However, some structured sparsity pat-
terns should be considered in a 4D tensor to fully utilize
its pattern. In section 6.2.1, we found that the most com-
pact format for storing the MC-structure (Figure 7(a)) is
MCCCRUSU .

Another way to compute a convolution is turning it into a ma-
trix multiplication via the im2col operation. XNNPACK
converts a filter sparse convolution to a sparse matrix-dense
matrix multiplication (SpMM).

4.1.2 Activation Sparse Convolution

Similar to filter sparse convolution, an input I should have a
sparse data representation to leverage a sparsity in an activa-
tion. Once an activation comes out from the ReLU layer, an
input activation I should be converted into a sparse format
from a dense format during the inference. For example,

1 1

1

1 1

1 1 1

1 1 1

1 1 1
∗

3 3

5

3 3

(a) Conventional Convolution

(b) Submanifold Sparse Convolution

1 1

1

1 1
⨀ =

1 1

1

1 1

1 1 1

1 1 1

1 1 1
∗ =

1 2 2 1

2 3 3 1

1 4 5 4 1

1 3 3 2

1 2 2 1

Mask Input
Filter

Output

H

W
S

R P

Q

P

Q

Filter
Input Output

Figure 3. In a submanifold sparse convolution, a mask has the same
sparsity pattern as the input sparsity pattern.

DeepSparse Engine converts I into NUHUWUCC from
NUHUWUCU . In order to minimize the cost in format
conversion, only the last level’s format is changed to Com-
pressed while the layout is kept the same. In UCF, a dual
sparse convolution can be readily described by declaring
both I and F to have sparse formats in a format language.

4.2 Masked Sparse Convolution
2D batch masked sparse convolution (often called as
a generalized sparse convolution (Choy et al., 2019))
can be represented in tensor expression language as fol-
lows: On,p,q,m=Maskn,p,q*In,p+r,q+s,c*Fr,s,c,m where a
Mask can only have a binary value, 0 or 1. The only differ-
ence from the conventional convolution is the existence of
Mask. An element-wise multiplication of the sparse mask
makes the output’s sparsity pattern identical to Mask’s. If
the Mask is fully dense, it produces the same output as a
conventional convolution. Submanifold sparse convolution
is a special case of masked convolution where the sparsity
pattern of the mask is the same as the input (Figure 3(b)).
Note that a tensor expression language can be easily ex-
tended into 3D submanifold convolution as well.

Unified Convolution Framework: A compiler-based approach to support sparse convolutions
Mask : (PQ)C I : (HW)C CU

A B
C D

A B
C D

A B
C D

Mask pos (I) 0 0 0 1 1 1 2 2
I pos (J) 0 2 3 0 1 3 1 3

F pos (K) 4 6 8 3 5 7 1 3
(b) 1st phase: Neighbor Retrieval

//Format Conversion
I: (HW)C→(HW)hash

for (p,q) in Mask:
for (r,s) in F:
//intersection
if (p+r,q+s)	∈	I:
Map<-positions

OVal

pos

B00B10

B01 B11

0

1

2

M

B0 B1 × D00D10

D01D11

D0 D1 ×+=

IVal FVal

pos 1

IVal FVal

pos 1 pos 3pos 3

(c) 2nd phase: Feature Aggregation

(1,1) (1,3) (2,0) (2,2)

A0 B0 C0 D0
A1 B1 C1 D1

(HW)C

IVal

pos 0 1 2 3

A B
C D

H

W

C
F : RU SU CU MU

(a) Data representations

Map

1 1
1 1P

Q

(1,1) (1,2) (2,3)

1 1 1

(PQ)C

MaskVal

pos 0 1 2

A B C
D E F
G H I

A B C
D E F
G H I

R

S

M=0 M=1

C

A00B00C00D00E00F00G00H00 I00

A01B01C01D01E01F01G01H01 I01

A10B10C10D10E10F10G10H10 I10
A11 B11C11D11E11 F11G11H11 I11

FVal

pos 0 1 2 3 4 5 6 7 8

Figure 4. In map-based approach, a masked convolution is divided
into two phases : (b) a neighbor retrieval and (c) a feature aggre-
gation. Map stores the positions of tensors in a neighbor rela-
tionship. For example, (2,1,1) in the Map indicates (Mask(2, 3),
In(1, 3, :), F (0, 1, :, :)) from data representations depicted in (a).

4.2.1 Direct Approach

The direct approach computes a convolution by sliding a
filter over an input directly according to the sparsity pat-
tern of Mask. Except for the filter F , all operands in a
masked convolution are stored in a sparse format. Input
point clouds typically have sparse spatial coordinates (H
and W in I[N,H,W,C]) and dense channel features. A
format language has to place spatial dimensions in the upper
layout with Compressed format and the channel at the last
level. In section 6.3.1, we evaluate a direct approach with I
stored in NUHUWCCU format.

4.2.2 Map-based Approach

A map-based approach (Figure 4) is another method to
implement a masked convolution. Existing libraries such
as MinkowskiEngine and TorchSparse use this approach.
Whereas the direct approach finds neighboring input points
for each output and aggregates neighbors’ features on the fly,
a map-based approach separates the computation into two
stages: (1) a neighbor retrieval and (2) a feature aggregation.

The first stage constructs a neighbor map with the positions
of Mask, I , and F , in which they are in a neighbor relation-
ship. Figure 4(b) shows how the map is constructed. For an

efficient coordinate access, the format of I is converted into
a hash table. Hash table lookup retrieves neighbor points in
I near a point (p, q) in Mask by searching for every point
(p+ r, q + s) covered by a filter window.

Once a neighbor is found, corresponding positions are
stored in Mapi,j,k where i = pos(Maskn,p,q), j =
pos(In,p+r,q+s,:), k = pos(Fr,s,:,:). Once a neighbor map
retrieves all the positions, it then performs a channel feature
aggregation (Figure 4(c)) : OV ali,m = Mapi,j,k∗IV alj,c∗
FV alk,c,m For each position (i,j,k) in Map, vector-matrix
multiplications between input and filter are performed.

5 IMPLEMENTATION OF UNIFIED
CONVOLUTION FRAMEWORK

In this section, we describe the basics of TACO and how
to implement UCF on top of TACO by extending TACO’s
Einsum language to support an affine index expression. We
also describe how to make .reorder() schedule works
along with our compiler technique.

5.1 Tensor Algebra Compiler (TACO) Basics
TACO is a sparse tensor compiler that can generate efficient
code to traverse a sparse iteration space while supporting
various schedules and level formats (Kjolstad et al., 2017;
Chou et al., 2018; Henry et al., 2021). Here, an efficient
traversal often means an intersection (co-iteration) between
two sparse operands to skip unnecessary computations from
sparsity, i.e., a ∗ 0 = 0. If two operands Ai and Bi are
multiplied element-wise, TACO uses following intersection
strategies depending on level formats.

Ai/Bi Uncompressed Compressed

Uncompressed Full Iteration
(Figure 5-(a,b,c)) Iterate-Locate

Compressed Iterate-Locate
(Figure 5-(d,e,f))

Two-way Merge
(Figure 5-(g,h,i))

Figures 5 (a,d,g) show the full iteration, iterate-locate, and
two-way merge intersection on Ai ∗Bi, respectively. The
iterate-locate intersects Ai and Bi by iterating non-zero
coordinates in the Compressed format of A (lines 2-3 in
Figure 5(d)), then finds the corresponding coordinates on
the B (Bval[i] in line 4). Two-way merge intersects
two Compressed levels by incrementing a position with a
smaller coordinate, as shown in lines 4-11 in Figure 5(g).

(Henry et al., 2021) proposed a technique to extend TACO’s
Einsum language to support a single variable affine index
expression (SVAE), such as A2i+1. Figure 5-(b,e,h) show
generated codes for Ci = A2i+1 ∗Bi within a window (of-
ten called as a range) 0 ≤ i < 4. There are three changes
compared to a code lowered from the Einsum language. ❶
The right start and end position in a Compressed format

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

C(i) = A(i) * B(i)
A(Uncompressed)

A(Compressed)

A(Compressed)

A 0 0 B C 0 D 0

0 E F G 0 0 H I

Aval

Bval

for (i=0; i<8; i++)
Cval[i]+=Aval[i]*Bval[i]

0 E F G 0 0 H I

Aval

Bval

Abeg=Apos[0]
Aend=Apos[1]
for (Ap=Abeg;Ap<Aend;Ap++)

i=Acrd[Ap]
Cval[i]+=Aval[Ap]*Bval[i]

Apos
Acrd

0 4
A B C D

0 3 4 6

Aval
Apos

Acrd
0 4

A B C D

0 3 4 6

Bval
Bpos

Bcrd
0 5

E F G H I

1 2 3 6 7

Ap=Apos[0]
Aend=Apos[1]
Bp=Bpos[0]
Bend=Bpos[1]
while(Ap<Aend && Bp<Bend)

iA=Acrd[Ap]
iB=Bcrd[Bp]
i=min(iA,iB)
if (i==iA && i==iB)
Cval[i]+=Aval[Ap]*Bval[Bp]

pA+=(iA==i)
pB+=(iB==i)

C(i) = A(2i+1) * B(i)
(0 <= i < 4)

for (i=0; i<4; i++)
Cval[i]+=Aval[2i+1]*Bval[i]

Abeg=searchPos(Acrd,2*0+1) //1
Aend=searchPos(Acrd,2*4+1) //4
for (Ap=Abeg;Ap<Aend;Ap++)

if ((Acrd[Ap]-1)%2!=0)
continue;

i=(Acrd[Ap]-1)/2
Cval[i]+=Aval[Ap]*Bval[i]

Ap=searchPos(Acrd,2*0+1) //1
Aend=searchPos(Acrd,2*4+1) //4
Bp=Bpos[0]
Bend=Bpos[1]
while(Ap<Aend && Bp<Bend)

if ((Acrd[Ap]-1)%2!=0) {
Ap++; continue; }

iA=(Acrd[Ap]-1)/2
iB=Bcrd[Bp]
i=min(iA,iB)
if (i==iA && i==iB)

Cval[i]+=Aval[Ap]*Bval[Bp]
pA+=(iA==i)
pB+=(iB==i)

C(i) = A(2i+k) * B(k)
(0 <= i < 8, 0 <= k < 8)

for (i=0;i<8;i++)
for (k=0;k<8;k++)
if ((k+2*i)<0) continue;
if ((k+2*i)>8) break;
Cval[i]+=Aval[k+2*i]*Bval[k]

for (i=0;i<8;i++)
Abeg=searchPos(Acrd,0+2*i)
Aend=searchPos(Acrd,8+2*i)
for (Ap=Abeg;Ap<Aend;Ap++)

k=Acrd[Ap]-2*i
Cval[i]+=Aval[Ap]*Bval[k]

for (i=0;i<8;i++)
Ap=searchPos(Acrd,0+2*i)
Aend=searchPos(Acrd,8+2*i)
Bp=Bpos[0]
Bend=Bpos[1]
while(Ap<Aend && Bp<Bend)

kA=Acrd[Ap]-2*i
kB=Bcrd[Bp]
k=min(kA,kB)
if (k==kA && k==kB)
Cval[i]+=Aval[Ap]*Bval[Bp]

pA+=(kA==k)
pB+=(kB==k)

0:
1:

0:
1:
2:
3:
4:

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

0:
1:

0:
1:
2:
3:
4:
5:
6:

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

0:
1:
2:
3:
4:

0:
1:
2:
3:
4:
5:

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

B(Uncompressed)

B(Uncompressed)

B(Compressed)

Intersection Strategy: Full Iteration

Intersection Strategy: Iterate-Locate

Intersection Strategy: Two-way Merge

Figure 5. Codes generated from three different tensor expression languages and three different pairs of format. Our compiler technique
enables the TACO to generate codes in (c,f,i).

must be found according to the window (lines 0-1 in Fig-
ure 5(e)). ❷ A stride iteration on a Compressed format
requires a guard to avoid invalid stride access (lines 3-4 in
Figure 5(e)). ❸ Index variable is restored from each access
on a Compressed format (line 5 in Figure 5(e)).

Challenge. Although TACO can declare the expression
beyond the Einsum language, the compiler does not accept
multiple variables in an affine index expression. However,
supporting full affine index expression is essential in de-
scribing a sliding window in convolutions. In the rest of this
section, we will explain how an affine index expression with
multiple variables is lowered into an efficient code under
existing intersection strategies.

5.2 Bringing Einsum to Support Full Affine Index
Expression

Our core idea to support a full affine index expression is
based on the transformation of a multi-variable affine ex-
pression (MVAE) into SVAE. In particular, just one variable
in the MVAE is viewed as an index variable (base-variable)
while the rest of the term is an offset. That is, MVAE turns
into an SVAE form :

MVAE = stride * base-variable + offset

Once the MVAE is transformed, SVAE’s lowering technique
will be used to generate a code. For example, if there is an
MVAE: A2i+3j+k+3 and a base-variable j, then the access
is rewritten into the SVAE form: A3∗j+(2i+k+3), where an

underline means the base-variable.

Figure 5-(c,f,i) show how a 1D stride convolution Ci =
A2i+k ∗ Bk is lowered. Compared to other two tensor ex-
pressions in the left side of the figure, Ci = A2i+k ∗ Bk

has two index variables i and k, so it emits nested loops in
which the order is i −→ k. Because k is the base-variable
here, an MVAE A2i+k is rewritten into an SVAE Ak+2i,
and an intersection between Ak+2i and Bk occurs on an
index variable k. While the offset in a SVAE has always
been constant, the offset in a MVAE keeps changing as the
iteration proceeds. In lines 1-2 in Figure 5(f), the generated
code now searches start and end positions according to a
window [2i, 8 + 2i), and the window keeps sliding as the
iteration i proceeds.

5.2.1 base-variable selection

In order to lower an MVAE into an SVAE form, a compiler
has to choose the correct base-variable according to the loop
order. Because variables in the offset have to be defined
before they are used, loops of offset variables must be place
outside a loop of the base-variable. Thus, the base-variable
is a variable that is located in the innermost loop among
the MVAE variables. In examples in Figure 5(c,f,i), k is
the base-variable of the A2i+k because the loop order is
i −→ k. Whenever the .reorder() schedule changes the
loop order, a compiler has to find a new base-variable for
each MVAE and rewrites it into a new SVAE form.

Effect of reorder schedules. Since the base-variable is

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

//A’s base-variable = k
for (i=0;i<8;i++) {

Ap=searchPos(A1_crd,0+i)
Aend=searchPos(A1_crd,3+i)
Bp=Bpos[0]
Bend=Bpos[1]
while (Ap<Aend&&Bp<Bend) {

kA=Acrd[Ap]-i
kB=Bcrd[Bp]
k=min(kA,kB)
if (k==kA && k==kB)

Cval[i]+=Aval[Ap]*Bval[Bp]
pA+=(kA==k)
pB+=(kB==k)}}

//A’s base-variable = i
Bbeg=Bpos[0]
Bend=Bpos[1]
for (Bp=Bbeg;Bp<Bend;Bp++){

k=Bcrd[Bp]
Abeg=searchPos(Acrd,0+k)
Aend=searchPos(Acrd,8+k)
for (Ap=Abeg;Ap<Aend;Ap++){

i=Acrd[Ap]-k
Cval[i]+=Aval[Ap]*Bval[Bp]}}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

i ∈
[0

,8
)

k
∈

A
∩
	B

i∈
A

k
∈

B
(a) C(i)=A(i+k)*B(k) with a loop order i→k

A 0 0 B C 0 D 0

0 E F

0 1 2 3 4 5 6 7

0 1 2

A 0 0 B C 0 D 0

0 E F

i+k 0 1 2 3 4 5 6 7

0 1 2k

A 0 0 B C 0 D 0
0 E F

A 0 0 B C 0 D 0

A 0 0 B C 0 D 0
0 E F

i+k

k

A 0 0 B C 0 D 0
0 E F

A 0 0 B C 0 D 0
0 E F

A(i+k)

B(k)

A(i+k)

B(k)

(b) C(i)=A(i+k)*B(k) with a loop order k→i

.reorder(k,i)base-variable changes to i

0 E F

A 0 0 B C 0 D 0
0 E F

i=0

i=1

i=2

Bp=0

Bp=1

Figure 6. Two generated codes with different loop orders and corre-
sponding visualizations. A loop order i −→ k has a base-variable=k,
while k −→ i has a base-variable=i for Ai+k.

dependent on the loop order, the intersection may or may
not exist in the generated code. Figure 6 shows generated
codes of Ci = Ai+k ∗Bk in two different loop orders where
both A and B are stored in the Compressed format. When
the loop order is i −→ k and the base-variable is k, a two-
way merge intersection happens between Ak+i and Bk at
the loop k. Figure 6(a) visualizes how the computation
proceeds by intersecting on k. However, when the loop
order is changed into k −→ i, an intersection does not happen
in the generated code. As shown in the visualization in
Figure 6(b), this is because each index variable iterates
different tensors, i.e., i and k respectively iterate Ai+k and
Bk, but not the same tensor. As a result, two programs are
semantically equivalent, but different loop orders can change
the computational complexity. The complexity of the loop
i −→ k is O(|i| ∗ (nnzA + nnzB)), and the complexity
of the loop k −→ i is O(nnzA ∗ nnzB)) where |i| is the
dimension of the i (|i|=8 in Figure 6) and nnz is the number
of non-zeros.

5.2.2 Fast Window Search on the Compressed Format

When accessing a window in the Compressed format, a
compiler always emits the code that searches positions of
the start and end of the window (lines 5-6 in Figure 6(b)).
We made this search faster with two optimizations.

First, we can remove unnecessary searches when the win-
dow is so large that it is always guaranteed to touch the
outside boundary of the crd array of the Compressed for-
mat. For example, at line 6 in Figure 6(b), the end of the
window k + 8 is always outside of the bound([0, 7)) of A.
In such a case, a compiler can skip the search and emit the
crd array’s final position instead. If the compiler identifies
the beginning or end of the window is always out of bound
through a simple interval analysis, it then skips the search.

The second optimization exploits the fact that the window
slides. searchPos() searches the position of the window
bound by linearly scanning the coordinate array from the
position 0. Because the window slides, searchPos() can be
faster by starting the search from the previous result rather
than scanning from position 0. From our simple experiment,
a generated code after these optimizations was about 1.3×
faster than before in 1D submanifold sparse convolution.

5.3 Discussion
Loop Bound Inference. TACO does not require loop bound
analysis as it operates on basic Einsums where a loop bound
is always identical to a dimension of the tensor. However,
TACO-UCF needs to infer the correct loop bounds due
to the affine index expression, similar to existing tensor
compilers (Chen et al., 2018). To achieve this, we used a
simple interval analysis (Ragan-Kelley et al., 2013). As a
result, by using the MVAE lowering technique, TACO-UCF
generates a code that iterates only the non-zero elements
stored in a sparse format within the derived loop bounds.

Targeting Hardware Intrinsics. Currently, TACO-UCF
generates code only for CPUs and GPUs, but it does not
target accelerators such as Nvidia Sparse TensorCore. Tar-
geting these accelerators is a promising direction, but it
would require a non-trivial effort to analyze the nested loop
representation while adapting our MVAE code generation
technique. We leave this as a future direction.

6 EVALUATION

6.1 Experimental Setup
Baseline. In section 6.2, we compare a 2D filter sparse con-
volution generated from TACO-UCF with oneDNN (Geor-
ganas et al., 2018), which is a set of expert-coded primitives
for dense convolutions. We also compare TACO-UCF with
SkimCaffe (Park et al., 2016), which is a hand-optimized
filter sparse convolution library. For the GPU experiments,
we compared TACO-UCF against cuDNN-8.3.2 (Chetlur
et al., 2014), the dense counterpart of convolution, and
Escort (Chen, 2018), a hand-optimized filter-sparse con-
volution on the GPU. In section 6.3, we compare a 3D
masked convolution generated from TACO-UCF with state-
of-the-art libraries, MinkowskiEngine(Choy et al., 2019)

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

H R C M STR H R C M STR
C1 112 1 64 256 2 C2 56 1 64 64 1
C3 56 1 256 64 1 C4 56 3 64 64 1
C5 56 1 64 256 1 C6 56 1 256 512 2
C7 56 1 256 128 1 C8 56 3 128 128 2
C9 28 1 512 128 1 C10 28 3 128 128 1
C11 28 1 128 512 1 C12 28 1 512 1024 2
C13 28 1 512 256 1 C14 28 3 256 256 2
C15 14 1 256 1024 1 C16 14 1 1024 256 1
C17 14 3 256 256 1 C18 14 1 256 1024 1
C19 14 1 1024 2048 2 C20 14 1 1024 512 1
C21 14 3 512 512 2 C22 7 1 512 2048 1
C23 7 1 2048 512 1 C24 7 3 512 512 1
C25 7 1 512 2048 1

Table 3. Configurations of 2D convolution layers that has a unique
shape in ResNet50 (He et al., 2016). All shapes of image and filter
are square; H = W and R = S. STR means a stride.

Baseline 80% 91% 96% 98%
Top-1 Acc. 76.69% 76.52% 75.16% 72.71% 69.26%

Table 4. Top-1 accuracy of pruned ResNet50 (Gale et al., 2019)
with different sparsity on ImageNet image classification task.

and TorchSparse(Tang et al., 2022), on both CPU and GPU.

Environment. All the CPU experiments are conducted
on 12-core Intel Xeon E5-2680 v3 with icc -O3
-march=native -mtune=native -qopenmp. All
the GPU experiements are conducted on Nvidia V100 32GB
with CUDA-11.4 installed. All the experiments are done
with FP32 and a single batch.

Dataset. There are two types of filter sparsity in network
pruning: a structured sparsity and an unstructured spar-
sity. Structured network pruning sets the sparsity pattern in
advance and prunes it accordingly. Unstructured network
pruning sparsifies a filter without any specific pattern. We
synthesized five previously studied structured patterns (Wen
et al., 2016; Mao et al., 2017; Niu et al., 2020) as shown in
Figure 7. For an unstructured sparsity, we used a pre-trained
ResNet50 with 80%, 91%, 96%, and 98% sparsity from
the prior work (Gale et al., 2019) which used a magnitude
pruning. Table 4 reports the accuracies of pruned networks
according to different sparsities.

In the evaluation of a 3D masked convolution, we used
three indoor point clouds from S3DIS (Armeni et al., 2016)
and two outdoor point clouds from SemanticKitti (Behley
et al., 2019). We used a voxel size of 2cm and 5cm to
quantize S3DIS and SemanticKitti dataset, respectively. The
statistical properties of these datasets are shown in Table 5.
We evaluate a single submanifold sparse convolutional layer
with input and output channel size as 64 (C=M=64).

6.2 Filter sparse convolution
We evaluated filter space convolution kernels generated
from TACO-UCF on CPU. We fixed the data representa-
tion of input and output feature map to be NUCUHUWU

MCRS
structure

MCR
structure

MC
structure

MCRS Layout

M
structure

RSMC Layout

(a) Structured Sparsity

(b) RS structure in two different layouts

R

M

S
C

R

M

S
C

M

R

C
S

Figure 7. Five different structures of sparsity pattern in filter prun-
ing. RS-structure exposes more regularity when it is stored in the
RSMC layout than in the MCRS Layout.

Name H W D nnz density

Indoor
(S3DIS)

Office 144 146 136 109,874 0.01%
Lobby 369 232 154 293,855 0.01%
Conference 296 526 143 585,064 3.84%

Outdoor
(SemanticKITTI)

LIDAR1 2957 1859 154 87,164 2.23%
LIDAR2 2991 1956 144 97,077 2.63%

Table 5. Dataset used to evaluate 3D masked convolution.

and NUMUPUQU , respectively.

6.2.1 Data Representation and Schedule

Selecting a good data representation. We found out that
choosing appropriate data representation of a sparse filter is
important. Table 6 shows how different data representations
changes the storage size of filter in the RS-structure. The
RS-structure (Figure 7(b)) has the same R × S window’s
sparsity pattern for all m and c. If the filter F (m, c, r, s)
having RS-structure is stored in MCRS layout, the same
(r, s) coordinates will be redundantly stored under all m
and c. Thus, MCRS layout actually consumes more mem-
ory than the dense representation up to 67% sparsity despites
the reduced number of nonzeros after the pruning. The nat-
ural layout and formats for RS-structure is RCSCMUCU

representation. RCSCMUCU only stores pruned coordi-
nates, (r, s), explicitly without storing any unnecessary ze-
ros. Figure 7(b) shows that RS-structure stored in RSMC
layout exhibits more regularity than MCRS layout. The
last columns of the table shows that RCSCMUCU data
presentation saves memory as much as pruned (9×).

Selecting a good schedule. It is necessary to find not only
a good data representation but also a good schedule to have
good performance. To see how the schedule affects the per-

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

Layout MCRS RSMC
Sparsity Format CCCC UUCC CCCC CCUU

56% Size 1049KB 983KB 528KB 262KB
vs. U4 0.56× 0.60× 1.12× 2.25×

67% Size 787KB 720KB 396KB 196KB
vs. U4 0.75× 0.82× 1.49× 3.00×

78% Size 525KB 458KB 264KB 131KB
vs. U4 1.12× 1.29× 2.23× 4.50×

89% Size 394KB 327KB 132KB 65KB
vs. U4 1.50× 1.80× 4.46× 9.00×

Table 6. Storage size of filter in layer C10 (M=C=128, R=S=3)
in RS-structured sparsity pattern. vs. U4 shows a memory save
over a dense representation, all levels in Uncompressed formats.

.reorder(n,m,c,r,s,p,q)

.parallelize(m)

.reorder(n,p,m,c,r,s,q)

.parallelize(p)

Figure 8. Speedup over oneDNN of two different schedules for
layer C10 by increasing the sparsity in the M-structured sparsity.

formance, we compared the performance of two schedules
at the layer C10 pruned in M-structure. Figure 8 illustrates
the results. Schedule 1 parallelizes the computation by di-
viding the height of the output (p) across multiple cores, and
Schedule 2 parallelizes the output channels (m). We store
filter in the most natural representation with M-structure,
MCCURUSU . Because the loop order of Schedule 2 is
concordant with the data layout of the output(NMPQ), it per-
forms better than Schedule 1 at lower sparsity. However, as
the sparsity increases, more output channels in M-structure
get pruned. At 90% sparsity, only 13 output channels were
left but the number is too small for multiple cores to process.
On the other hand, Schedule 2 parallelizes the height of the
output. Schedule 2 shows better performance than Sched-
ule 1 at sparsity above 80% despite the loop discordantly
proessing the output.

Since there are many choices to explore, we obtained the
optimal data representation and schedule through an auto-
tuning in section 6.2.2 and section 6.2.3. We used Open-
Tuner (Ansel et al., 2014) to choose the optimal parameter
for the data representation, the order of the loop, a loop to
parallelize, and OpenMP chunk size for load balancing. Our
estimation of the size of the search space was about 2 ∗ 104,
and we ran OpenTuner for 15 minutes for each layer.

6.2.2 Structured Sparsity

Figure 9 shows the performance of TACO-UCF on four
different structured patterns. Overall, the better the pattern

Sparsity

S
pe

ed
up

 o
ve

r o
ne

D
N

N

0x

1x

2x

3x

4x

5x

50% 60% 70% 80% 90%

M MC MCR MCRS

Figure 9. Speedup of four different sparse structures over oneDNN
on layer C10. Formats and Schedules are found by OpenTuner.

Pruning Sparsity 80% 91% 96% 98%
cuDNN 1.0× 1.0× 1.0× 1.0×
Escort 0.78× 1.09× 1.35× 1.49×
TACO-UCF 1.08× 1.61× 2.15× 2.57×

Table 7. Normalized GPU performance relative to cuDNN of two
filter sparse convolutions (Escort and TACO-UCF) on different
sparsity levels of pruned ResNet50’s convolutional layers.

was structured, the better the performance was. One obser-
vation is that MC-structure has comparable performance to
M-structure and becomes faster after 80% sparsity. Even
if MC-structure stores c in Compressed format, icc can
generate an efficient register-blocked and vectorized kernel
in the inner-most loop only with p, q, r, and s. A slowdown
of the M-structure after 80% is because the M-structure does
not expose sufficient parallelism, as shown in Figure 8.

6.2.3 Unstructured Sparsity on CPU

Not all pruning methods exploit structured sparsity. Instead,
some methods prune the network without specific restric-
tions on patterns to preserve the accuracy as much as pos-
sible. Table 4 reports the top-1 accuracy of pruned models
we used. Figure 10 compares TACO-UCF with SkimCaffe
using the pruned ResNet80 at 80% sparsity. TACO-UCF
shows similar or better performance with only 20 lines of
code than SkimCaffe which is hand-written by experts over
488 lines of code. In addition, SkimCaffe does not support
an efficient implementation of a stride convolution, so we
only report TACO-UCF’s performance at C21-C8 and C1.

While TACO-UCF supports a stride convolution, its perfor-
mance was slower than oneDNN at 80% sparsity. We raised
the sparsity of only the slower layers at 80% sparsity to
test which sparsity makes the layer quicker than the dense
counterpart. Figure 11 illustrates the results. TACO-UCF
showed similar performance to oneDNN for most of lay-
ers at 91% sparsity and became faster as sparsity increases.
Overall, when looking at all layers, TACO-UCF showed
similar performance to oneDNN at the 80% sparsity. How-
ever, to have better performance, layers can be adaptively
deployed with TACO-UCF or oneDNN.

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

ResNet50 Layers

S
pe

ed
up

 o
ve

r o
ne

D
N

N

0x

1x

2x

3x

C21 C6 C19 C12 C14 C8 C9 C5 C13 C7 C3 C1 C18 C2 C11 C20 C22 C10 C17 C15 C16 C24 C25 C4 C23

TACO-UCF 80% SkimCaffe 80%

Stride Convolution

Figure 10. Speedup of TACO-UCF and SkimCaffe over oneDNN on ResNet50 layers at 80% sparsity. X-axis is sorted according to
speedup of TACO-UCF. Data representations and Schedules are found by OpenTuner for each layer. We did not include SkimCaffe at
C21-C8 and C1 because SkimCaffe does not support an efficient stride sparse convolution.

ResNet50 Layers

S
pe

ed
up

 o
ve

r o
ne

D
N

N

0x

1x

2x

3x

4x

C21 C6 C19 C12 C14 C8 C9 C5 C13 C7 C3 C1

TACO-UCF 80% TACO-UCF 91% TACO-UCF 96% TACO-UCF 98%

Figure 11. Speedup of TACO-UCF over oneDNN on layers that are slower than oneDNN in Figure 10 by increasing the sparsity.

6.2.4 Unstructured Sparsity on GPU

We conducted the same experiments as in Section 6.2.3 on
the GPU. Unlike the CPU experiment, we used a fixed for-
mat and schedule for all layers in ResNet50 on the GPU. Ta-
ble 7 shows the normalized performance relative to cuDNN.
cuDNN performs dense convolution regardless of the spar-
sity level, so it serves as a baseline comparison. TACO-UCF
shows higher performance compared to Escort and cuDNN
at all sparsity levels of pruned ResNet50. While Escort, the
state-of-the-art sparse convolution library, was able to match
cuDNN’s performance at 91% sparsity, TACO-UCF has now
surpassed that threshold and is now faster than cuDNN at
80% sparsity. Moreover, TACO-UCF achieves even higher
performance gains as the sparsity level increases.

6.3 Submanifold Sparse Convolution
6.3.1 Direct Sparse Submanifold Convolution

We implement a direct sparse submanifold convolution us-
ing TACO-UCF. We compare TACO-UCF with two base-
lines, MinkowskiEngine and TorchSparse, which implement
the state-of-the-art map-based submanifold convolution.

CPU Result. Figure 12(a) reports the speedup of TACO-
UCF’s submanifold convolution over MinkowskiEngine
at five different datasets on CPU. We did not report a
CPU performance of TorchSparse because it was an or-
der of magnitude slower than MinkowskiEngine (50×
slower on average). TACO-UCF significantly outperforms

S
pe

ed
up

 o
ve

r M
E

0
2
4
6
8

10
12

LIDAR LIDAR2 Office Lobby Conference

MinkowskiEngine TACO-UCF

S
pe

ed
up

 o
ve

r M
E

0.0

0.5

1.0

1.5

2.0

LIDAR LIDAR2 Office Lobby Conference

MinkowskiEngine TorchSparse TACO-UCF

(a) CPU Result

(b) GPU Result
Figure 12. Normalized performance over MinkowskiEngine on
CPU and GPU. In and out channels are C=M=64.

MinkowskiEngine. Existing libraries have yet to make ef-
forts to optimize the CPU performance, and direct sparse
convolution produces the neighbor map on the fly without
having to write full intermediate results into the memory.

GPU Result. Figure 12(b) shows the results on GPU. Since
the number of neighbors of each point significantly varies in

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

S
pe

ed
up

 o
ve

r M
E

0
1
2
3
4
5
6

LIDAR LIDAR2 Office Lobby Conference

TorchSparse(Map) TACO-UCF(Map)

Figure 13. Normalized performance of each method over
MinkowskiEngine in the neighbor map construction phase.

the real-world point cloud, a load balancing scheme that uti-
lizes a lot of cores is important to have a good performance
in GPU. Map-based approaches can distribute workloads in
a more balanced manner than a direct approach by looking at
the distribution of neighbors created in the map construction
phase. TACO-UCF has comparable performance against
MinkowskiEngine, but is not as good as TorchSparse on
some data. The slowdown is because of an imbalance each
aggregation GPU thread handles in a direct convolution
approach which finds neighbors on the fly.

6.3.2 Map-based Sparse Submanifold Convolution

We implement a map-based approach using TACO-UCF.
Instead of implementing an entire map-based approach, we
only implement the map construction (a neighbor retrieval)
phase. A construction phase takes a considerable portion
of the computation. It takes 37.6-87.4% and 27.6-59.1% of
the execution time in TorchSparse and MinkowskiEngine,
respectively.

Figure 13 reports the normalized performance of the map
construction of each method on GPU. TACO-UCF outper-
forms baselines because it does not require building any
hash table to retrieve neighbors like other methods, but can
efficiently retrieve neighbors by intersecting coordinates
stored in Compressed format. In particular, Torchsparse
uses the cuckoo hash table (Pagh & Rodler, 2004) to con-
struct the neighbor map, which is effective for small number
of non-zeros. Still, as nnz increases in the point cloud, e.g.,
Lobby or Conference, it slows down quickly, and the con-
struction phase takes account of a large portion. Replacing
their map construction with TACO-UCF will significantly
improve overall performance of the library.

6.4 Dual Sparse Convolution
Table 1 showcases the capabilities of TACO-UCF in gen-
erating code for dual sparse convolution where both the
input activation and the filter are sparse. Specifically, we
demonstrate its performance in two types of dual sparse
convolution: (1) dual sparse conventional convolution, and
(2) dual sparse submanifold convolution. In the following
experiments, we compare dual sparse convolutions against
non-dual sparse convolutions generated by TACO-UCF.

(a) CPU Non-dual RST-Structured Unstructured
Sparsity 0% 25% 50% 75% 90% 95% 99%

LIDAR 1.0× 1.4× 1.6× 2.5× 1.0× 1.0× 1.1×
LIDAR2 1.0× 1.2× 1.4× 1.9× 1.0× 1.1× 1.3×
Office 1.0× 1.4× 1.8× 2.5× 0.7× 0.8× 1.2×
Lobby 1.0× 1.5× 1.8× 3.1× 0.9× 1.0× 1.4×
Conference 1.0× 1.7× 2.0× 3.4× 0.9× 1.1× 1.3×

(b) GPU Non-dual RST-Structured Unstructured
Sparsity 0% 25% 50% 75% 90% 95% 99%

LIDAR 1.0× 1.1× 1.3× 1.9× 0.7× 1.1× 1.9×
LIDAR2 1.0× 1.3× 1.6× 2.1× 0.9× 1.5× 2.4×
Office 1.0× 1.3× 1.8× 2.9× 0.9× 1.4× 2.5×
Lobby 1.0× 1.3× 1.6× 2.6× 0.8× 1.3× 3.0×
Conference 1.0× 1.2× 1.5× 2.6× 0.8× 1.3× 2.8×

Table 8. Performance comparison of normalized dual sparse sub-
manifold convolution of TACO-UCF over a normal sparse subman-
ifold convolution of TACO-UCF (depicted as ”Non-dual” in the
table) on (a) CPU and (b) GPU. The numbers were collected by
sweeping a filter pruning sparsity in two different sparsity patterns.

6.4.1 Conventional Convolution with Dual Sparsity

Dual sparse conventional convolution is in contrast to sec-
tion 6.2, which only assumes sparsity on the filter. In our
experiments, we investigated the performance of dual sparse
convolution on CPU by varying the unstructured sparsity
level of the input activation while fixing the filter sparsity
at 80% on ResNet50. The input activation and filter weight
were stored in NUHUWUCU and RUSUCUMC fixed for-
mat, respectively. The results showed that the generated
code for dual sparse convolution was 1.6×, 1.9×, 2.4×,
and 3.2× faster than filter-only sparse convolution at 50%,
60%, 70%, and 80% activation sparsity. However, it should
be noted that when we tested dual sparse convolution with
NCHW layout, its performance was often worse compared
to filter-only sparse convolution unless the filter weight had
structured sparsity.

6.4.2 Submanifold Convolution with Dual Sparsity

The dual sparse submanifold convolution introduces filter
sparsity to the normal submanifold sparse convolution. We
conducted tests on two types of structured filter sparsity:
(1) RST-structure filter sparsity, where we prune a spatial
dimension of the filter (a 3D version of the RS-structure
shown in Figure 7-(b)), and (2) unstructured filter sparsity.
Table 8 presents the normalized performance over a sub-
manifold sparse convolution without filter pruning. For both
CPU and GPU, the dual sparse convolution achieves higher
performance gains as the sparsity level increases. Similar to
Figure 9, TACO-UCF can benefit from structured sparsity.
Although we need to prune the filter until 95% sparsity with
unstructured pattern to match the performance of non-dual
sparse convolution, structured sparsity can easily achieve
speedup compared to unstructured sparsity.

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

7 CONCLUSION

This paper introduces the Unified Convolution Framework
(UCF) that integrates various existing sparse convolutions
by extending TACO’s Einsum language to express full affine
index expressions. The resulting compiler efficiently gen-
erates code by exploring scheduling and format choices,
achieving better performance than state-of-the-art libraries
on filter, submanifold, and dual sparse convolution on both
CPU and GPU. Although UCF can support many sparse con-
volutions that are not currently used in practice, we hope that
this work will encourage their use. Additionally, the high-
performance code generation of UCF offers practitioners
the opportunity to develop bespoke convolution techniques
that are better suited to their specific problems.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their valuable sugges-
tions. We thank Teodoro Collin for reading early drafts of
this paper and providing feedback. This work was supported
by NSF/Intel PPoSS under award CCF-2217064; NSF un-
der award CCF-2107244; and DOE SciDAC under award
DE-SC0018121. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
aforementioned funding agencies.

REFERENCES

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley,
J., Bosboom, J., O’Reilly, U.-M., and Amarasinghe, S.
Opentuner: An extensible framework for program auto-
tuning. In Proceedings of the 23rd international con-
ference on Parallel architectures and compilation, pp.
303–316, 2014.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., and Savarese, S. 3d semantic parsing of
large-scale indoor spaces. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 1534–1543, 2016.

Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E.,
Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and Amaras-
inghe, S. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization
(CGO), pp. 193–205. IEEE, 2019.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke,
S., Stachniss, C., and Gall, J. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9297–9307, 2019.

Bik, A., Koanantakool, P., Shpeisman, T., Vasilache, N.,
Zheng, B., and Kjolstad, F. Compiler support for sparse
tensor computations in mlir. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 19(4):1–25,
2022.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pp. 578–594,
2018.

Chen, X. Escoin: Efficient sparse convolutional neu-
ral network inference on gpus. arXiv preprint
arXiv:1802.10280, 2018.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cudnn:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Chou, S., Kjolstad, F., and Amarasinghe, S. Format abstrac-
tion for sparse tensor algebra compilers. Proceedings
of the ACM on Programming Languages, 2(OOPSLA):
1–30, 2018.

Choy, C., Gwak, J., and Savarese, S. 4d spatio-temporal
convnets: Minkowski convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3075–3084, 2019.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
14629–14638, 2020.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D.,
Henry, G., Pabst, H., and Heinecke, A. Anatomy of
high-performance deep learning convolutions on simd
architectures. In SC18: International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 830–841. IEEE, 2018.

Gong, Z., Ji, H., Fletcher, C. W., Hughes, C. J., and Torrellas,
J. Sparsetrain: Leveraging dynamic sparsity in software
for training dnns on general-purpose simd processors. In
Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques, pp.
279–292, 2020.

Graham, B., Engelcke, M., and Van Der Maaten, L. 3d
semantic segmentation with submanifold sparse convolu-
tional networks. In Proceedings of the IEEE conference

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

on computer vision and pattern recognition, pp. 9224–
9232, 2018.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henry, R., Hsu, O., Yadav, R., Chou, S., Olukotun, K.,
Amarasinghe, S., and Kjolstad, F. Compilation of sparse
array programming models. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–29, 2021.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J., and Du-
rand, F. Taichi: a language for high-performance compu-
tation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):1–16, 2019.

Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Ama-
rasinghe, S. The tensor algebra compiler. Proceedings
of the ACM on Programming Languages, 1(OOPSLA):
1–29, 2017.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Shavit, N., and
Alistarh, D. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In Interna-
tional Conference on Machine Learning, pp. 5533–5543.
PMLR, 2020.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and
Dally, W. J. Exploring the granularity of sparsity in con-
volutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 13–20, 2017.

Niu, W., Ma, X., Lin, S., Wang, S., Qian, X., Lin, X.,
Wang, Y., and Ren, B. Patdnn: Achieving real-time dnn
execution on mobile devices with pattern-based weight
pruning. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 907–922, 2020.

Pagh, R. and Rodler, F. F. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

Park, J., Li, S., Wen, W., Tang, P. T. P., Li, H., Chen, Y., and
Dubey, P. Faster cnns with direct sparse convolutions and
guided pruning. arXiv preprint arXiv:1608.01409, 2016.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand,
F., and Amarasinghe, S. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices, 48(6):
519–530, 2013.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks. Synthesis Lectures
on Computer Architecture, 15(2):1–341, 2020.

Tang, H., Liu, Z., Li, X., Lin, Y., and Han, S. Torchsparse:
Efficient point cloud inference engine. Proceedings of
Machine Learning and Systems, 4:302–315, 2022.

Tian, R., Guo, L., Li, J., Ren, B., and Kestor, G. A high
performance sparse tensor algebra compiler in mlir. In
2021 IEEE/ACM 7th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC), pp. 27–38. IEEE,
2021.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Yu, F. and Koltun, V. Multi-scale context aggregation by
dilated convolutions. arXiv preprint arXiv:1511.07122,
2015.

A ARTIFACT APPENDIX

A.1 Abstract

The artifact provided in this paper consists of two directo-
ries that run experiments for filter sparse convolution and
masked convolution. The experiments were conducted on
Ubuntu running on Intel Xeon CPU E5-2680 v3 and Nvidia
RTX 3090.

The artifact includes TACO-UCF, which implements the
affine index expression support described in the paper, as
well as a set of benchmark scripts to run the experiments
described in the paper. The artifact can be found on Zenodo
and GitHub.

A.2 Artifact check-list (meta-information)

• Algorithm: Unified Convolution Framework
• Program: TACO-UCF
• Compilation: TACO-UCF is compiled with cmake.

Codes generated by TACO-UCF are then compiled
with gcc, icc, and nvcc.

• Data set: (1) Pruned ResNet50, (2) Two point clouds
from SemanticKITTI, and (3) Three point clouds
from S3DIS

• Run-time environment: Ubuntu 18.04 LTS

https://doi.org/10.5281/zenodo.7858518
https://github.com/nullplay/Unified-Convolution-Framework

Unified Convolution Framework: A compiler-based approach to support sparse convolutions

• Hardware: Intel Xeon CPU E5-2680 v3 and Nvidia
RTX 3090

• Metrics: Elapsed Time (ms)
• Output: Elapsed time of each program
• Experiments: (1) Filter sparse convolution and (2)

Submanifold sparse convolution
• Publicly available DOI: https://doi.org/10.5281/

zenodo.7858518
• Publicly available Github: https://github.com/

nullplay/Unified-Convolution-Framework
• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: CC BY-NC-

SA 4.0

A.3 Description

A.3.1 How delivered

Clone the repository from GitHub. Then follow the installa-
tion instruction in README.md.

A.3.2 Hardware dependencies

Some experiments in the artifact requires Nvidia GPU with
a compute capability 6.1 or higher to run.

A.4 Installation

Building TACO-UCF using CMake 3.4.0 or greater

To build TACO-UCF, follow the steps below:

1. cd <UCF-directory>

2. mkdir build

3. cd build

4. cmake -DCMAKE_BUILD_TYPE=Release ..

5. make -j8

6. export LD_LIBRARY_PATH=
$(pwd)/lib/:$LD_LIBRARY_PATH

Building for CUDA

To build TACO-UCF for NVIDIA CUDA, add the
-DCUDA=ON flag to the CMake command above. For exam-
ple:

cmake -DCMAKE_BUILD_TYPE=Release
-DCUDA=ON ..

Please ensure that you have CUDA installed properly and
that the following environment variables are set correctly:

export PATH=
/usr/local/cuda/bin:$PATH

export LD_LIBRARY_PATH=
/usr/local/cuda/lib64:$LD_LIBRARY_PATH

export LIBRARY_PATH=
/usr/local/cuda/lib64:$LIBRARY_PATH

A.5 Experiment workflow

Running Sparse Convolutions

To run filter-sparse convolution, navigate to the following
directory:

cd ./benchmark/filter_sparse_convolution

To run masked (submanifold) sparse convolution, navigate
to the following directory:

cd ./benchmark
/submanifold_sparse_convolution

A.6 Evaluation and expected result

If the elapsed time of each program is displayed, the experi-
ment ran successfully.

https://doi.org/10.5281/zenodo.7858518
https://doi.org/10.5281/zenodo.7858518
https://github.com/nullplay/Unified-Convolution-Framework
https://github.com/nullplay/Unified-Convolution-Framework
https://github.com/nullplay/Unified-Convolution-Framework

