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ABSTRACT

Over the past few years, the explosion in sparse tensor algebra
workloads has led to a corresponding rise in domain-specific accel-
erators to service them. Due to the irregularity present in sparse
tensors, these accelerators employ a wide variety of novel solutions
to achieve good performance. At the same time, prior work on
design-flexible sparse accelerator modeling does not express this
full range of design features, making it difficult to understand the
impact of each design choice and compare or extend the state-of-
the-art.

To address this, we propose TeAAL: a language and simulator
generator for the concise and precise specification and evaluation
of sparse tensor algebra accelerators. We use TeAAL to represent
and evaluate four disparate state-of-the-art accelerators—ExTensor,
Gamma, OuterSPACE, and SIGMA—and verify that it reproduces
their performance with high accuracy. Finally, we demonstrate the
potential of TeAAL as a tool for designing new accelerators by
showing how it can be used to speed up vertex-centric program-
ming accelerators—achieving 1.9x on BFS and 1.2X on SSSP over
GraphDynS.
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1 INTRODUCTION

Sparse tensor algebra workloads have exploded in popularity over
the past few years, with applications ranging from deep learn-
ing [4, 27, 45] to graph algorithms [3, 5, 12, 28, 32, 41] to physical
simulations [20, 46, 49]. This surge has been accompanied by a corre-
sponding rise in proposals for custom hardware to service common
sparse kernels, e.g., sparse matrix multiply [15, 16, 34, 36, 38, 55, 56].

While these accelerators have the potential to provide dramatic
speedup over the best CPU and GPU algorithms, they take signifi-
cant effort and space to describe, refine, and evaluate. Specifically,
sparse accelerators are typically described either with RTL or a
block diagram and an accompanying natural language description.
The former is verbose and often difficult to comprehend, while the
latter is imprecise and often incomplete. Neither makes it easy to
model and evaluate the impact of proposed design changes.

The goal of our work is to ameliorate these issues. That is, to
enable the precise and concise specification of sparse tensor algebra
accelerators, thereby providing a basis for describing, modeling,
evaluating, comparing, and extending proposed designs.

We draw inspiration from existing practice in dense tensor alge-
bra accelerator design. Here, a number of tools support concise, pre-
cise specifications and the derivation of efficient models [25, 35, 54].
To simplify specification, these tools follow the model proposed by
Halide [39] and support separately providing a target algorithm (i.e.,
a functional description of the problem, such as an equation in Ein-
stein summation (Einsum) notation [13]) and a mapping, expressing
when and where in the processor each action (e.g., compute or stor-
age access) occurs [8]. These, together, correspond to a mapped
representation (e.g., a loop nest), describing both the algorithm and
how it is executed. A model of the target platform then evaluates
the mapped representation to produce metrics like performance
and energy.

Yet, dense tensor accelerator modeling techniques cannot sup-
port the sparse case. This is due to the novel complexity that arises
when trying to efficiently orchestrate and compute on irregularly
sparse data. For example, one can accurately model dense kernels
using a few summary statistics (like tensor shapes). However, such
summary statistics cannot capture the variety in sparsity distri-
butions present in real-world tensors. Indeed, sparse accelerators
regularly employ specialized algorithms and mechanisms to cope
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with irregular (often low) data reuse, myriad compression formats,
additional meta-computation (e.g., intersection), and more. For ex-
ample, the OuterSPACE accelerator [34] splits sparse-sparse matrix
multiply (SpMSpM) into several phases that respectively produce,
sort, and consume an array of linked lists representing partial prod-
ucts. Gamma [55] executes the same kernel with two stages that are
connected with a high-radix hardware merger to process the data
efficiently. SIGMA [38] uses yet a third strategy (irregularly filling
a PE array with only non-zero data). And so on. All of the above
stems from irregular sparsity, which obviously does not manifest
when data is dense.

Likewise, existing tools for modeling sparse tensor algebra ac-
celerators do not fully overcome challenges arising from irregular
sparsity. For example, STONNE [30, 31] supports only the SpM-
SpM kernel, and even then, only six pre-selected mappings for that
kernel. Sparseloop [52] can model an accelerator describable in a
single deep loop nest. As we will show, this is insufficient to ex-
press SIGMA, OuterSPACE, and Gamma. Additionally, Sparseloop
uses abstract distribution functions to model sparsity, rather than
precisely modeling the behavior of actual input sets. While better
than using just shape-based information (like dense modeling), we
show how this approach still results in degraded modeling accuracy
(Section 7).

Our contribution. We provide a basis for specifying sparse tensor
algebra accelerators by showing how recent designs can be ex-
pressed as cascades (directed acyclic graphs or DAGs) of mapped Ein-
sums and content-preserving transformations on the constituent ten-
sors in those Einsums. For example, both OuterSPACE and Gamma
can be described by rewriting the Einsum for matrix multiply into
several, dependent Einsums. In this abstraction, the sort/merge op-
erations in those designs are described as reordering the dimensions
of an intermediate tensor to improve locality, while the differences
between the two operations are captured in how each Einsum is
mapped. We show how the design choices of other accelerators
can likewise be described in terms of a small set of categories of
operations, e.g., splitting/combining dimensions of a tensor while
preserving its contents.

Based on the above abstraction, we propose TeAAL (for Tensor
Algebra Accelerator Language), a novel declarative language, simu-
lator generator, and performance model that enables precise design
specification and modeling of sparse tensor algebra accelerators.
The TeAAL simulator generator takes accelerators described as
mapped Einsum cascades and produces an imperative-style inter-
mediate representation (IR) that describes tensor transformations
as primitive operations on tensors represented as fibertrees [45]. It
then uses implementation-level specifications (e.g., describing the
tensor formats) to augment the IR to produce an accurate, validated
performance model that processes real tensors.

Although attributes such as language expressivity and concise-
ness are difficult to quantify, as part of a study to validate TeAAL’s
fidelity, we write the TeAAL Einsum and mapping specifications of
four recent (and disparate) sparse tensor algebra accelerator propos-
als (OuterSPACE [34], ExTensor [16], Gamma [55], and SIGMA [38])
in less than a page (see Figures 3 and 8), with each specification tak-
ing ~ 30 lines. We verify that the models generated for each of these
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accelerators reproduce the designs’ original published performance
results (given the same input data sets) with high accuracy.

We view our primary contribution to be the accurate specifica-
tion and modeling of sparse tensor algebra accelerators. That said,
we also show how TeAAL can be applied in adjacent domains and be
used to explore optimization opportunities for accelerators in those
domains. Specifically, we use TeAAL to describe Graphicianado [14]
and GraphDynS [53], which accelerate vertex-centric programming
(a popular paradigm for graph algorithms), and demonstrate how
to improve these designs by making point changes to their TeAAL
specifications.

Taken as a whole, we feel TeAAL constitutes a significant ad-
vance over state-of-the-art practices in modeling and evaluating
sparse tensor accelerators. Using TeAAL, one is able to describe
a design using a precise, unified set of abstractions, supporting
qualitative and quantitative comparison to other designs and en-
abling the exploration of the impact of a series of design changes.
By contrast, standard practice today is to rely on English descrip-
tions/figures and bespoke simulators, which suffer along all of these
dimensions. Although prior works exist for exploring the space of
sparse accelerator designs (e.g., Sparseloop [52]), they have more
limited expressivity. For example, Sparseloop is only able to repre-
sent one of the six accelerators that we show results for.

To summarize, we make the following contributions:

e We show how modern sparse tensor algebra accelerator fea-
tures can be represented using cascades of mapped Einsums
and content-preserving transformations on those Einsums’
constituent tensors. Based on this abstraction, we propose
the TeAAL specification language for concisely and accu-
rately specifying the design of sparse tensor algebra acceler-
ators.

e We propose and design a simulator generator that trans-
forms TeAAL specifications into an imperative-style IR that
performs operations on fibertrees and lowers that IR to an
accurate performance model of the specified design that
processes real sparse tensor inputs.

e We validate TeAAL’s accuracy in terms of modeling memory
traffic, performance, and energy with respect to the reported
results of four state-of-the-art accelerators.

e We demonstrate the potential of TeAAL as a tool for ac-
celerator design by using it to speed up accelerators for
vertex-centric programming—by 1.9% on BFS and 1.2X on
SSSP over GraphDynS [53].

Beyond the artifact (Appendix A), we have made the source
code for TeAAL available at https://github.com/FPSG-UIUC/teaal-
compiler.

2 BACKGROUND AND MOTIVATION

We review key attributes of sparse tensor algebra and outline the
design decisions typically made by sparse tensor accelerators. We
highlight the difficulties with informal comparisons between accel-
erators and motivate the need for a precise, formal specification.

2.1 Tensors and Fibertrees

In this paper, an N-tensor is a multidimensional array with N di-
mensions. For example, a 0-tensor is a scalar, a 1-tensor is a vector,
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Figure 1: Sparse matrix-vector multiplication and corresponding
fibertree representations.
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Figure 2: Flattening then partitioning ranks M, K of tensor A (Fig. 1).

and a 2-tensor is a matrix. Figure 1 shows a 2-tensor, A, with di-
mensions M and K. Using the terminology from Sze et al. [45], we
describe a tensor’s attributes:

e A rank refers to an axis/dimension in the tensor. A matrix
has two ranks, often described as rows and columns.

o A point is a logical location within a tensor that contains a
scalar value. A point is identified by an N-tuple of coordinates
with one coordinate for each rank in the tensor. We denote
the tensor A’s element at point (m, k) as A, .

Mathematically, tensors have no notion of sparsity or compres-
sion format (e.g., CSR). To avoid getting bogged down in the nu-
merous details of various formats, we leverage the following ab-
stractions proposed in Sze et al. [45]:

o A fibertree represents a tensor as a tree, with each level
corresponding to a labeled rank in the tensor. Tensor A in
Figure 1 has ranks M and K.

e The order of levels in a fibertree reflects its rank order, de-
noted [M, K] in our example. The rank order list read left-to-
write corresponds to the fibertree’s ranks read top-to-bottom
in the tree.

e Every level contains one or more fibers. A fiber is the set
of elements sharing all coordinates in all higher levels of
the tree. Fibers are more precise than “rows” or “columns,”
because they naturally extend to N-tensors.

e Each element in the fiber is a coordinate/payload pair, where
the payload is a scalar value when it is at a leaf or a reference
to a fiber when it is an intermediate node.

o The shape of a fiber is the the set of legal values the coor-
dinates in that fiber can take on, where an integer shape
means the open interval from zero to that integer. The shape
of a rank is the union of the shapes of all fibers in that rank.
The shape of a tensor is the list of shapes of each of the ranks
in rank order.

One advantage of fibertrees is that they naturally handle both
dense and sparse tensors (i.e., tensors where a number of points are
zero). A dense tensor’s fibertree has every coordinate present in
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the entire shape (i.e., a complete tree). On the other hand, a sparse
tensor’s fibertree can omit all elements with empty payloads (either
zero values or empty fibers). The semantics of operations on fibers
and fibertrees remain the same in both cases. Note that fibertrees
are just an abstraction we use to describe operations on tensors.
To model a specific design, all fibertrees are lowered to concrete
representations, like CSR or COO (see Section 4.1.1). In this work,
we use fibertrees both to categorize the space of design choices
(Section 3) and as an IR during performance modeling (Section 4).

The fibertree abstraction also supports a number of transforma-
tions that change the fibertree corresponding to a tensor:

o A rank flattening, demonstrated in the first transformation in
Figure 2, combines two ranks together into a single rank. Af-
ter flattening, the coordinates are tuples of the coordinates in
the original fibers that reference a payload from the original
lower rank.

o A rank partitioning, demonstrated in the second transfor-
mation in Figure 2, separates a rank into two ranks. The
coordinates of the new upper rank denote the first legal
coordinate in the fiber below.

o A rank swizzle changes the fibertree’s rank order (i.e., re-
orders the levels of the fibertree).

An important insight in our work is that many sparse accelerator
behaviors can be viewed as one or more of these transformations
(Section 3).

2.2 Tensor Algebra with Extended Einsums

TeAAL expresses the individual computations performed by an
accelerator using equations written in an extended Einstein summa-
tion notation [13, 16, 45]. For simplicity, we call equations written
in this form Einsums. Einsums are general enough to describe all
tensor algebra kernels and have been used as the tensor algorithm
specification in prior work for tensor algebra compilation [23, 50]
and accelerator modeling [35, 45, 52].

We now present an operational definition of the Einsums used by
TeAAL. An Einsum specifies three things: (1) the input and output
tensors involved and their ranks, (2) an iteration space containing
a point for each computation to be performed, and (3) the specific
computation to be performed at each point in the iteration space.
For example, the Einsum for matrix-vector multiply is:

Zm :Am,k X B. (1)

Here, the equation defines the input tensors (A, B), the output
tensor (Z), and the iteration space—the Cartesian product of all
legal coordinates in the expression—(M X K). An implementation
of this Einsum must traverse each point in this space. For each
point, it computes the operation (X) on the right-hand-side using
the specified points in the input operands (A, B). It then takes the
result and populates the location specified in the left-hand-side (Z).
Since the K rank does not appear in the output tensor, the Einsum
will attempt to repeatedly populate the same point (Z,). Einsum
semantics resolve this by sequentially reducing the multiple values
(using, in this case, addition) into a single value for that point. Note
that the Einsum does not specify iteration order; this is left to the
mapping (Section 2.3).
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Table 1: Comparison of selected sparse tensor accelerator hardware proposals. TeAAL specifications increase both the precision and formalism
of such comparisons, and enable automatic generation of performance/energy models.

Accelerator [ Year [ Mapping Approach [ Architectural Focus

OuterSPACE [34] | 2018 | Outer Product parallelized across rows of A Sparse matrix multiply with serial multiply/add phases, custom merge unit

ExTensor [16] 2019 | Inner Product tiled across all dimensions for locality Arbitrary Einsums and TACO formats [9], skip-ahead intersection unit

MatRaptor [42] 2020 | Row-wise Product with parallel summation Sparse matrix multiply with co-design of micro-architecture and C?SR format

SIGMA [38] 2020 | Inner Product parallelized across multiple dimensions Sparse matrix multiply with custom bitmap format, flexible hardware topology

SpArch [56] 2020 | Outer Product with parallel merge Sparse matrix multiply with optimized RAM interface in sum phase

Tensaurus [43] 2020 | Inner Product with extended scalar-fiber product followed | SF® demonstrated applicability to multiple Einsums beyond matrix-matrix multiply
by fiber-fiber product (SF?)

Gamma [55] 2021 | Row-wise Product, adoption of Gustavson’s alg. Sparse matrix multiply with custom FiberCache, transposed merge-and-sum

By adding a new rank N to B, we can extend the above Einsum
to matrix multiplication:

Zm,n = Am,k X Bk,n- (2)

This expands the iteration space to M X K X N.

As another example, our operational definition of an Einsum
allows us to represent kernels beyond standard tensor algebra. For
example, we can write 1D direct convolution with the Einsum:

Oq = Iq+s X Fs (3)

Just like the other examples, this equation defines the input tensors
(I, F), output tensors (O), the iteration space (Q X S), and the com-
putation to occur at each point in the space. A reduction occurs
across points in the iteration space with the same g and different s
coordinates, as one would expect from 1D convolution.

2.3 Mapping Hardware Accelerators

Mapping [8] is the task of scheduling the computation of an Einsum
onto limited hardware resources to jointly optimize for the desired
combination of throughput, latency (execution time), power, etc.
We summarize the mapping attributes used for hardware modeling
and design in prior work [7, 17, 19, 25, 29, 35, 54] that we use
throughout.

1) Loop order. The Einsum’s large iteration space must be seri-
alized through finite datapath resources in some order. Two choices
for Equation 1 are: (1) [M, K] or (2) [K, M]. Loop order is read
left-to-right, corresponding to the topmost-to-bottommost loop
in a loop nest. For example, (1) above reads “for each value of m,
iterate through all values of k.” This choice affects data locality and,
in turn, memory access costs. Depending on on-chip buffer sizes,
loop order (1) for matrix-vector multiply keeps an element of Z
stationary [8] in on-chip memory while B is streamed in multiple
times. Meanwhile, loop order (2) keeps B stationary but repeatedly
streams Z.

2) Splitting. To further improve data locality across all tensors,
many algorithms employ splitting (or strip mining, blocking, etc.)
to divide the iteration space into subspaces that refer to a small
enough subset of each of the tensors that they fit fully in on-chip
buffers. Fibertrees model these subsets by partitioning their fibers
according to the split iteration space. How a fiber is partitioned
is a function of the coordinates in the fiber. For example, suppose
matrix A has a rank-order of [M, K]. Splitting K by shape K0 results
in a new A tensor with rank-order [M, K1, K0], where K is split
into K1 partitions with K0 coordinates each.!

!In other words, each tile stores coordinates in the coordinate range [ i+K0, (i+1)*K0)
for some i.

3) Work scheduling. Finally, the mapping specifies how the
iteration space is traversed, by placing each point at a specific
location in both time and space. Mapping a computation at differ-
ent locations in time implies that the computation is serial (i.e.,
computations happen one after another on the same component),
while mapping at different locations in space implies parallelism
(i.e., computation happens at the same time on different processing
elements (PEs)).

2.4 Accelerating Sparse Tensor Algebra

Sparse tensor algebra introduces new opportunities and challenges
to the mapping problem. Sparse tensors are typically compressed
to remove the zero elements, resulting in fibertrees with missing
coordinate-payload pairs. Compression can yield significant sav-
ings in storage and data transfers and avoid ineffectual compute—
operations that have no impact on the result and can be safely
skipped, e.g., multiplication or addition with zero [16].

However, realizing these benefits requires accelerators to “spar-
sify” the iteration space, or remove the ineffectual compute, increas-
ing design complexity, sensitivity to memory latency/bandwidth,
and load imbalance. For example, the [M, K] loop order for Equa-
tion 1 may skip, for example, from (m = 0,k = 2) to (m = 2,k = 0)
in one step [52]. Such skipping can remove ineffectual compute but
may require co-iteration of the operands and additional operations
(e.g., intersection for fibers multiplied together). Without careful
engineering, this can lead to inefficiencies that do not occur when
tensors are dense [33]. For example, the same-shape tiles produced
by the scheme described in Section 2.3 may have different memory
footprints, leading to data transfer and compute load imbalance
when tiles are distributed to workers.

To deal with these challenges, sparse tensor accelerators have
proposed a wide variety of custom hardware solutions, summarized
in Table 1. We note that the complexity of this topic makes such a
table an imprecise and ultimately unsatisfying comparison. Addi-
tionally, all of these works used custom hand-written simulators
run on actual data sets to ensure all complexities are captured. In
the remainder of this paper we present a formalism to resolve this
imprecision and enable concise apples-to-apples comparison.

3 OVERVIEW AND INSIGHTS

We now propose TeAAL: a language and simulator generator that
1) enables the concise specification of a sparse tensor algebra ac-
celerator and 2) generates efficiency statistics for that accelerator
computing on actual sparse tensors.

Our key conceptual contribution, which guides the design of
TeAAL, is to show that recent sparse tensor algebra accelerators can
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be expressed as cascades (directed, acyclic graphs; DAGs) of mapped
Einsums (Sections 2.2, 2.3) and content-preserving transformations
on their tensors. This can be elaborated as two novel insights:

Insight 1: Einsum cascades can represent multi-phase ac-
celerator designs (Section 3.1). A variety of accelerators and
algorithms targeting seemingly monolithic kernels are more ac-
curately and succinctly described as a sequence of distinct, inter-
connected phases. We show that cascades of Einsums are suffi-
ciently expressive to represent these multi-phase computations
(e.g., Toeplitz-based convolution, OuterSPACE’s multiply-merge,
SIGMA’s pre-filtering, Graphicionado’s process and apply).

Insight 2: Content-preserving transformations on tensors,
representable as core operations on fibertrees, capture idioms
for sparse tensor data orchestration (Section 3.2). A variety
of sparse accelerator behaviors (e.g., work scheduling, splitting,
sorting/merging) can be represented as content-preserving trans-
formations on specific tensors in the Einsum cascade. We show
how these transformations can be represented as a small set of
core operations performed on fibertrees (Section 2.1). In specific,
we use fibertree rank partitioning/flattening as a general pattern
for representing both sparse tensor splitting and work scheduling
strategies. Additionally, we use fibertree rank swizzling as a general
pattern for sorting and merging, which is often used to improve
tensor traversal efficiency.

This section describes the above insights in more detail and
how they enable the design of the TeAAL specification language.
Section 4 describes how the TeAAL simulator generator converts
TeAAL specifications into an imperative-style IR describing opera-
tions on fibertrees and how this IR (augmented with some additional
information, e.g., describing the architecture and concrete formats)
is subsequently converted into an accurate performance model.

TeAAL specifications. The TeAAL specification language is a
declarative, domain-specific language (DSL) that defines the com-
putation as a cascade of Einsums (expressions), attributes on each
tensor (declaration, rank-order, partitioning), and a dataflow that
describes when and where those tensors’ data is moved (loop-order,
spacetime). We refer to the tensor declarations and Einsums as the
einsum specification and the tensor and dataflow attributes as the
mapping specification. Rank swizzling is not expressed explicitly,
but is inferred from other mapping attributes, such as the rank-order
and loop-order.

OuterSPACE running example. Throughout this section and
Section 4, we use the example TeAAL specification in Figure 3,
which describes the OuterSPACE accelerator [34]. At a high level,
OuterSPACE accelerates SpMSpM using the multiply-merge algo-
rithm. It first performs all multiplications between input tensors
A and B in an outer-product fashion, writes the resulting partial
products to an array-of-linked-lists data structure, sorts the linked
lists to facilitate reduction, and finally performs reductions over the
now-sorted lists to derive final results. Throughout the rest of the
section, we will discuss how TeAAL both implicitly and explicitly
captures these behaviors.

3

4

25

28
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einsum:
declaration: # Ranks are listed alphabetically in this section
A: [K, M]
B: [K, N]

T: [K, M, N]
Z:[M,N]
expressions:
- T[k, m,n] = A[k, m] « B[k, n] # Ty ., = Akyn X Bren

-Z[m,n] =Tk, mn] #Z,,, = Ticpun

# Rank order is specified below in rank-order

0 mapping:

rank-order:
A: [K, M]
B: [K, N]
T: [M, K, N]
Z: [M, N]

; partitioning:

T:

(K, M): [flatten()]

KM: [uniform_occupancy(A.256), uniform_occupancy(A.16)]
Z:

M: [uniform_occupancy(T.128), uniform_occupancy(T.8)]

» loop-order:

T: [KM2, KM1, KMO, N]
Z: [M2, M1, Mo, N, K]
spacetime:
T:
space: [KM1, KMO0]
time: [KM2, N]
Z:
space: [M1, M0]
time: [M2, N, K]

Figure 3: TeAAL specification for the Einsums and mappings of
OuterSPACE [34], described in detail in Section 3.

Table 2: Cascades of Einsums for various accelerators and algo-
rithms. Also see Figure 12 for the Einsum cascades describing Graphi-
cionado [14] and GraphDynS [53].

Accelerators / Algorithms

ExTensor [16]’s SpMSpM
Gamma [55]’s SpMSpM

[ Cascade

Zm,n = Ak,m X Bk,n

Tk,m,n = take (Ak,m)Bk,na 1)
Zm‘n = Ak,m X Tk,m,n

Tk,m,n = Ak,m X Bk,n

Zm,n = Tk,m,n

Sk,m = take(Ak’m, Bk,ns 0)
Tk,m = take(Ak,m, Sie,m» 0)
Zm,n = Tk,m X Bk,n

Ob,m,p,q = Ib,c,p+r,q+s X Fc,m,r,s

OuterSPACE [34]’s SpMSpM

SIGMA [38]'s SpMSpM

Eyeriss [8]’s CONV
Toeplitz expansion/im2col + CONV [45]

Tb,c,p,q,r,s = Ib,c,p+r,q+s
Ob,m,p,q = Tb,c,p,q,r,s X Fc,m,r,s
Ci,r = Ti,j,k X Bj,r X Ak,r
Sijr = Tijk X Akr

Cir =Sijr XBjir

Eo ko = Pokon1,0 X Xni,0

Oo ko0 = Pokonto X Xn1,1

Tko = Po,k0,0.1 X Oo ko

Yoko = Eoko + Tko

Yi,k0 = Eoko = Tio

Tensaurus [43]’s MTTKRP
Factorized MTTRKP [48]

Cooley-Tukey FFT Step [10]
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3.1 Insight 1: Einsum cascades capture
multi-phase accelerators

Our first insight is that seemingly monolithic tensor algebra kernels
(e.g., matrix multiply) are often implemented as a DAG of operations,
and that each of these operations can be expressed as an Einsum
that produces and consumes intermediate tensors. We call this DAG
a cascade. For example, consider a 1D convolution between input
I and filter F. Convolution is performed using two predominant
implementation styles. The first style is direct convolution, which is
often employed by accelerators. As an Einsum, direct convolution
is written as

Oq = Ig+s X Fs (4)

An alternative style is the Toeplitz expansion [45], which converts
the convolution into a matrix-vector or matrix-matrix multiply
and is common on systolic arrays and data-parallel processors like
GPUs. First, the input is refactored into a matrix to enable, in this
case, matrix-vector multiplication between the input (now stored
in T) and the filter F in the second stage. An important observation
is that this can be written as the following sequence of dependent
Einsums:

Tgs = Igrs;  Ogq =Tgs X Fs (5)

Importantly, the RHS of the Einsum used to generate T mirrors
how I is indexed in the Einsum for direct convolution. The Toeplitz
expansion simply relaxes the requirement that the access into I and
the corresponding access into F happen at the same time. Decom-
posing an Einsum into a cascade enables each resulting Einsum to
be mapped independently, exposing new degrees of freedom for
building and using intermediate tensors. Note that this sequence of
Einsums says nothing about how (if at all) the two stages are over-
lapped. They can happen entirely sequentially, or the accelerator
can implement pipeline parallelism. For example, the Q rank can be
partitioned (Section 3.2.1) and once a partition of T is produced, it
can be consumed by the multiply stage. Section 4.3 describes how
TeAAL determines this parallelism.

Beyond convolution, cascades of Einsums can be used to repre-
sent other common implementation styles in sparse tensor algebra
accelerators. For example, they capture the multiply-merge algo-
rithm in the OuterSPACE example (Figure 3). During the multiply
phase (Line 8), columns of the A matrix are multiplied with rows
of the B matrix to form partial products, which we call T. Then,
during the merge phase, specified by the second Einsum (Line 9), T
is reduced along the K rank, yielding the final result Z.

Sparsity also motivates new operations on tensors, and our Ein-
sum notation can be extended to include them if needed. We cur-
rently support one—the take(.) operator—which decouples inter-
section from computation with the following semantics: if at least
one of the inputs is zero at a point, the output is zero, otherwise,
copy one of the inputs into the output. Take the example:

Tk,m,n = take(Ak,m’ Bk,n’ 1) (6)

The final parameter denotes which input is copied into the output.
This example copies B into T, but if the last parameter were 0, A
would be copied.

Beyond the above examples, Table 2 shows a variety of accelera-
tors and algorithms represented as cascades of Einsums.

Nayak et al.

3.2 Insight 2: Content-preserving
transformations on fibertrees capture
accelerator data-orchestration strategies

Our second insight is that a variety of accelerator behaviors (e.g.,
work scheduling) are describable as what we call content-preserving
transformations applied to specific tensors in the Einsum cascade.
We say a tensor transformation is content-preserving if it does
not change the content of the tensor, i.e., the set of values at the
leaves of the fibertree, but does change the coordinate system used
to access each value. Such transformations may also impact the
tensor’s data layout when lowered to a concrete representation.

We make an important observation that the core operations
performed on fibertrees (Section 2.1) represent a set of content-
preserving transformations that are useful for describing a variety
of prevalent sparse data orchestration strategies. Specifically, fib-
ertree rank partitioning (and its inverse: flattening) can be used as
a single abstraction for specifying both sparse tensor splitting and
work scheduling strategies. Similarly, fibertree rank swizzling can
be used as a single abstraction for specifying transposing data in
memory, sorting, and merging.

3.2.1 Sparse Tensor Splitting and Work Scheduling. Recall from
Section 2.3 that splitting for dense problems is shape-based. This can
be expressed by partitioning a fibertree rank at coordinate-based
boundaries given by the tile dimension. Unfortunately, when data
is sparse, this strategy can lead to low reuse and under-utilization
of tiles (and therefore buffers) [33], i.e., if different partitions have
different occupancies.

We make an important observation that partitioning naturally
generalizes to other types of splitting that can adapt to irregular
sparsity, simply by changing the partitioning criteria, i.e., where the
partition boundaries occur. From studying existing accelerators, we
define a simple sparsity-aware strategy we call uniform occupancy-
based partitioning. In this scheme, each fiber at a level in the fibertree
is split so that each new fiber has an equal number of elements
(modulo remainders). Importantly, each fiber’s coordinate range
after an occupancy-based partitioning is irregular. Thus, to ensure
that partitions of multiple tensors have matching coordinate ranges
for co-iteration (Section 2.4), occupancy-based partitioning uses
a leader-follower paradigm: the partitions’ coordinate ranges are
chosen so that the leader tensor’s partitions are equal occupancy
and all follower tensors adopt those ranges [52].

Unfortunately, uniform occupancy-based partitioning may still
result in partitions with varying occupancies because a partition
must end where its parent fiber ends. Flattening (Section 2.1), when
combined with occupancy-based partitioning, mitigates this imbal-
ance by first combining the flattened ranks, then redistributing the
elements so that, globally, each partition has the same number of
values. For example, Figure 2 shows how a fibertree whose fibers
start with an unequal number of coordinates can be flattened and
re-partitioned to equalize the number of coordinates per partition.
Note that, though all partitioning directives modify the fibertree
abstract representation, the concrete representation may remain
unchanged.

The above describes how tensor data can be efficiently split in
the presence of sparsity. More subtly, we observe that partitioning
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Figure 4: Rank swizzling in sparse tensor algebra computations, using outer-product multiply-merge matrix-vector multiplication. Matrix A
and vector B use values from Figure 1 for consistency. An offline rank swap ensures that A has rank order [K, M| prior to the multiply phase,
and an online rank swap ensures that T has rank order [M, K] prior to the merge phase, ensuring concordant traversal in both phases.

and flattening are also useful abstractions through which to specify
work scheduling when work is parallelized. Consider OuterSPACE,
which works on 256 non-empty elements of matrix A at a time
during the multiply phase, further subdividing these into 16 groups
of 16 elements to each be processed by a “Processing Tile” (a group
of PEs [34]). The TeAAL specification for OuterSPACE (Figure 3)
represents this as a flattening (Line 18) and then an occupancy-based
partitioning applied twice hierarchically (Line 19).? The TeAAL
specification describes the parallelism this partitioning enables on
Line 27 by scheduling ranks KM1 and KM0 in space (Section 2.3).

3.2.2  Transposition, Sorting, and Merging. We observe that sparse
tensor algebra accelerators employ a number of techniques that,
when expressing their tensors in the fibertree abstraction, are tan-
tamount to fibertree rank swizzles. These operations enable the
more efficient concordant (as opposed to discordant) traversal [45].
Concordant traversal occurs when a loop nest traverses a fibertree
in the order in which its ranks appear, i.e., traverses each fiber
sequentially and in a depth-first manner. For example, in Figure 4,
A is traversed concordantly, since it has a [K, M] rank order, and
the multiply phase has a [K, M] loop order. Thus, we never have to
search for the next k or m coordinate; it is always the first or next
coordinate in the current fiber.> Conversely, iterating over K in the
bottom-most loop would be a discordant traversal (for this rank
order). In OuterSPACE (Figure 3), despite all of the partitioning,
during the multiply phase both A and B are traversed concordantly.
K is traversed sequentially and most slowly, then M and then N.

It is common practice to swizzle ranks to enable concordant
traversal on input tensors. For example, the transposition of a matrix
from the CSR format into the CSC format can be viewed as a rank
swizzle and is used by OuterSPACE to achieve a [K, M] rank order
on A (Line 12) in preparation for the outer-product-style multiply
phase. Input tensor swizzles are usually performed offline.

More subtly, we observe that sparse tensor accelerators also
perform rank swizzles on intermediate tensors formed during ker-
nels expressed as cascades of Einsums (Section 3.1). Depending
on whether coordinates in the intermediate tensors are stored in
sorted or unsorted order and on the extent to which the intermedi-
ate tensors are built before being consumed, this either requires a
merge or a (more expensive) sort operation.

2Note: OuterSPACE only enables half its PEs during the merge step, so the occupancy-
based partitioning applied to the second Einsum (Line 21) only involves 128 PEs (8 per
“Processing Tile”).

3Though many concrete representations enable efficient sequential iteration through
fibers, some do not. The true cost of iteration is accounted for during modeling (Sec-
tion 4).

Table 3: Supported hardware components and their attributes.

Component [ Attributes

DRAM bandwidth

Buffer type (buffet [37] or cache), width, depth, bandwidth
Intersection | type (two-finger, leader-follower, or skip-ahead), leader
Merger inputs, comparator_radix, outputs, order (fifo, opt), reduce
Sequencer num_ranks

Compute type (mul or add)

Figure 4 shows an example of a multiply-merge for outer product,
matrix-vector multiplication. To support concordant traversal on
both input and output tensors, the multiply phase uses a [K, M]
loop order, while the merge phase uses an [M, K] loop order. Thus,
at the end of the multiply phase, T has rank order [K, M]|. Then,
during the reduction, a rank swizzle changes the rank order of T
to [M, K] to match the [M, K] loop order. The dashed arrows in
Figure 4 show that both the tensor read and write access patterns
through A, B, T, and Z are all concordant through both phases.
Importantly, such online rank swizzles may degrade performance
and, therefore, warrant dedicated hardware support. Yet, they can
significantly improve spatial/temporal locality, and thus, appear in
multiple prior designs [34, 55, 56].

By default, TeAAL infers rank swizzling automatically to main-
tain concordant traversal. For example, for OuterSPACE (Figure 3),
T has rank order [M, K, N], but TeAAL produces T during the mul-
tiply phase in [K, M, N| order, swizzles it to [M, K, N order to be
stored in memory, and then swizzles it again to [M, N, K| order to
prepare for the merge.

4 GENERATING THE MODEL

In Section 3, we showed that the fibertree abstraction is general
enough to describe many of the design decisions used in sparse
tensor algebra accelerators. However, to manifest a specific design,
the fibertrees must be lowered onto concrete representations and
their operations bound to specific hardware components. In this
section, we define three additional specifications—format, architec-
ture, and binding—used by TeAAL to perform this lowering and
describe how these, plus the einsum and mapping specifications
from Section 3, are combined to produce an executable model for
evaluating accelerator workload performance.

4.1 Lowering Mapped Einsums to Hardware

This section describes the three additional specifications (format,
architecture, and binding) that are used to lower mapped Einsums
to concrete representations and hardware resources.

4.1.1  Format. Prior works on modeling sparse tensor algebra com-
putations [31, 52] extend TACO’s level formats concept [9], which
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Figure 5: TeAAL concrete/hardware-level model of the OuterSPACE accelerator [34]. The fibertree (a) combined with the format specification
(b) describe the concrete representation, a custom array-of-linked-lists format (c). TeAAL specifies the architecture hierarchically (f), where
each level has a set of local components (d) that have tensor operations bound to them (e). More details are given in Section 4.2.
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Figure 7: Separation of concerns enabled by TeAAL. We consider the
architecture to be fixed during map space exploration and, therefore,
outside the separation of concerns.

facilitates a convenient abstraction for translating a fibertree to

its concrete representation by specifying a per-fiber format as de-
scribed in [45]. However, the formats used by existing sparse accel-
erator modeling frameworks restrict themselves to a fixed number
of common configurations (e.g., bitmap [31] or uncompressed offset
pointers [52]).

TeAAL extends these concepts with a more modular specifica-
tion, capturing a larger class of formats than existing tools, by
separating the attributes of a fiber’s format into three categories: a
format type, a layout, and data widths for the coordinates (cbits),
payloads (pbits), and fiber headers (fhbits). Fibers are concretized
as an array of coordinates and a array of payloads (struct-of-arrays)
or as a single array of elements (array-of-structs). TeAAL supports
three format types: uncompressed (U)—where the sizes of the data
arrays correspond to the shape of the fiber, compressed (C)—where
the sizes of the data arrays correspond to the occupancy of the fiber,
or a combination (B)—where the coordinates are uncompressed and
the payloads are compressed. For simplicity, currently, all fibers
in a rank have the same format. Note that not all information in
the fibertree is stored explicitly, e.g., an uncompressed fiber does
not need to store coordinates because they can be inferred from
the position of the payloads. TeAAL supports this by allowing the
corresponding data width—in this case, cbits—to be unspecified or
set to 0. This specification is flexible enough to support a variety
of common formats (e.g., uncompressed arrays, CSR, run-length
encoding) and custom formats even beyond those supported by
TACO (e.g., from OuterSPACE [34] and SIGMA [38]). The specifica-
tion also allows each tensor to be associated with multiple formats
(differentiated by the configuration name), since manipulating the
fibertree may cause the representation to change dynamically. Fi-
nally, while there are formats that require functionality outside
the above framework (e.g., TACO’s hashed format, which requires
a hash function be specified), we feel these could be added with
minimal changes to the both other specifications and simulator
generator.

4.1.2  Architecture. The TeAAL architecture specification (inspired
by Timeloop [35]) describes the accelerator topology as a tree of
compute and storage units. At each level of the hierarchy, one can
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define a list of hardware components local to that level and a list
of subtrees below that level. In addition to the component classes
supported by Timeloop, we define new classes of components that
are involved in performance-limiting operations on sparse acceler-
ators, including caches, intersection units, and hardware mergers.
Table 3 gives the full list of supported classes and their attributes.
Since an accelerator (e.g., OuterSPACE [34]) may reorganize itself
during the execution of a single computation, TeAAL also supports
specifying multiple topologies for the same design.

4.1.3 Binding. Finally, TeAAL’s binding specification matches the
Einsum- and mapping-induced fibertree operations to specific con-
crete representations and hardware components in the architecture.
First, each Einsum must be bound to a single accelerator topol-
ogy. Then, for each storage component, its bindings describe what
data resides there. Each binding contains the data’s tensor, config-
uration, rank, type (e.g., payload), whether elements are accessed
lazily (loading/storing only the element on access) or eagerly (load-
ing/storing the entire subtree below an element on access), and
sometimes (e.g., for buffets [37]), how long the data is buffered. A
storage component can have multiple such bindings. Similarly, for
each compute component, the binding describes which compute
operations are performed on that component.

4.1.4 TeAAL’s Expressibility and Extensibility. Putting everything
together: TeAAL decomposes the design of an accelerator into a set
of categories of abstractions, where a specific design choice is an
instance of the category. As shown in Figure 7, these abstractions
are hierarchical; the accelerator’s cascade of Einsums is the most
concise representation of that accelerator’s design, while its binding
encodes the finest-grain design decisions enabling the highest-
fidelity modeling.

This separation of concerns enables TeAAL to express a large
number of accelerators, and facilitates the process of adding new
features to represent yet other accelerators. For example, TeAAL
can express accelerators that differ only in specific details (such
as tensor format [23] or cache replacement policy [55]) simply
by changing that part of the specification, leaving all else equal.
New features can likewise be added by augmenting the relevant
abstraction category, again leaving other categories unmodified.

4.2 Specifying OuterSPACE [34]

We continue to use OuterSPACE as a running example to motivate
the features provided by TeAAL. Figure 5 shows a simplified ver-
sion of OuterSPACE’s custom tensor format, its architecture during
the merge phase, and the correspondence between the fibertree
representation of T and its concrete representation and binding.
In Figure 5a, we see the fibertree for a concrete example tensor T.
The format specification (Figure 5b) for this tensor lowers it onto
OuterSPACE’s custom array-of-linked-lists format (Figure 5¢). To
differentiate it from other representations of the same tensor, we
give it the configuration name LinkedLists. On the M rank, the
array of pointers is given by an uncompressed (U) array of pay-
loads. On the N rank, the fiber header data width (fhbits) describes
the linked list pointers, the layout describes that corresponding
coordinates and payloads are adjacent (array-of-structs), and the
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cbits and pbits describe the data widths of the coordinates and pay-
loads, respectively. Figure 5d shows an OuterSPACE PE. During the
merge phase, this level has three components: the ALU, the register
file, and the L0 scratchpad. OuterSPACE loads the entire subtree
under a given M coordinate into the L0 scratchpad to perform its
sort. TeAAL expresses this binding with the specification given in
Figure 5e. The tensor, config, rank, and type denote exactly what
data is buffered, and the evict — on keyword is required for binding
to explicitly managed buffers, whose fill and drain policy must be
set by the user. Because the elements bound to this buffer evict
on M, old data is drained when the M coordinate changes. Finally,
Figure 5f shows an overview of the entire accelerator topology.

4.3 Simulator Generation

Figure 6 demonstrates how TeAAL puts everything together. For
each Einsum in the cascade, TeAAL combines the Einsum equa-
tion with its mapping information to produce an executable loop
nest. To do so, it identifies the necessary per-tensor fibertree ma-
nipulations (e.g., rank swizzling) and per-rank fiber co-iterators
(e.g., intersection). TeAAL then uses this information to build a
dataflow graph of a loop nest, which it then lowers to an embedded
DSL within Python for executing computations as fibertree opera-
tions [1]. The resulting code is an imperative-style representation
of the Einsum cascade (i.e., a series of loop nests, one per Einsum),
which can directly evaluate real tensors represented as fibertrees.
TeAAL then breaks the modeling of an accelerator into three stages:
generate traces describing when each coordinate and each payload
is accessed, calculate the action counts for each component from
the traces, and combine the action counts from all components to
produce summary statistics like execution time and energy.

Trace generation. TeAAL combines information from the for-
mat, architecture, and binding to identify which traces need to be
collected in preparation for performance modeling. It then instru-
ments the mapped loop nests to collect the desired traces. When
executed, the mapped loop nests perform the computation on fib-
ertrees (storing real tensor data) and generate a trace of when each
coordinate and each payload is accessed. Therefore, unlike an an-
alytical model, TeAAL is able to fully capture the impact of each
real tensor’s specific sparsity patterns on the kernel’s performance,
significantly improving TeAAL’s fidelity over that of analytical
models. We quantitatively explore this phenomenon in Section 7
and Figure 10a.

Trace consumption. TeAAL provides a library of per-
component action count models (see Table 3 for a full list). It inserts
calls to these component models after the loop nest, passing infor-
mation about their specific attributes (e.g., buffer width and depth)
and a list of traces to be read. During the evaluation of the model,
each component uses the traces generated to produce the action
counts it performed.

Action count consumption. TeAAL uses Accelergy [51] to
translate action counts to energy use and a custom analytical mod-
eling/bottleneck analysis to translate the action counts to execution
time. To compute execution time, TeAAL must first determine the
Einsum blocks, or sets of Einsums that are fused together. Fusion
occurs when Einsums communicate by sharing sub-tensors with
each other (instead of entire tensors). The full cascade of Einsums,
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| einsum:
»declaration:
A: [K, M]
B: [K, N]
S: [K, M]
| einsum: T: [K, M]
> declaration: Z: [M,N]
s A: [K, M] & expressions:
+ B:[K,N] | einsum: - S[k, m] = take(A[k, m], B[k, n], 0)
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- T[k,m,n] = take(A[k,m], B[k,n], 1) Z: [M, N] ; rank-order:
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15 Z:[M,N] 12 Z:[M,N] Z:
16 partitioning: 15 partitioning: K: [uniform_shape(128)]
7 T v Lt (M, K0): [flatten()]
18 M: [uniform_occupancy(A.32)] 5 K MKO: [uniform_occupancy(T.16384)]
19 K: [uniform_occupancy(A.64)] 16 - uniform_shape(K1) + loop-order:
SIVA 17 - uniform_shape(KO0) S: [K, M, N]
21 M: [uniform_occupancy(A.32)] 18 M: T: [K, M]

K: [uniform_occupancy(A.64)] 19
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Z: [K1, MK01, MK00, N]

s loop-order: 20 - uniform_shape(M0) s spacetime:
2 Ti [M1, M0, K1, K0, N] 21 N: 0 St
Z: [M1, Mo, K1, N, K0] - uniform_shape(N1) space: []
6 spacetime: 23 - uniform_shape(NO0) time: [K, M, N]
T: 2+ loop-order: T:
space: [M0, K1] Z: [N2, K2, M2, M1, N1, K1, M0, N0, K0] space: []
time: [M1, K0, N] , spacetime: i time: [K, M]
LA P A 5 Lt
31 space: [M0, K1] 28 space: [K1] 36 space: [MKO00]

time: [M1, N, K0] 29

(a) Gamma accelerator [55].

time: [N2, K2, M2, M1, N1, M0, N0, K0]

(b) ExTensor accelerator [16].

time: [K1, MKO1, N.coord]
(c) SIGMA accelerator [38].

Figure 8: State-of-the-art sparse tensor accelerators. uniform_shape()/flatten() are syntax for shape-based partitioning/flattening (Section 3.2.1).

mappings, architectures, and bindings are used to determine the
Einsum blocks. Specifically, TeAAL infers that Einsums can be fused
together when three conditions are met:*

o The Einsums use the same accelerator configuration.

o The temporal ranks in all loop orders before the first spatial
rank are the same.

¢ Disjoint subsets of the non-storage components are each
exclusively used by only one Einsum.

As a simple heuristic, TeAAL starts at the first Einsum and greedily
fuses the successive Einsums together into a single block, until it
cannot do so any more. At which point, it starts a new block. TeAAL
sums together the action counts for each component performed by
each block and then computes per-block, per-component execution
times. It then applies a bottleneck analysis: the execution time of

“These conditions for inferring fusion are not fundamental and can be changed if
needed.

the block is the execution time of the longest component, and the
execution time of the cascade is the sum of the execution times of
all of the blocks.

5 ACCELERATOR SPECIFICATION

Sections 3-4 used OuterSPACE [34] as a running example. We now
describe the Einsums and mapping specifications for three other,
state-of-the-art accelerators relevant to our evaluation, shown in
Figure 8. We have modeled other accelerators that we omit for space,
including Graphicionado [14] and GraphDynS [53] (Section 8), Ey-
eriss [8], Tensaurus [43], Flexagon [30], and DSTC [47]. We also
omit the format, architecture, and binding specifications for brevity.

Gamma [55]. Gamma (Figure 8a) is a row-wise-style accelerator
that uses a tightly-pipelined multiply-merge-style architecture to
reduce partial output traffic and enable concordant traversal across
both input and output tensors. In Gamma’s dataflow, a row of A is
combined and reduced with rows of B. Gamma distributes rows of A
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Table 4: Tensor data set characteristics. The top 5 tensors are used
in our validation study (Section 7); the bottom 3 in our new design
study (Section 8).

Matrix | Shape | NNZ | Domain
wiki-Vote (wi) 8.3K X 8.3K 104K elections
p2p-Gnutella31 (p2) 63K X 63K 148K file-sharing
ca-CondMat (ca) 23K x 23K 187K collab. net.
poisson3Da (po) 14K x 23K 353K | fluid dynamics
email-Enron (em) 37K X 37K 368K email comms.
flickr (fl) 0.82M x 0.82M | 9.8M site crawl graph
wikipedia-20070206 (wk) | 3.6M x 3.6M 42M site link graph
soc-LiveJournall (Ij) 4.8M x 4.8M 69M follower graph

Table 5: Hardware configs, chosen to match original publications.

ExTensor [16] 1 GHz clock speed, 128 PEs, 64 kB PE buffer per PE, 30
MB LLC, 68.256 GB/s memory bandwidth

1 GHz clock speed, 64-way merger per PE, 32 PEs, 3 MB
FiberCache, 16 64-bit HBM channels, 8 GB/s/channel
1.5 GHz clock speed, 16 PEs per PT, 16 PTs, 16 kB L0
cache per PT, 4 kB L1 cache per 4 PTs, 16 64-bit HBM
channels, 8000 MB/s/channel

500 MHz clock speed, 128 PEs per FlexDPE, 128 FlexDPEs,
32 MB Data SRAM, 4 MB Bitmap SRAM, 960 GB/s SRAM
bandwidth, 1024 GB/s HBM bandwidth

1 GHz clock speed, 8 streams, 64MB eDRAM, 68 GB/s
memory bandwidth

Gamma [55]

OuterSPACE [34]

SIGMA [38]

Graphicionado [14]

to each PE and, based on which values in each row are non-zero, the
PE fetches a subset of the rows of B. This filtering is implemented
using the take(.) operator (Section 3.1). After being fetched to each
PE, the rows of B (which initially have rank order [K, N]) are sorted
with hardware mergers to facilitate reduction over K. Similar to
OuterSPACE, this is expressed as a rank swizzle: T has rank order
[M, K, N] and the rightmost (bottommost) rank in the loop order
for the Einsum computing Z is K. Hence, TeAAL inserts a rank
swizzle on T, making its rank order [M, N, K] in the context of
the second Einsum. Unlike OuterSPACE, the two Einsums in the
cascade are fused together, per the criteria described in Section 4.3.

ExTensor [16]. ExTensor (Figure 8b) employs a hybrid dataflow
that is inner product-style at the innermost level. ExTensor’s two
salient characteristics are the use of uniform shape-based partition-
ing (Section 2.3) and hierarchical intersection. Lines 14-23 describe
this partitioning, while hierarchical intersection is accounted for
implicitly due to fibertree semantics (Section 2.4). Note that our
ExTensor specification includes details beyond the original paper
from private correspondence with the authors about the actual
design of the simulator used for evaluation.

SIGMA [38]. SIGMA (Figure 8c) is a deep-learning accelera-
tor that uses occupancy-based partitioning to only distribute non-
zero elements of the stationary matrix to PEs, reducing ineffectual
compute. While SIGMA can be configured to support A and B-
stationary dataflows, we only describe/evaluate the A-stationary
dataflow here. SIGMA utilizes an Einsum cascade (Section 3.1), first
identifying empty K-fibers (rows) of B (Line 9), removing them
from A (Line 10), and then performing the multiplication (Line 11).
We express the partitioning on Lines 21-23 using a combination of
shape-based partitioning, flattening, and occupancy-based parti-
tioning (Section 3.2.1). Finally, because all PEs work in parallel, the
spatial dimension is MK00 (Line 36).
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6 EXPERIMENTAL SETUP

This section describes the details of the experimental set-up used in
Sections 7-8 to evaluate the performance characteristics of concrete
accelerators.

Tensors. To evaluate the TeAAL models, we execute the mod-
els for the accelerators on a combination of randomly generated
matrices with uniform sparsity and a set of matrices from SuiteS-
parse [11] and SNAP [26], described in Table 4.

Simulation Framework. We implement the accelerators by
writing TeAAL specifications for their Einsums, mappings, formats,
architectures, and bindings. For each accelerator, we use the hard-
ware parameters given in Table 5. TeAAL uses Accelergy [51] as
a power model to convert the per-component action counts to an
energy characterization.

Baselines. To validate our results, we normalize our perfor-
mance estimates using the same baseline as the original papers
that published the relevant accelerators. All accelerators’ “reported”
statistics come either from published results or from private com-
munication with the original authors. When possible, we also report
Sparseloop [52] performance estimates using the hypergeometric
sparsity distribution on both the inputs and outputs, estimated
using the values in Table 4, and the hardware parameters in Table 5.

7 SIMULATOR VALIDATION

In this section, we describe a set of experiments used to validate
TeAAL as an accurate cost model. Specifically, we compare mem-
ory traffic, performance, and power as reported by TeAAL to the
numbers reported in the papers originally proposing each accel-
erator. We report all averages as arithmetic means, following the
methodology presented in [21].

Memory Traffic. Figure 9 presents a comparison of the memory
traffic of the TeAAL models of each of the accelerators to the corre-
sponding baseline. We use the first five tensors in Table 4 because
the prior work evaluates these tensors. The takeaway is that we
can reproduce each accelerator’s memory traffic with low error
(on average, 3.8%). The single outlier, ExTensor on p2, is caused by
slightly different policies for eager loading between ExTensor and
TeAAL (Section 4.1.3). This policy difference is not fundamental,
and can be remedied with additional effort. We were unable to
validate TeAAL’s memory traffic model of SIGMA because there
were no baseline numbers available.

Performance. Figure 10 presents a performance compari-
son of each TeAAL model against the reported numbers and
Sparseloop [52]’s estimate, when possible. We evaluate on the same
five tensors as were used in the memory-traffic study or uniformly
random sparse tensors.

Figures 10a and 10b show the speedup of ExTensor and Gamma,
respectively, over Intel MKL. TeAAL shows consistently low error
rates for each (on average, 10% and 6.4%, respectively). We perform
an analogous evaluation for SIGMA in Figure 10d, relative to a
Google Cloud TPU and using synthetic matrices with uniform-
random sparsity (where all matrices A and B had 80% and 10%
sparsity, respectively). Here, we show an average error of only
2.5%.
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We compare Sparseloop’s results to ours on ExTensor in Fig-
ure 10a.> Sparseloop has an average error of 187%, which we at-
tribute to its analytical sparsity distribution. We could not model p2
on Sparseloop because the tensor shape caused an integer overflow
€error.

Because we could not obtain the raw baseline numbers used in
the OuterSPACE paper, Figure 10c shows the performance of the
original simulator and the TeAAL model on a number of synthetic
sparse matrices generated from a uniform-random distribution. On
average, our cost model is consistently ~ 80% faster than the origi-
nal simulator, though the overall trend is consistent. In Figure 9c,
we showed that TeAAL models OuterSPACE’s memory traffic with
SWe were unable to use Sparseloop to model Gamma/OuterSPACE (because it does

not support cascades of Einsums) or SIGMA (because its occupancy-based partitioning
is not sufficiently general).

a < 1.8% error, so we suspect that the discrepancy in execution time
comes from an undocumented (and, therefore, unmodeled) feature
of the OuterSPACE PE microarchitecture.

Energy. Figure 11 compares TeAAL’s energy estimates to the
reported baseline, showing consistently low error rates—on aver-
age, 7.8%. TeAAL over estimates energy on em because it overesti-
mates ExTensor’s memory traffic on that benchmark (see Figure 9a).
Since none of the other accelerators reported their per-component,
per-action energy consumption characteristics, we were unable to
validate the power model on those designs.

8 IMPROVING GRAPHICIONADO

In this section, we demonstrate both the generality of TeAAL as a
tool for modeling a broader class of accelerators and its value when
proposing and evaluating new designs. As an example, we model
Grapicionado [14]—an accelerator for graph algorithms written in
the vertex-centric programming paradigm—and GraphDynS [53]—
an accelerator that optimizes this design. Finally, we propose fur-
ther optimizations to GraphDynS and demonstrate their value by
evaluating all three designs using TeAAL.

Vertex-centric programming describes graph algorithms from
the point of view of a single vertex. During each iteration, a vertex, if
active, sends its property to all of its destination vertices. Then, the
vertex, whether or not it is active, processes its incoming properties,
reduces them to a single new value, and applies this value to its
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1 # Processing Phase
» — SO[d, s] = take(G[d, s], A0[s], 0)
s — R[d] = SO[d, s] = A0[s]

# Processing Phase i

» - SO[d, s] = take(G[d, s], A0[s], 0) s # Apply Phase

, -~ R[d] = SO[d, 5] «

¢ — P1[v] = R[v] + PO[v]
7= M[v] = P1[v] - PO[v]

A0[s] ¢ — MP[v] = take(R[v], PO[v], 1)
7= NP[v] = R[v] + MP[v]

s — M[v] = NP[v] - MP[v]

o = PO[v] = take(M[v], NP[v], 1)
10 — Al[v] = take(M[v], NP[v], 1)
11 = Pl = PO

# Apply Phase

- A1[v] = take(M[v], P1[v], 1)

(a) Graphicionado [14] (b) GraphDynS [53]

Figure 12: Einsum cascades for two vertex-centric programming
accelerators. A specific algorithm manifests by redefining the x and
+ operators (e.g., for SSSP, to addition and minimum, respectively).

property [44]. In this evaluation, we will focus on algorithms where
a subset of the vertices are active each iteration.

Figure 12a shows a cascade of Einsums representing Graphi-
cionado [14]. We omit the rest of the TeAAL specification for space.
Graphicionado divides its evaluation into two stages. During the
processing phase, the active vertices A0 are used to select the edges
that need to be processed SO (Line 2), the weights of those edges are
combined with the source vertex properties (Line 3), and reduced
into R (implicit in Line 3). Then, during the apply phase, the vertex
property P0/P1 is updated (Line 6) and the new set of active vertices
Al is created using a mask M of updated vertices (Lines 7-8). By
redefining the multiplication and addition operators (e.g., for single
source shortest path (SSSP), to addition and minimum, respectively),
this represents a functionally correct implementation of a graph
kernel written in the vertex-centric programming model. Through
private correspondence with the Graphicionado authors, we found
that all data, simulators, etc. used in this paper are proprietary, mak-
ing it impossible for us to perform a similar analysis to Section 7.
However, using TeAAL, we were able to profile Graphicionado
ourselves and compare it with other designs.

GraphDynS [53] optimizes Graphicionado by adding new Ein-
sums to the cascade to take advantage of the sparsity of R. Figure 12b
shows the updated cascade. Building an additional intermediate
MP (Line 6), containing the values of P0 that can be modified, de-
creases the memory traffic incurred by P0 and the number of apply
operations the accelerator needs to perform. Filtering the writes to
PO with M (Line 9) also decreases the memory traffic. GraphDynS
implements this optimization by keeping a 256-element bitmap,
where each bit corresponds to 1/256th of the vertices. In TeAAL,
this manifests as an additional uniform_shape partitioning. If the
bit is 1, the accelerator eagerly loads the entire partition of vertex
properties. GraphDynS further improves upon Graphicionado by
changing the format of the graph from an edge-list representation
to CSR. This format change eliminates unnecessary reloading of
the source vertex ID and removes the loading of the edge weight
for algorithms that do not use it (e.g., BFS).

We optimize this design by removing the partitioning, allowing
us to only load the property and perform the apply on vertices that
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Table 6: Sparse tensor modeling frameworks.

‘ STONNE ‘ Sparseloop SAM‘ CIN-P | TeAAL
[30, 31] [52] (8] | [2] | (thiswork)
Models Hardware v v v v
Generic Kernels v v v v
Cascaded Einsums v v v
Index Expressions v v
Shape-Based Part. v v v
Occ.-Based Part. v v
Generic Flattening v v
Rank Swizzling v v

Format Expressivity v v v v

Caches v v
Precise Data Set v v v
High Model Fidelity v v

are actually modified during the processing phase. Our proposed
accelerator also implements the format optimization.

We evaluate Graphicionado, GraphDynS, and our proposal on
a subset of the graphs and all sparse active vertex set algorithms
evaluated in the original Graphiciondo paper. To enable an apples-
to-apples comparison, we use the hardware parameters chosen for
Graphicionado (see Table 5). Figure 13 shows the speedup achieved
by each of the designs over Graphicionado. Figure 13a shows that
our proposal enables an average of 1.9x improvement over Graph-
DynS on BFS, while Figure 13b shows that our proposal enables an
average of 1.2X improvement over GraphDynS on SSSP. Figure 13¢
explains this improvement. While GraphDynS’s bitmap approach
reduces the number of apply operations required when the set
of active vertices is small, our proposal is also able to skip apply
operations when the set of active vertices is large.

This study shows that TeAAL can express designs in domains
beyond sparse tensor algebra. Furthermore, it also demonstrates
TeAAL’s value as a tool for qualitatively and quantitatively compar-
ing designs, improving the iterative design refinement process. No-
tably, our proposed optimization only required meaningful changes
to the mapping specification. By decomposing the design of an
accelerator into a hierarchy of specifications, TeAAL enables us to
efficiently express existing designs and propose new optimizations.

9 RELATED WORK

The rise in machine learning and tensor algebra accelerators has
been followed by an increase in tools that explore the accelerator
design space and model various efficiency characteristics [2, 19,
25, 29, 31, 35, 40, 52, 54]. Most frameworks solely support dense
computations and target DNN applications [19, 25, 29, 35].

Table 6 compares frameworks that model architectures com-
puting on sparse tensors. STONNE [31] is a cycle-level modeling
framework for DNN accelerators. Like TeAAL, STONNE’s analysis
is data-driven; however, the only sparse workload it supports is
SpMSpM.

Two other works—Sparseloop [52] and the Sparse Abstract Ma-
chine (SAM) [18]—model sparse workloads expressed in the Einsum
language, but with lower fidelity than TeAAL. Sparseloop [52] has a
flexible hardware backend and takes as input a specification of the
architecture, a statistical model of the data, sparse optimizations
such as intersection [16], and a user-specified mapping. It returns
estimates of performance and energy consumption. Unlike TeAAL,
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Figure 13: Comparison between Graphicionado and improved accelerators. All designs use Graphicionado’s parameterization (Table 5).

it does not support many of the features important to sparse com-
putations, such as cascaded Einsums, caches, rank swizzling, and
others. Of note, Sparseloop models sparsity analytically using prob-
ability distributions. By contrast, TeAAL evaluates on real tensors
directly. This enables TeAAL to achieve higher-fidelity modeling, at
the cost of increased simulator runtime. SAM [18] targets an archi-
tecture consisting of hardware modules similar to those supported
by TeAAL. However, rather than generating high-fidelity models
of specific accelerator designs, it models the accelerator dataflow
on the SAM hardware.

Beyond accelerators, prior work on CIN-P [2] considers sparse
workload modeling for programmable devices such as CPUs. Specif-
ically, CIN-P is a mapper language that, when combined with an
asymptotic cost model and autoscheduler, generates mappings that
can then be compiled using TACO [23]. Since it uses asymptotic
analysis, the mapper only considers a small subset of the space of
mapping decisions, including loop order and fusion.

Beyond frameworks for modeling/evaluating sparse tensor al-
gebra kernels, there is also a closely related line of work tar-
geted at compiling these kernels for existing programmable de-
vices [6, 9, 22, 23, 50]. These works provide a similar set of algo-
rithms and mappings, with feature sets that overlap TeAAL. For
example, Mosaic [6] supports modeling generic kernels, but inher-
its the limitations of the existing TACO [23] language. It does not
support several idioms that TeAAL does, e.g., allowing affine ex-
pressions as tensor indices (only adding constraints to the shapes
of ranks) and only supports 1D intermediates [22] (as opposed to
generic cascades). However, unlike TeAAL, it allows users to mix
existing library calls with user-defined kernels.

10 CONCLUSION AND FUTURE WORK

This paper presented TeAAL: a language and simulator generator
for describing and evaluating sparse tensor accelerators. The key
contribution is to demonstrate how state-of-the-art sparse accel-
erators can be represented as cascades of mapped Einsums and
content-preserving transformations on the Einsums’ constituent
tensors. From this observation, we propose the TeAAL language
which enables designers to utilize and combine these concepts (for
both the modeling of current and the designing of new accelerators)
and a generator from this language to executable simulators that
emulate fibertree operations (lowered onto concrete data repre-
sentations and hardware units). Beyond enabling a more efficient
accelerator design process, TeAAL also provides the architecture

community with a common language for comparing and discussing
designs.

Using cascades of Einsums as the problem specification enables
TeAAL to model accelerators in or near the space of tensor alge-
bra, including for deep learning, tensor decomposition, and graph
algorithms. We think that this abstraction can be extended to sup-
port a wider range of workloads and accelerators, e.g., by adding
support for iterative algorithms or non-linear functions. Follow-
ing the discussion in Section 4.1.4, other missing features can be
added by augmenting other (specific) levels in TeAAL’s pyramidal
abstraction hierarchy. Our thesis is that many unsupported features
will manifest as changes to one level (and for that matter, a lower
level) in the hierarchy—which suggests they will be relatively easy
to incorporate. For example, design changes to various types of
hardware blocks (e.g., mergers, arithmetic units, memories) are
representable as point changes to the architecture specification lan-
guage (as opposed to changing the cascade of Einsums abstraction).
We leave a full investigation to future work.

Another important direction for future work is to incorporate
TeAAL into a flow for performing design space exploration. Such
flows are typically hierarchical, starting with an exploration of the
full design space using low fidelity models and only then perform-
ing a more in-depth, accurate analysis of the remaining promising
designs [24]. We view TeAAL, as it is described in this work, as a
middle level in this hierarchy. The simulators generated by TeAAL
are higher fidelity than those produced by an analytical model like
Sparseloop [52] and much more efficiently described by an architect
than raw RTL. Then, the main technical challenge to solve is how
to use TeAAL to automatically explore a space of designs. Specifi-
cally, allowing accelerators to be described as a cascade of Einsums
(instead of a single Einsum [35, 52]) means that we would like to
explore multiple cascades for the same problem, which requires
a way to efficiently list the various promising cascades for that
problem. This task, as far as we know, is open.

Finally, while the current TeAAL backend generates perfor-
mance/energy models, we think future work could support other
backends (e.g., for generating hardware directly).
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A ARTIFACT APPENDIX
A.1 Abstract

In this artifact, we provide the source code for TeAAL, a simu-
lator generator for sparse tensor algebra accelerators, as well as
the scripts required to display the results of the simulation. For
ease-of-use, we provide a Docker container and a set of Jupyter
notebooks through which to run the experiments. This artifact can
be evaluated on an x86-84 machine with 256 GB of memory and 75
GB of disk space.

A.2 Artifact check-list (meta-information)

o Algorithm: Automatic generation of sparse tensor algebra acceler-
ator simulators

Program: Python, Sparseloop

Run-time environment: Docker, Jupyter

Hardware: An x86-64 machine with 256 GB of memory and 125
GB of disk space

Output: Plots generated from scripts

Experiments: Automatic generation of sparse tensor algebra ac-
celerator simulators and execution of those simulators on specific
benchmark data

o How much disk space required (approximately)?: 125 GB
How much time is needed to prepare workflow (approxi-
mately)?: < 30 minutes

o How much time is needed to complete experiments (approxi-
mately)?: 70 hours

Publicly available?: Yes

Code licenses (if publicly available)?: MIT

A.3 Description - How to Access

Manually: The artifact is hosted on Github at https://github.com/
FPSG-UIUC/micro23-teaal-artifact. Following the instructions in
this repository will allow you to run specific experiments and nicely
display the graphs.

Via the MLCommons CM Interface: It is also accessible through
the MLCommons CM interface at https://github.com/ctuning/cm-
reproduce-research-projects/tree/main/script/reproduce-ieee-
acm-micro2023-paper-8. This method provides less control over
what experiments are executed.

Nayak et al.

A.4 Installation

Manually: Since we provide a Docker container with all de-
pendencies pre-installed, the artifact relies on Docker and ac-
cess to a web browser. Specific installation instructions can be
found at https://github.com/FPSG-UIUC/micro23-teaal-artifact/
blob/main/README.md.

Via the MLCommons CM Interface: The instructions for
installation can be found at https://github.com/ctuning/cm-
reproduce-research-projects/blob/main/script/reproduce-ieee-
acm-micro2023-paper-8/README.md.

A.5 Evaluation

Manually: We provide two notebooks to guide you
through the evaluation: notebooks/figs9and1@.ipynb and
notebooks/figl11.ipynb. Please launch the docker container,
open the Jupyter Lab in a web browser, and navigate to this
notebook. Each cell either runs a simulation or displays a graph.
The output of each display cell corresponds to a figure in the paper.
Via the MLCommons CM Interface: The instructions for
evaluation can be found at https://github.com/ctuning/cm-
reproduce-research-projects/blob/main/script/reproduce-ieee-
acm-micro2023-paper-8/README.md

A.6 Expected Results

This artifact reproduces Figures 9a-11. The easiest way to check
validity is to visually compare the figures, but raw results will
be written to data/generated/ and can be compared with the
expected results found in data/pregenerated/. We note that
certain experiments use randomly generated sparse tensors whose
performance characteristics will exhibit some variety. Such datasets
are noted in the notebook, and simulations can be rerun to obtain
new seeds.

A.7 Experiment Customization

Input specifications in yamls/teaal/ can be updated to work on
new kernels, execute new mappings, represent tensors with new
formats, and evaluate new architectures.

A.8 Methodology

Submission, reviewing and badging methodology:
e https://www.acm.org/publications/policies/artifact-review-
and-badging-current
e http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html
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