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Sparse tensor algorithms are becoming widespread, particularly in the domains of deep learning, graph

and data analytics, and scientific computing. Current high-performance broad-domain architectures, such

as GPUs, often suffer memory system inefficiencies by moving too much data or moving it too far through

the memory hierarchy. To increase performance and efficiency, proposed domain-specific accelerators tailor

their architectures to the data needs of a narrow application domain, but as a result cannot be applied to a

wide range of algorithms or applications that contain a mix of sparse and dense algorithms.

This article proposes Symphony, a hybrid programmable/specialized architecture that focuses on the

orchestration of data throughout the memory hierarchy to simultaneously reduce the movement of unneces-

sary data and data movement distances. Key elements of the Symphony architecture include (1) specialized

reconfigurable units aimed not only at roofline floating-point computations but also at supporting data

orchestration features, such as address generation, data filtering, and sparse metadata processing; and (2)

distribution of computation resources (both programmable and specialized) throughout the on-chip memory

hierarchy. We demonstrate that Symphony can match non-programmable ASIC performance on sparse

tensor algebra and provide 31× improved runtime and 44× improved energy over a comparably provisioned

GPU for these applications.
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1 INTRODUCTION

Application domains such as deep learning, graph analysis, data analytics, and scientific computing
are processing increasingly sparse data—including explicitly pruning dense data to reduce require-
ments on capacity or computation. Sparse data sets are highly diverse with densities ranging over
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Fig. 1. A100 roofline [53] SIMD FP32 performance on a variety of sparse algebra kernels. Different points

for a kernel correspond to different matrices from SparseTAMU [11], with average in red. Featured matrices

have density values ranging from 3.869 × 10−7% to 0.039%, with a mean density of 1.941 × 10−4%, and 8.4

non-zeros per row on average.

many orders of magnitude, combined with complex non-uniform distributions. Recent research
such as the TACO tensor algebra compiler [21] and the fibertree abstraction [49] have categorized
the underlying principles beneath individual compression formats [7], increasing understanding
and applicability of sparse tensor algebra. The common characteristic of sparse tensor workloads
is low arithmetic intensity: the reuse of operand tensorA drops as operand B gets more sparse and
vice versa, leading to a quadratic decay in computations when occupancies drop linearly.

Platforms such as Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs)

target dense tensor algebra, which has high arithmetic intensity and regular tile sizes. The GPU’s
Single Instruction, Multiple Threads (SIMT) programming paradigm is appealing, since it
achieves a high compute:buffering ratio while maintaining broad programmability, but this ratio
over-provisions the compute roofline for sparse data. Beyond this, sparse workloads have several
characteristics that make it challenging for GPUs to achieve peak memory roofline utilization: high
divergence (both control and memory), difficulty aligning operands to vector math lanes, a large
number of latency-sensitive memory indirections, and the need to process supplemental meta-
data to discover the effectual math operations [16]. Figure 1 shows the performance roofline [53]
for the NVIDIA A100 GPU on sparse-matrix by vector multiply (SpMV), sparse-matrix by

dense-matrix multiply (SpMM), and sparse-matrix by sparse-matrix multiply (SpMSpM)

using the cuSPARSE library [34]. Looking at the X-axis, we see that performance is correlated to
arithmetic intensity, however no sparse data set possesses sufficient reuse to saturate the A100’s
highly provisioned computation. Regarding the Y-axis, these applications achieve only 54%, 31%,
and 60% of potential maximum memory bandwidth utilization, respectively. This demonstrates
that the problem is deeper than simple re-provisioning of a general-purpose SIMT engine.

Custom hardware accelerators for sparse tensor algebra are an interesting alternative [16, 27,
38, 42, 47, 48, 58]. Because of the issues established above, these accelerators’ main contributions
are not in the datapaths themselves, but rather in their employment of data access Finite-state

Machines (FSMs) and custom buffering hierarchies to approach their memory bandwidth roofline.
Typically, this custom hardware performs lightweight metadata computation, filtering, and format
translation to access the tensors in off-chip memory and store them efficiently in each level of
a custom buffer hierarchy. The lower fundamental intensity means that these accelerators can
provision smaller compute:buffering ratios than GPUs, to avoid wasting area and energy.

However, how should the area that is no longer needed by floating-point datapaths be filled
up? Increasing on-chip buffer sizes is a natural idea, but we observe that this leads to little-to-
no performance benefits due to the low-intensity phenomenon discussed above. In fact, larger
buffers can counter-intuitively increase energy by harmfully raising energy-per-access for reuse.
Thus custom sparse accelerators are in a strange situation where large chips are required simply
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Table 1. Comparison of Hardware Execution Approaches for Various Accelerators

Architecture
Turing-Complete

SIMT Datapaths

Dense Multiplier

Array

Sparse Data Orchestration (i.e.,
custom buffers, intersect units,

vector packing, etc.)

GPUs, pre-Tensor Core �
Dense Tensor Accelerators (e.g.,
Eyeriss [6], TPU v1 [18])

�

GPUs, with Tensor Cores � �
Sparse Tensor Accelerators (e.g.,
ExTensor [16], GAMMA [57])

�

Symphony (this work) � � �

Fig. 2. Dispersing general-purpose and specialized units throughout the memory hierarchy. Traditional

general-purpose processors only have computation capability at the leaves of the memory hierarchy. HHP

places computation at every level, scaling throughput inversely to buffer size.

to provision high offchip I/O throughput, but filling the silicon with floating-point datapaths or
large on-chip buffers is not strictly required.

In this article, we propose to leverage this extra available area to create a hybrid accelerator
that can effectively accelerate both dense and sparse tensor algebra, while retaining the Turing-
Completeness of GPUs, as shown in Table 1. Note that we do not propose disjoint co-processors as
shown in Figure 2(A). Instead, we propose a novel arrangement that disperses key specialized hard-
ware elements of the sparse accelerator throughout a dense accelerator’s buffer hierarchy, as shown
in Figure 2(B). Thus, instead of performing all computation at the leaves of the memory hierarchy
as in a GPU or CPU, processing can occur local to each cache level. We call this approach hier-

archical heterogeneous processing (HHP), as we provision each level of the memory hierarchy
with co-located computation bandwidth inversely proportional to the buffer size (but never lower
than its bandwidth). Additionally, to emulate the custom buffer hierarchy of sparse accelerators,
we allow the cache at each level to be reconfigured into hardware-managed scratchpads, queues,
or buffets [40], similar to the ability of some GPU’s L1 to serve as either cache or “shared memory”
scratchpad. Compared to a traditional disjoint System-on-Chip (SoC), the HHP approach leads
to the following benefits:

(1) No private buffers between disjoint accelerator blocks, which traditionally can end up buffer-
ing redundant copies of data as it is moved between blocks.

(2) A reduction in “dim” silicon where large portions of the SoC chip are idle when a specific
function is not running.

(3) A decrease in the granularity of offload and interaction between SIMT datapaths and spe-
cialized elements, which increases efficiency and applicability of the specialized blocks.

(4) An increase in flexibility and future-proofing, as the existing network-on-chip allows the
reconfiguration of custom pipelining between specialized elements not found in a hardened
co-processor.
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We name our HHP system Symphony as an analogy to a musical orchestra where multiple sec-
tions of instruments play different sheet music while still contributing to the same harmonious or-
chestration. The Symphony approach allows construction of an accelerator that maintains dense
tensor algebra performance, while allowing sparse tensor algebra to achieve roofline utilization.
Beyond performance, we find additional compound energy-efficiency benefits for low-reuse data,
as it moves through fewer buffers (i.e., hierarchy), is computed on by more efficient units (i.e.,
heterogeneity), requires smaller landing zones for data requests (i.e., decoupled access-execute),
and can be sequentially processed in heterogeneous computations (i.e., pipelined). The specific
contributions of this article are:

— A novel set of specialized, hardware units that support data orchestration and buffering id-
ioms found in sparse tensor algebra algorithms. While these blocks are inspired by elements
in custom sparse accelerators, we generalize them appropriately for tight integration with
general-purpose computation.

— A method for integrating the reconfigurable hardware units into the memory hierarchy in
a decoupled access-execute pipeline using the existing network-on-chip, without memory-
based polling or synchronization.

— A specific HHP design point called Amadeus provisioned with similar area, compute and
memory bandwidths as an NVIDIA Ampere GPU.

— A demonstration that these ideas can accelerate sparse tensor algebra algorithms while
preserving and enhancing the performance of dense algorithms. We show that Amadeus
achieves roofline performance on dense tensor algebra, and has mean improvements of 31×
and 44× in performance and energy for a set of representative sparse tensor workloads over
unmodified NVIDIA A100.

While we present Symphony integrated in a setting that uses GPU-like SIMT datapaths for dense
compute and broad programmability, we anticipate that its key concepts can be “packaged” and
deployed into several scenarios, including multicore CPUs.

Sparsity focus. Starting with the NVIDIA A100, some modern GPUs contain native support
for structured sparse GEMMs with a single compressed matrix operand with a fixed ratio of
2:4—meaning exactly two non-zero-values every four elements. This represents a valuable ef-
ficiency boost to workloads where this ratio applies (particularly deep learning inference with
pruned weights), but is outside the scope of this work. Symphony focuses on unstructured spar-
sity and graph applications that feature notably lower densities. For example, the matrices in
Figure 1 have a maximum density of 0.039%. Additionally, these workloads feature multiple sparse
operand tensors, and require programmability beyond fixed-function GEMMs. Therefore, when
this article refers to A100 capabilities it means the programmable SIMT or dense tensor cores, as
appropriate.

2 MOTIVATION AND OPPORTUNITY

This section details the key challenges to performance and efficiency that sparse tensor algorithms
present to conventional broad-domain computing architectures. We describe the theory of gen-
eral tensor algebra and use an example to demonstrate where moving from ASIC accelerators to
general-purpose implementations results in notable efficiency loss.

2.1 Motivational Example: Sparse Matrix-Sparse Vector Multiply

In Einstein summation (Einsum) notation, a matrix-vector multiplication is expressed as:

Zm = Am,k ∗ Bk .
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Fig. 3. Example sparse-matrix sparse-vector multiplictation (spMspV). ASIC is ExTensor-like [16] in style,

using an M → K traversal order (i.e., B-stationary dataflow).

Mathematically this expression is agnostic to whether the underlying data structures are dense
or sparse–it simply expresses a contraction of a particular set of fibers (i.e., rows or columns in this
case) of the operand tensors [49]. The TACO tensor algebra compiler [21] takes this specification
as input, along with a per-fiber format descriptor [7] and produces optimized format-specific code
for a variety of sparse compression formats (e.g., CSR, CSC, COO, etc.). This results in memory-
layouts that comprise non-zero values, and metadata that allows those values to be projected into
the original dense tensor space. Exploiting the property that ∀x .x ∗ 0 = 0, we use the metadata of
A to avoid loading or operating on the ineffectual values of B, and vice-versa.

In both sparse- and dense-tensor algebra, the operands must be partitioned (i.e., tiled) to achieve
parallelism and locality, which can be thought of as a transformation to the Einsum as follows:

Zm2,m1,m0 = Am2,k2,m1,k1,m0,k0
∗ Bk2,k1,k0

.

For example, inm =m0 ∗m1 ∗m0,m0 may represent the size of a tile,m1 the number of parallel
datapaths, andm2 the number of temporal passes to cover the entire operand. Figure 3(A) shows an
example concrete sparse matrix and vector along with an example concrete partitioning (m2 and k2

not shown). Partitioning dense tensors is straightforward, whereas partitioning sparse tensors is
complex, with ramifications on occupancy, reuse, and load balance. This topic is outside the scope
of this work but is well-covered by References [16, 27, 49, 58].

After partitioning, any Einsum equation can be paired with a traversal order as in References
[23, 39], such as M → K or K → M . This is sufficient information to derive a custom ASIC that
performs exactly that equation, shown in Figure 3(B). This ASIC is capable of only computing
this Einsum, but does so with maximal area- and energy-efficiency. Most notably, it uses custom
scratchpads or buffets [40] to stage the B and Z operand tiles for reuse, whereas the A tile is
unbuffered as it is algorithmically known to have no reuse. Additionally, it uses custom intersection

datapaths to process metadata and find effectual computations as in ExTensor [16], and it uses
custom reduction datapaths to align read-modify-writes of partial sums, as in Phi [27].

Of course, anything done by an ASIC can be done by a Turing-complete CPU or GPU, at reduced
efficiency. In the remainder of this section, we discuss in detail the key sources of efficiency loss
that these platforms suffer on these types of algorithms.

2.2 Challenge: Moving Data Too Far

General-purpose cache hierarchies aim to provide good quality of service without any knowledge
of the workload. Unfortunately, sparse data structures exhibit low reuse of both metadata and
data values. Figure 4(a) shows the cumulative reuse for dense matrix multiplication and the three
sparse workloads from Figure 1, measured using the binary instrumentation tool NVBit [51]. The
dense workload shows the effects of static data tiling via the discrete jumps in reuse. In all, 66%
of data in the dense matrix multiply is reused eight or more times, while only 8% of data in the
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Fig. 4. Characterization of workloads from Figure 1.

sparse workloads is used eight or more times. In a conventional cache hierarchy, low reuse data
is needlessly deposited into multiple levels of the memory hierarchy and consumes energy as it
traverses the interconnect to the processing units.

In addition to data, conventional architectures also move addresses farther than custom accelera-
tors. All of their addresses are generated in the leaves of the memory hierarchy, and must be trans-
mitted through all levels. Beyond the energy for moving addresses, the long latency of accesses
through a deep memory hierarchy places structural pressure on buffering resources. Entries in the
register file, scoreboard, and miss address files must all be allocated for each outstanding mem-
ory operation, which remain idle for the latency of the round-trip access. The cost of these idle
resources becomes expensive with the large number of outstanding memory references needed to
cover long memory latencies. Likewise, many contexts—e.g., threads or warps—can be required
to tolerate long latencies, requiring additional register file capacity to manage the contexts’ state.
The custom ASIC in Figure 3(B) can physically locate low-locality data near the offchip interface
to eliminate data movement costs, as seen in processing near-memory approaches.

2.3 Challenge: Moving Unnecessary Data

In addition to low temporal data reuse, sparse tensor algorithms often exhibit low spatial data
locality. In our spMspV example, the access of A and B values is effectively a gather, whereas the
off-chip store of Z is a scatter. Figure 4(b) shows that this matters in practice: all three sparse
GPU algorithms shown previously access a substantive number of cache lines that only have one
useful element: 15% for SpMV, 32% for SpMM, and 20% for SpMSpM. In contrast, dense MM has a
single access to only 2% of lines and again demonstrates the regular spikes from tiling. SpMV has
a notable spike for fully used lines for its streaming metadata.

Low spatial locality is doubly deleterious for GPUs compared to CPUs, as SIMT datapath widths
typically match L1 cache line size. Thus, poor memory-level spatial locality often directly translates
into idle datapaths via memory divergence. In Figure 3(B), the flow-forward nature of the pipeline
means that a small vector pack buffer can line up the post-gather operands to match the vector
datapaths, as in SpArch [58].

2.4 Challenge: Overly Coupled Access and Execute

Contemporary sparse tensor accelerators have consistently found that their workloads are best ex-
pressed as producer-consumer pipelines [4, 29] to expose parallelism across pipeline stages instead
of relying only on data parallelism. Decoupling producers from consumers so that they can natu-
rally run-ahead and catch up leads to better latency tolerance, similar to decoupled access-execute
processors [46]. Custom accelerators can connect producer and consumer stages via simple hard-
ware queues, and use dedicated credit-flow hardware to synchronize as appropriate, without active
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Fig. 5. Thread decoupling via memory polling

on a single-producer single-consumer queue

as in Reference [36].

Fig. 6. Tensor contraction from the TACO compiler [21]

hand-decoupled to tolerate latency.

polling or memory transfers. This approach frees up their on-chip RAM for exploiting data locality
in operand tensors.

Most general-purpose processors have difficulty expressing and efficiently implementing decou-
pled producer-consumer relationships. Loop unrolling and software pipelining within the thread
couples the access and execute operations to a ratio and schedule that are fixed statically and
cannot adjust to the dynamic operand occupancy. Decoupling access and execute into different
threads is inefficient as the cross-thread synchronization is typically implemented through mem-
ory. Figure 5 shows an example of a simple polling synchronization operation through memory,
which requires five memory operations per data item transferred. While some of this overhead
can be amortized by aggregating multiple transferred items into a single synchronization, this ap-
proach increases the coupling and still results in extra stores to communicate data and expensive
synchronization (e.g., fences, polling, or barriers) to signal control. An ideal system combines data
and synchronization into a single fine-grained transaction.

2.5 Challenge: Inefficiency of Broad-Domain ISA

Specialized hardware units represent an opportunity and a liability for accelerator architectures.
They can provide substantial performance and efficiency improvements for the operations they
execute. For example, Figure 6 shows the code required to execute two common operations found
in sparse tensor algorithms: (1) address generation/coordinate fetch and (2) intersection and
multiply-add. When compiled by nvcc, the address generation loop takes 4 GPU instructions to
generate one address (ignoring overheads for queue polling). Similarly, it takes 16 GPU instructions
to perform the intersection loop, including three branches. In contrast, specialized intersect units
such as shown in Figure 3(B) can output multiple operations per cycle [19, 44, 58], using lower

ACM Transactions on Computer Systems, Vol. 41, No. 1-4, Article 4. Publication date: December 2023.
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energy and area. Adding custom instructions to a general purpose processor can help it approach
the efficiency of specialized units, but only if the data can be efficiently delivered via the
register file, which limits applicability and ties the hardware closely to the leaves of the memory
hierarchy.

However, specialized units are idle when their function is not being executed, leaving unused
resources that could serve better purposes. In a traditional coarse-grained System-on-Chip, en-
tire accelerators can idle when the workload does not match its exact supported configuration. If
specialized hardware is not used judiciously, then it can end up as “dim” silicon.

2.6 Symphony Motivation

We see an opportunity to address all of these challenges simultaneously via hierarchical heteroge-

neous processing. We distribute the specialized data orchestration hardware of the custom ASICs
throughout the general-purpose memory hierarchy. This architecture allows us exploit the effi-
ciency boost of specialization and decrease energy and latency as in processing-near-memory
ASICs. To combat the danger of dim silicon, we add key runtime reconfiguration options, and
allow the assembly of different reconfigurable pipelines controlled by the application, thus en-
abling computation to pass between specialized and general-purpose datapaths as needed. In the
remainder of this work, we propose the precise mechanisms to accomplish this vision and discuss
practical methods for composing the mechanisms into a unified system.

3 SYMPHONY ARCHITECTURE ELEMENTS

To realize this vision, we must address a key challenge of specialization: namely, the tension
between efficiency and programmability. Traditional fixed-function accelerators obtain maximal
benefits from specialization, but reduce flexibility and generality. In contrast, fine-grained
reconfigurable platforms such as FPGAs offer maximal reconfiguration possibilities, but lose out
on the efficiency benefits of specialized hardware.1 The overarching concept behind Symphony
is to achieve the best of both worlds by providing a set of medium-grained specialized units,
called logical elements (LEs), that are responsible for orchestrating data buffers, performing
compute operations, and generating addresses for data movement through the system. Programs
are represented as dynamically configured pipelines of these logical elements, connected in
producer/consumer relationships. A similar approach is explored in concurrent work called the
Sparse Abstract Machine (SAM) [59]. See Section 7 for a detailed comparison. The main benefit of
this approach is that it allows a strategic deployment of specialized hardware for the most common
and impactful operations, while simultaneously keeping the set of configuration options tractable
to the programmer (or compiler), without requiring EDA-style algorithms such as place-and-route.

The element is called “logical,” because the physical datapath that implements it may (or may
not) be time-multiplexed with other elements of the same type, or even elements of different
types, as appropriate. In this way, the logical topology of elements need not match the physical
layout of the chip, and producer-consumer relationships can be satisfied via virtual-channel-style
routing in a network-on-chip (NoC) without requiring physical paths or expensive memory-
mapped I/O. Thus, Symphony logical elements are analogous to threads in software, but for hard-
ware finite-state machines instead of sequences of instructions. Physically, the computation datap-
aths that execute element functionality are distributed throughout the on-chip memory hierarchy,
co-located with the RAMs they access for energy efficiency and latency minimization.

1In fact, the recent trend in FPGAs is to add an increasing number of heterogeneous specialized fixed-function elements,

perhaps indicating a future convergence with other approaches.
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Table 2. Data Orchestration Element Specifications

Element Norm. Norm. Notable Parameters Elements Per Cycle

Area Energy Design-Time Config-Time SW HW Mode

Pattern Gen. 12.9 0.4 Max. loop levels Num. active loop levels, Base, Stride, Repeat 3.37 8 (2.4×) affine

Distributor 30.7 1.0 Max. channels out Num. active channels out, Modes: Demux/Round
Robin/Last-Used-Last-Served

1.14 8 (7.0×) demux

Collector 19.1 0.3 Max. channels in Num active channels in, Modes: Mux/Reduce/Round
Robin/Last-Used-Last-Served

1.14 8 (7.0×) reduce

Merger 28.4 4.5 N/A Modes: Intersection/Union/Filter 0.05 8 (160×) i-sect

Adapter 21.8 1.6 N/A Modes: Serialize/Deserialize/Vector Pack max 0.8 max 8 (10×) pack

Area and dynamic energy is normalized to a 32-bit floating point multiply-accumulate. Software comparison was done

using the SIMT computation elements with vector width 8. Measurements obtained producing eight 32-bit data

elements per logical element. Area and energy estimates are derived by composing instances of low-level logic (ALUs,

shifters, crossbars, latch arrays, etc.) from post-layout data of a production design in 16 nm technology.

Common Design-Time Parameters: Data type, Vector width, Max. logical contexts, Max. parallel datapaths, Physical

channels in/out.

Common Config-Time Parameters: Number of active logical contexts, Logical-to-physical-channel map, Channel routes

in/out.

Logical elements and their hardware implementations have the following attributes:

— Operate autonomously without being step-by-step controlled by a central compute unit.
Thus, they can be used for both decoupled-access-execute and processing-near-memory
scenarios.

— Can be implemented using finite state machine driven datapaths for efficiency or as an
instruction-based programmable engine for greater flexibility.

— Can be implemented in a time-multiplexed fashion to improve hardware utilization by hav-
ing a single hardware unit provide the functionality of multiple logical contexts or using
parallel hardware to improve throughput.

— Can directly communicate directly with each other using the underlying NoC, without using
memory-mapped data structures, polling, or barriers.

This FSM-based approach does increase the risk of over-specialized silicon that is not useful
across a wide range of workloads. To combat this pitfall, we carefully generalize the building
blocks found in fixed-function tensor accelerators with a degree of configurability, increasing post-
deployment applicability. Arguably, specialized hardware for data orchestration is broad-domain,
and we expect these elements to find applicability outside of low-intensity sparse tensor algebra.

3.1 Logical Element Specifications

The specific logical elements we propose (Figure 7) fall into three categories: data orchestration,
storage and compute.

Data Orchestration elements provide specialized functionality for common operations re-
lated to accessing, broadcasting, filtering, reducing, and outputting data. Table 2 details their exact
parameters, and characterizes the increase in efficiency gained via specialization.

— Pattern generators (Figure 7(A)): configurable hardware to efficiently generate affine pat-
terns of numbers at high throughputs. The affine pattern allows more addressing options
than traditional direct memory access generators, such as deeper nestings of address loops
and sliding window patterns, as well as being applicable for situations beyond addressing
storage, such as generating repeated patterns of distribution across parallel channels.

— Mergers (Figure 7(B)): perform unions, intersections, and filtering inspired by ExTen-
sor [16]. They are used to eliminate computations on compressed tensors by taking the union
or intersection of streams of coordinates of the two operands of an Arithmetic-logic Unit

(ALU) operation.
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Fig. 7. Symphony Logical Elements with example dynamic configurations. Arrows represent logical channel

end-points that are connected using the network-on-chip as described in Section 3.2.
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— Collectors (Figure 7(C)): These units can perform reduction operations either as ordered
merges of incoming data or update-style reductions of an indexed array of values inspired
by Phi [27].

— Distributors (Figure 7(D)): These units unicast or multicast the values from an input
stream down multiple output streams using a determined distribution scheme, or an external
control channel.

— Adapters (Figure 7(E)): Efficiently perform a range of data transformations, such as packing
and unpacking data streams. Also can realign sparse data for vector datapaths.

Storage elements configure on-chip RAM pools into higher-level storage idioms:

— Scratchpad Controller (Figure 7(F)): provides a configurable finite address space in a local
storage array, similar to a GPU’s shared memory scratchpad in its L1.

— Cache Controller (Figure 7(G)): leverages the local storage array for storing the tags and
data while the element implements a set associative cache. Multiple cache elements may be
connected together across different levels to provide a cache hierarchy.

— Buffet Controller [40] (Figure 7(H)): allows the system to provide explicit decoupled data

orchestration, where the program locally controls data accesses at all levels of the storage
hierarchy.

Computation elements can be placed throughout the system (e.g., near memory) to perform
more general computation or additional data orchestration functions not supported by a special-
ized data orchestration element. Variants of these units can be parameterized at design time to
support different throughputs of scalar, vector, or tensor computations.

— SIMT compute engines (Figure 7(I)): These instruction-based vector computational units
can perform integer, floating-point, and/or binary operations. The instruction set is extended
to operate on channels directly via the register file, in addition to traditional loads and stores.

— Dense tensor engines (Figure 7(J)): These specialized TensorCore-like datapaths exploit
multiply-accumulate operations with high arithmetic intensity, operating on streams of
dense input tiles and generating dense output tiles.

3.2 Physical Implementation and Networking

The logical element functionality described above are provided by hardware and are designed
adapt to the conflicting demands of maximizing throughput, minimizing latency, and avoiding
idle hardware. To balance these demands, Symphony hardware employs a variety of tactics. For
efficiency, a single hardware unit may support more than one type of logical element. In addition,
a hardware unit may hold the state or context of one or more logical elements that are configured

to it simultaneously by a program. When more than one logical element is configured to a sin-
gle physical unit, that unit may execute their operations in parallel up to the provisioning of its
datapaths. If the number of contexts exceeds the parallel execution capability of a physical unit,
then the unit may time-multiplex its contexts, which can keep the utilization of the hardware
high [30].

Figure 8(a) shows the general hardware template used for creating physical units that support
logical elements. Each physical unit has a configuration controller that manages the logical element
contexts based on the configuration sent from a host. The controller communicates with the Phys-
ical Manager, which is responsible for tracking resource usage such as available logical contexts
and datapaths. The configuration controller also communicates configuration data to active logical
element contexts and datapaths. The input logical channel map is used to route incoming data to
the correct hardware in the physical unit based on incoming channel stream id. The output logical
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Fig. 8. Example hardware unit design for logical element execution, with alternate specializations of the

green area.

Table 3. Example Storage Requirements

LE Context
Pattern Generator

State per LE (bytes)
Distributor State

per LE (bytes)

LE Config 30 12

LE Active State 79 5

Input Logical Channel Map 1 1

Output Logical Channel Map 1 48

channel map routes the data to the correct physical channel for outbound latency-insensitive

(LI) channel streams.
Figure 8(b) shows the specific datapath of the Distributor, which has hardware to broadcast data

based on a mask enable bitmask. The mask enable can come from either an input channel or from
an internal custom finite state machine. The internal FSM supports multiple patterns of bitmask
generation based on the mode of operation such as round robin selection of the output channel
or least recently used. In contrast, Figure 8(c) shows the specific FSM and datapath for an affine
pattern generator. Nested loops are described with loop descriptors. Each loop descriptor contains
base, repetition count, and stride for the loop along with an offset to the next descriptor. This
loop descriptor is used in conjunction with an output stride for each loop to generate a pattern of
outputs from the pattern generator. Table 3 shows the amount of memory associated with each LE
for the given functionality. In general, we find 128 bytes per LE context seems to be sufficient.

Semantically, logical elements are connected via logical channels, which are network channels
that provide LI channel semantics [5, 12]. To support this, Symphony hardware incorporates a
NoC that supports flexible circuit reconfiguration allowing construction and destruction of circuit
connections, and provides routing of both unicast and multi-cast communications.

4 PROGRAMMING AND CONFIGURATION

4.1 Algorithm Representation

A Symphony program consists of the instantiation and configuration of the logical elements de-
scribed above. Each element is configured for a particular task in the program, e.g., a pattern
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Fig. 9. Example demonstrating the encapsulation of multiple logical elements into a compound transfer ob-

ject used in a library for data orchestration.

generator may be configured to generate a sequence of affine addresses by connecting its output
channel to the address input channel of a scratchpad or cache controller. The connection of logical
circuits in the program expresses a pipeline, i.e., a directed graph of producer/consumer relation-
ships connected via the NoC. Performance and energy-efficiency of an algorithm is maximized
when all possible code that can be offloaded from general-purpose SIMT units is covered by logi-
cal elements. However, these Turing-complete elements are always available as a fallback to run
arbitrary compiled code.

4.2 Programming Logical Elements

After the high-level structure of a program is determined, the next task is to program the logical
elements to implement each worker’s functionality.

4.2.1 Low-level Interface. Expert programmers can directly program the data-orchestration and
storage elements by setting configuration-register values. For example, an affine pattern generator
is programmed by setting the nest depth and the descriptor configuration for each loop in the nest
representing the generated pattern (Figure 8(c)). We expose these configuration registers via a
simple memory struct-based interface.

Turing-complete computation engines are programmed using assembly language and a GPU-
like SIMT programming model. This code can describe the main computations in the inner loops of
an algorithm or express uncommon data-orchestration patterns that cannot be effectively mapped
onto a data-orchestration element. To control input and output data streams, the programmer
interacts with register-mapped channels using instruction operands.

4.2.2 Symphonic CUDA. The low-level programming method described above offers precise
control over the hardware but is tedious to use. To remedy this limitation, we created a higher-
level language for encapsulating multiple logical elements into compound transfer objects. These
components have internal configuration state and connections, but hide those details from the
user in a black-box fashion, as shown in Figure 9(A). We use this technique to code a set of com-
mon data-orchestration motifs (such as tiled data movement between storage levels and strided
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distribution/collection of data) into a library of reusable higher-level abstractions. Transfer objects
can also encapsulate inline assembly code to be mapped onto computation elements. These transfer
objects are then exposed through an extension of Compute Unified Architecture (CUDA) that
we call Symphonic CUDA (SCUDA), a representative sample of which is shown in Figure 9(B).
Our library currently contains 14 data-orchestration transfer objects, with each of our evaluation
workloads using almost half of them on average.

We have developed a compiler pass that translates a SCUDA program into the hardware config-
uration and bindings for all logical elements needed to execute the program, including expanding
transfer objects into underlying primitive logical elements. Additionally, for dense tensor algebra
workloads, we use an automated optimizer [39, 54] to find optimal mappings, followed by manual
implementation of those mappings in SCUDA. We expect that this manual translation step can be
automated, and that the set of applicable workloads for automated mapping can be broadened. For
example, the concurrent work on the Sparse Abstract Machine [59] translates TACO [21] sparse
tensor expressions into dataflows and configuration of LE-like hardware.

As more complete example, Figure 10(A) revisits the sparse-matrix-sparse-vector example from
Figure 3, showing the same dataflow and execution order implemented as a logical element pipeline
instead of a fixed-function ASIC. Transfer objects such as SequentialMemReader instantiate pat-
tern generators to load the metadata, which is used to perform intersection, allowing the appro-
priate nonzero values to be gathered, packed into dense vectors, and computed on. The result is
then reduced to a final sum and scattered back to the Z tensor memory. Notably, even though the
program contains complex memory interaction patterns, it can be expressed as a flow-forward
pipeline without round-trip memory accesses, improving its ability to saturate DRAM band-
width. The compound transfer object abstraction is overhead-free and is removed entirely during
compilation.

As shown in Figure 10(B), the program also includes a binding that specifies which physical
units in the system run which logical element tasks. To be legal, the binding must obey the re-
strictions of the hardware. For example: the intersection task cannot be bound to hardware that
only executes pattern generation.2 In this example the number of physical pattern generators and
buffer controllers is less than the logical elements used by the program so multiple logical contexts
are bound to the same physical unit. Channels between producers and consumers are routed via
the shared network. The SIMT compute program interacts directly with these channels to keep
throughput high and avoid becoming the rate limiting step. Of course, the overall throughput and
latency depend on the provisioning of the physical system. In general, well-studied techniques
such as overlaying a small number of logical contexts onto the same units are sufficient to achieve
balanced utilization.

4.3 Configuration Procedure

Configuration begins with the configuration controller of each active hardware unit receiving a
set of configurations to be executed. Each set of configurations is subdivided into epochs, where
configurations in an epoch can be executed in parallel. The LE context is initialized, and the con-
trolling finite state machine is moved to an active state. The FSM for each LE will execute until
it completes and returns to an inactive state. For example, a distributor may be expecting only a
fixed number of items, or may move to inactive upon receipt of a particular control marker from
its bitmask channel.

Configuration registers are memory mapped with a read/write configuration interface, shown
in Figure 8(a) as gold arrows. The active context responds to the configuration controller using
dedicated response channels. The configuration controller uses the configuration data to set up

2Analogous to not giving bassoon sheet music to the drum section.
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Fig. 10. A Symphony program is a pipeline of storage, compute and data orchestration logical elements, plus

a binding to the physical implementations of those logical elements and configured network circuits between

their input/output channels (not shown).

the channel map for the logical channels of each active LE. It then stores the LE configuration into
a statically assigned LE context, setting up required dynamic state in the process.

Execution is begun by using the configuration data interface to write to a specific location in the
memory map for the FSM/datapath associated with the individual context. Once the LE has reached
an inactive state, it sends a completion message to the configuration controller. Each LE context can
also be paused for partial dynamic reconfiguration during execution by writing a a specific location
using the memory interface. To save time and energy, reconfiguration only requires writing data
to the LE context that is different between the previous and current configuration.

In summary, Symphony’s goal is to simultaneously configure a heterogeneous set of hardware
modules without requiring each module to invent a custom configuration procedure. By arranging
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Fig. 11. Amadeus design point in the same area, frequency, energy, and memory bandwidth budget as

NVIDIA Ampere A100.

these modules with Turing-complete datapaths and a particular buffer hierarchy, the same compi-
lation techniques can be used to target a wide variety of concrete designs with varying subsets of
logical elements.

5 HIERARCHICAL COMPOSITION INTO CHIPS

This section provides a specific instance and provisioning of a Symphony-based system we call
Amadeus, shown in Figure 11. Amadeus’s total system capabilities were chosen to match the hard-
ware capabilities of the NVIDIA Ampere-A100 GPU [33] in terms of compute and storage resources,
DRAM interfaces, and clock frequency. The Amadeus configuration is not the result of an exten-
sive design-space exploration, but rather a straightforward application of the architecture concepts
described earlier with a goal of evaluating these concepts relative to a similarly provisioned GPU
architecture.

In our design, the physical units are grouped into tiles to provide specific capabilities. While
Compute Tiles (CTs) focus on high-intensity computations, Data Orchestration Tiles (DOTs)

provide a memory hierarchy with data orchestration support and near-memory processing. These
tiles are grouped together into processing clusters called a Symphony Processing Cluster (SPC).
As shown in Figure 11(c), the baseline Amadeus has eight SPCs.

Symphony Processing Cluster (SPC). Figure 11(b) illustrates the details of an SPC, including CTs
and DOTs. Both CTs and DOTs have a similar internal structure consisting of interconnected com-
putation, data orchestration, and storage units. The primary difference between them is that the
CTs have more compute capability, while the DOTs have more storage capacity. As an example,
Figure 11(a) shows the architecture used by the CT, DOT-C1, and DOT-C2 from Figure 11(b). The
data storage unit within each tile implements collections of configurable storage units, such as
buffets, scratchpads, or caches. In the DOT-C2, the storage managed by the storage units is im-
plemented in SRAM. The pattern generator unit holds a configurable collection of logical pattern
generators that help orchestrate data movement between tiles. The set of compute units imple-
ments configurable collections of the logical compute elements of the architecture.

The CTs and DOTs of the Symphony physical architecture form a set of layers in the SPC. Each
layer comprises a collection of storage and compute/control units with different granularities and
sizes. The four layers of an SPC are:

— CT: The main Compute Tile units receive densely packed, marshaled operands (usually from
a DOT-C1) and performs data-parallel computations. The compute operations are performed
by either the Dense Tensor Unit (DTU) or more general SIMT compute engines. Each CT
also includes a storage collection.
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Table 4. Symphony Amadeus SPC Components and Capabilities for Each Tile

Unit Compute Storage Storage BW (B/clk) Per SPC

CT 128 ALUs 128 KB 512 8
512 DTU ALUs 4 KB 256

DOT-C1 64 ALUs 256 KB 1,536 2

DOT-C2 40 ALUs 4 MB 1,366 1

DOT-M off-chip DRAM 342 1

— DOT-C1 and DOT-C2: Data Orchestration Tiles for Compute (Level-1 and Level-2) are re-
sponsible for marshaling operands to and from the CT. DOTs are dominated by SRAM stor-
age managed by the DOT memory manager but also have a modest number of SIMT compute
engines for basic streaming data manipulation and near-memory processing.

— DOT-M: The Data Orchestration Tiles for Memory (DOT-Ms) interact directly with the
memory controllers for DRAM access that allow the DRAM to be used as the memory man-
ager’s backing store. They do not have programmable compute capabilities. The storage
element for a DOT-M is off-chip in DRAM.

Amadeus capabilities. Figure 11 shows that Amadeus includes four Symphony SPC modules
interconnected by a NoC. Table 4 summarizes the compute and storage characteristics of each
tile within an SPC. The computational capabilities are greatest in the DTU of the CT and dimin-
ish across the layers towards the DOT-M attached to the DRAM. For example, the DTU module
is equipped with the largest compute capability, supporting dense tensor kernels with 512 FP32
multiply-accumulate (MAC) units, which can also be configured as 1,024 FP16 MAC units. The
compute capabilities in the next tile types (DOT-C1, DOT-C2, and DOT-M) include progressively
fewer computational resources at each level. Conversely, the storage is largest at the DRAM end
of the architecture and smallest in the CT. Table 4 shows the aggregate storage bandwidths for
the SPC layers, which are computed by multiplying the number of tile instances by the storage
bandwidths. The DTU in the CT requires only a total of 256 B/clk due to the amount of reuse it
can exploit in dense tensor operations.

Table 5 shows the hardware provisioning for each layer of the Amadeus hierarchy. For the CT,
the compute engine is configured to have four physical datapaths that each support 32-thread
warps. For the other levels in the system with compute engines, the warps are 8-wide. Each unit
has a maximum number of logical contexts, which is selected to meet the needs of our applica-
tions in Section 6. Based on the maximum number of logical contexts, we find that Amadeus has
512 KB of LE context data, not including state for the compute engines. In the worst case, loading
the LE context data from DRAM takes 100 ns based on our DRAM bandwidth. As most appli-
cations will only need to initialize a subset of this state, the will take less time to initialize the
full system. Furthermore, partial reconfiguration only requires modifying a subset of active LE
configuration.

A configurable NoC provides virtual circuits that connect the units within and between tiles
of the SPC. The DOT-C NoC provides connectivity between DOT-C1s and a DOT-C2 within and
between SPCs, while the DOT-M NoC interconnects the DOT-M Manager to Memory controllers
within and between SPCs. These virtual circuits are used to implement the LI channels between
logical elements. The Symphony NoC supports both shortest path communication, as well as pro-
grammatic unicast and multicast, eliminating unnecessary on-chip traffic amplifications, and re-
sulting in energy-efficient communication. The latency for data transfers between the tiles of the
system are similar to those within a high-performance GPU.
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Table 5. Amadeus Physical Unit Capabilities

LE Contexts Per Tile / (Peak LE Throughput)

CT DOT-C1 DOT-C2 DOT-M

Compute Unit 128/(4) 512/(8) 256/(5)

Pattern Generator Unit 128/(16) 512/(32) 256/(64) 512/(64)

Memory Manager Unit 128/(8) 512/(32) 1,024/(64) 2,048/(64)

Distributor Unit 32/(8) 128/(8) 256/(8)

Collector Unit 32/(8) 256/(8) 512/(8)

Merge/Filter Unit 32/(4) 128/(8) 256/(5) 32/(8)

Table 6. Amadeus Interconnect Feeds and

Speeds

Interconnect Count Ports BW per Total
Interconnect Count Ports Port BW
CT↔ DOC-C1 16 4×4 192 GB/s 12 TB/s
DOT-C1↔ DOT-C2 8 8×8 96 GB/s 6 TB/s
DOT-C2↔ DOT-M 8 8×8 32 GB/s 2 TB/s
SPC↔ SPC 1 8×8 256 GB/s 2 TB/s

Interconnect. The interconnect between the CT and DOT-C1s, the DOT-C1 and DOT-C2, and
between the SPCs are all full-bandwidth full-duplex crossbars. The details of these crossbars are
shown in Table 6. This architecture effectively guarantees that the interconnect itself is not a
bottleneck, while at the same time is not prohibitively expensive.

6 EVALUATION

6.1 Methodology

To evaluate the Symphony architecture, we use a combination of hardware platforms and simu-
lation systems. Table 7 lists the specifications of the GPU platform we use as a baseline to com-
pare to Symphony. For Symphony systems, we developed the SymSim simulator by extending the
NVArchSim simulator [50] to support Symphony features. The evaluation combines SymSim with
Accelergy to provide energy projections [55]. The Amadeus parameters are summarized in Table 7.
The sections below describe the specific methodology for measuring execution time and energy
consumption for each of these platforms.

6.1.1 GPU Methodology. We primarily compare our proposed architecture against an NVIDIA
Ampere A100 GPU. Specifically, we use an NVIDIA DGX system with an AMD EPYC 7742,
512 GB RAM and Ampere A100-SXM-80GB GPUs to provide a performance and energy compari-
son to a state of the art GPU platform. The GPU implementations of evaluated workloads leverage
various frameworks and libraries, including PyTorch, Gunrock [52], and NVIDIA libraries such as
cuSPARSE [34], as well as hand-coded CUDA implementations for performance and efficiency.

We use nvprof to collect the performance for the key regions of the target kernel and
nvidia-smi to collect the power statistics during the key regions. We isolate the dynamic power
(and energy) by measuring the full static and dynamic power of the GPU during application exe-
cution and then subtracting the power measured when the GPU is idle.

6.1.2 Symphony Methodology. We implemented SCUDA code for each application and opti-
mized it for execution on the Amadeus architecture. We configured the SymSim simulator to model
one Amadeus SPC. While a full Amadeus system consists of 8 SPCs, we simulated a single SPC
and scaled the performance linearly with SPC count. The parallelization of the workloads on Sym-
phony make them scale linearly as compute bandwidth, memory bandwidth, and on-chip memory
capacity are scaled from one to eight SPCs. In some cases, we measured performance of individ-
ual workload kernels and used an analytical model to compute the execution time and energy of
the entire workload. We also ran some of the workloads for smaller numbers of iterations to limit
simulation wall-clock time; we then scaled the results up to reflect the full iteration count.

For energy estimation, we assume Amadeus is implemented in a the same TSMC 7 nm process
technology node as the NVIDIA A100 GPU. We created a Symphony-specific Accelergy plug-in
based on a 7 nm technology. Accelergy uses the energy-relevant action counts from SymSim to
generate estimates of dynamic energy consumption. We focus on dynamic energy as it depends
on application behavior; we do not model standby power or static energy consumption.
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Table 7. GPU and Amadeus Parameters

Reference GPU Symphony System

Model A100 Instance Amadeus
Process Technology TSMC 7nm Process Technology TSMC 7nm
FP32 Throughput 20.9 TFLOPS FP32 Throughput 24.6 TFLOPS
FP16 Tensor T.put 334 TFLOPS FP16 Tensor T.put 197 TFLOPS
Peak Warp Count 6,912 Peak Warp Count 4,096
Max Clock Freq. 1.5 GHz Max Clock Freq. 1.5 GHz

Register File 27.6 MB Register File 8 MB
Cache L1 20.25 MB DOT-C1 Capacity 4 MB
Cache L2 40 MB DOT-C2 Capacity 32 MB

Memory Channels 40 Memory Channels 40
HBM DRAM 80 GB HBM DRAM 80 GB

HBM Bandwidth 2048 GB/s HBM Bandwidth 2048 GB/s

Table 8. Amadeus Area Breakdown

Unit Total Instances Total Area

CT (w DTU) 64 255 mm2

DOT-C1 16 57 mm2

DOT-C2 8 47 mm2

DOT-M 8 19 mm2

NOC/Interconnect 1 157 mm2

HBM PHY 6 66 mm2

Total Amadeus Area 599 mm2

NVIDIA Ampere A100 Area 826 mm2

We use a bottom up area estimation methodology to assess the area of the Amadeus system. For
each physical unit, we estimate the area to support the logical element. We then account for the
number of physical instances and number of contexts to estimate the size of a tile. These estimates
are combined analytically to estimate the total area of the Amadeus system. Table 8 shows the
area for each component of Amadeus. Some of the difference between Ampere chip area (826mm2)
and Symphony chip area (599 mm2) is due to differences in provisioning of math throughput and
register file/cache capacities while some is due to redundancy in Ampere to boost yield.

6.2 Micro-benchmark Characterization

We use roofline analysis [53] to understand the peak capabilities with respect to memory and
computation bandwidth provisioning in Amadeus and Ampere, respectively. Traditionally, roofline
analysis has been applied to dense tensor algebra using the concept of arithmetic intensity:

intensity = Nummultiplications/Trans f ersbytes . (1)

In a sparse context, this only includes effective multiplications (i.e., where both operands are non-
zero). Additionally, Trans f ersbytes includes both the metadata (e.g., coordinates and positions)
and data (e.g., actual non-zero values). Because non-zero values are only loaded after a match, the
more overlap between non-zero operands, the more memory bandwidth the system must provide
to maximize performance. For this study, we fix the rate of overlap between operands to 100%,
placing the highest possible pressure on memory bandwidth.

Microbenchmark kernel. We select the following parallel sparse tensor contraction kernel:

Zs =
∑

t (As,t ∗ Bs,t )i . (2)

The s rank is distributed in space, while the t rank is processed temporally. The A tensor is
stored in a {compressed, compressed} format (i.e., CSF, also called DSCR [3]), and the B tensor
is stored {dense, compressed} (i.e., CSR). Thus, both compressed versus dense and compressed
versus compressed contractions are included. Finally, i is an artificial static intensity parameter
that increases reuse, which enables our roofline sweep.

GPU/Symphony Comparison. To characterize Ampere, we took the code output from
TACO [21] and hand-ported it to CUDA by partitioning the tensors’ s ranks across multiple thread
blocks, warps, and threads. Figure 12 shows that A100 achieves approximately 1/4 of the ideal
roofline performance for low-intensity sparse algebra. The GPU requires a total intensity of 64 ef-
fective multiplications per successful intersection to become compute-limited, much greater than
the intensities observed in practice in Figure 1.

As Amadeus has computation capabilities at the DOT-C2, the DOT-C1, and the CT, we swept in-
tensities of three different bindings of the kernel separately. Figure 12 shows that Amadeus makes
notably better use of available memory bandwidth to maintain roofline performance across all
intensities. When multiple Amadeus variants achieve the same performance, the binding closer
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Fig. 12. Roofline characterization of Ampere and Amadeus on the micro-benchmark kernel (32-bit floating

point SIMT).

Table 9. Symphony Benchmarks

Workload Description Dataset

GraphSAGE Deep learning on graph- 1M node graph; 32-elmt
[14] structured data feature vectors; batch-sz 256;

2143 batches; 3 epochs

IPNSW Maximum inner-product search 1M node graph;
[25, 26] (navigable small world algorithm) 400 bytes per node

PR-Nibble Local graph clustering 5,157 vertices;
[45] (pagerank nibble algorithm) 373,144 edges

SinkhornWMD Word-movers distance using 558,536 doc database;
[8] Sinkhorn-Knopp algorithm 100,000 word dict.ionary

ConvNet Convolutional neural network Training on 10K
[15] for image classification 32×32 images

to DRAM will generally use less energy, and potentially allow SIMT units to be power-gated.
This strategy of mapping of the computation to the “least-upper bound” computation datapath
in Amadeus is leveraged by our workloads, as described in the following sections.

6.3 Benchmarks

We perform our evaluations on a set of workloads provided by DARPA for the Software-Defined
Hardware project. The benchmarks cover a variety of domains such as graph processing, graph
neural networks, natural language processing, and convolutional neural networks. Table 9 presents
the set of benchmarks and their datasets. Table 10 details which key Symphony features each of
the workloads utilize.

Graphsage. GraphSAGE is a graph-based deep learning algorithm whose objective is to produce
embeddings for a given set of graph nodes by sampling random neighbors via a trained model,
then propagating iteratively [14]. On Amadeus, we map the DRAM-dominated neighbor sampling
operations to the DOT-C2 and DOT-C1, which fetch feature data into dense blocks mapped to
buffers in the DOT-C2. All subsequent operations are formulated as a series of compute-intensive
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Table 10. Symphony Features Used by Benchmarks

μbench- graph- ip- PR- sink- conv
mark sage nsw nibble horn net

Storage idioms

Buffets/FIFOS � � � � � �
Scratchpad �

Cache �
Configurable communication patterns

Producer-consumer � � � � � �
Distributors � � � � � �

Collectors/Reducers � �
Bypass buffers � � � � � �

Specialized reconfigurable datapaths

Pattern Generators � � � � � �
Merge �

Adapters: Vector re-packing � � �
DTU � � �

Processing near-memory

DOT-C2 � � � �
DOT-C1 � � � �

CT � � � � � �

dense linear algebra steps. We configure the Amadeus DTUs to compute these as GEMM tiles and
reductions using features, model weights, and biases read from the DOT-C2.

IPNSW. Inner Product Navigable Small World (IPNSW) accelerates finding K closest nodes
to a given query node by approximating the closest node on sampled graphs [25, 26]. The appli-
cation first traverses unvisited neighbors of a candidate node in a graph (mapped to DOT-C2) and
calculates the distance between the neighbors and the query node (mapped to DTUs). Then, two
sorted lists of 128 closest nodes are updated for future candidates (mapped to DOT-C1) and poten-
tial results (mapped to CT). The application iterates this process until no more candidates exist.
IPNSW consists of 512 independent query processes that are launched simultaneously.

PRnibble. PRnibble is a algorithm whose runtime is dominated by Sparse-Matrix by Sparse-
Vector multiplication. This memory bandwidth bound phase is mapped onto Symphony by per-
forming the memory indirections in the DOT-C2 while mapping computations across the different
CTs. To avoid on-chip interference, streaming data is mapped onto FIFOs (in the DOT-C2) while
data with unpredictable locality is mapped to a cache hierarchy in the CT and DOT-C2 storage,
which is configured to support commutative scatter updates [27].

Sinkhorn. SinkhornWMD measures the similarity between a query document to a database of
documents using the Sinkhorn-Knopp iterative algorithm [8]. Runtime is dominated by Sampled

GEMM (SDDMM) and Sparse-Dense GEMM (SPMM) sparse linear algebra kernels. Both mem-
ory bandwidth-bound kernels are mapped to Symphony by keeping a dense input stationary in CT
buffets and streaming the other input from DRAM, using the nonzeroes of the sparse document
database to direct which data values to access. The core computation executes in the CTs, while a
pipeline of pattern generators at the DOT-C2 manage data orchestration.

Convnet. ConvNet is a workload that trains a dense convolutional neural network (CNN)

to perform image classification on the CIFAR-10 dataset [22]. We use ConvNet to show that Sym-
phony does not sacrifice performance on dense tensor algebra to support unstructured sparsity.
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Fig. 13. Amadeus runtime and efficiency compared to Ampere.

The CNN is a simplified residual network (ResNet) [15] with layers including CONV, BNorm,
ReLU, Add, and MaxPool. Over 98% of the computation in ConvNet happens in the CONV layers
of the CNN.

6.4 Sparse Workloads

Figure 13 compares Amadeus performance, energy efficiency, and energy-delay product results
to the Ampere GPU hardware platform baseline. The results show that Symphony Amadeus is
1.6–60× faster and consumes 6.3–330× less energy than a comparably provisioned GPU.

GraphSAGE. Amadeus achieves 17.5× speedup and 12.7× energy improvement versus the ref-
erence GPU. Our analysis projects that these numbers will remain largely unchanged with larger
workload sizes. We attribute these improvements to Symphony’s ability to expose a large amount
of memory parallelism, to leverage processing near-memory (minimizing initiation latency and
data-movement energy), and to pipeline heterogeneous computation using efficient built-in syn-
chronization mechanisms. Additionally, the GPU is under-performing in this specific workload for
two main reasons. First, the Ampere GPU cannot use its tensor cores in FP32 mode. Second, commu-
nication between separate kernels goes through GPU global memory, leading to excess DRAM traf-
fic as opposed to producer-consumer data movement in Symphony via on-chip buffers/channels.

IPNSW. The application leverages several Symphony features, which allows Amadeus to
achieve 1.6× speedup and 6.3× energy savings over the reference GPU. First, the buffet stores
the query data and delivers it to DTU repeatedly, maximizing data reuse. Second, two temporal
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lists of candidates and results are stored in DOT-C2 and DOT-C1 scratchpads, lowering the
movement cost of the frequently accessed data. Third, computations (for graph traversal, visited fil-
ter, and candidate sort) are processed in local compute engines (in DOT-C2, DOT-C1, and DOT-C1,
respectively) that are located near data. Finally, the compute stages can be executed in parallel with
minimal synchronization over the producer-consumer interface. We expect the relative speedup
and energy savings to be constant with increasing graph size, since the cost of determining a
vertex’s neighbors is independent of graph size.

PR-Nibble. PR-Nibble on Amadeus achieves 38× speedup and a 330× energy consumption re-
duction over the GPU implementation. The benefits stem from near memory processing (in the
DOT-C2), which avoids the latency introduced with chained memory accesses that are common in
graph applications. Further, we efficiently utilize the on-chip storage space between the different
operands and ensure that the majority of on-chip storage space is dedicated to data with local-
ity. Additionally, the commutative scatter updates in the cache hierarchy also avoids unnecessary
data-movement.

SinkhornWMD. SinkhornWMD on Amadeus achieves a 60× speedup and a 230× energy con-
sumption reduction over the GPU implementation. First, Amadeus pipelines indirect memory ac-
cesses to the sparse matrix, enabling better memory-level parallelism and utilization of the mem-
ory subsystem. Amadeus avoids energy waste by generating DRAM requests at the DOT-C2 and
streaming data directly to the CT, bypassing intermediate storage. Finally, SPMM leverages mul-
ticasting and better request coalescing for a 45% DRAM traffic reduction in Amadeus. Much of
this improvement is caused by a suboptimal cuSPARSE implementation of SDDMM, which per-
forms a GEMM before sampling using the sparse matrix, instead of sampling which dot-products
to perform. We estimate Symphony would be 10× more efficient than the GPU if both employed
the same algorithm. We expect the relative benefit of Amadeus over Ampere to remain constant
with increasing dataset size given the memory-bound nature of the application and extremely low
sparsity of the sparse matrix.

6.5 Dense workload on Amadeus: ConvNet

We map CONV layers to use the DTU and further adopt an optimized dataflow that exploits all
the available data reuse in the kernel, such as using the multicast distributors at DOT-C1. For
the bandwidth-limited layers, we leverage the hierarchical computation in Amadeus and map
BNorm/ReLU/Add to DOT-C1 and MaxPool to CT. We also fuse layers in ConvNet to reduce data
movement with hardware-managed queues in Amadeus. For Ampere, we ran ConvNet with mixed-
precision training and enabled FP16 tensor cores.

Our evaluation shows that Amadeus is 12.5× faster and 2.3× more energy efficient than GPUs
with tensor cores, for two reasons. First, without explicit data orchestration and optimized dataflow,
the Ampere GPU requires large channel counts (>128 input/output channels) to create sufficient
compute intensity for high math unit utilization. However, the CNN model in convnet has much
smaller channel counts (between 16 and 64), resulting in low throughput on GPUs for these CONV
kernels. Second, fusing multiple layers in GPU kernels requires communicating via data structures
in memory and barriers, while in Amadeus we leverage the hardware-managed queue to support
layer fusion. While a larger ConvNet may show a smaller gap between Ampere and Amadeus, we
still expect Amadeus to show an advantage due to its ability to map various optimized dataflows.

6.6 Comparison to Fixed-function Sparse Accelerators

To quantify the overhead of supporting programmability, we compare the Symphony HHP ap-
proach to ExTensor [16], a dedicated accelerator for sparse tensor algebra. To make as fair a
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Table 11. Comparing ExTensor [16] (Scaled into 7 nm) and Wolfgang, a Similarly Provisioned

Symphony System

Fixed-Function Sparse Accelerator Symphony System

Work ExTensor [16] Instance Wolfgang
Process Technology TSMC 7 nm Process Technology TSMC 7 nm

Max Clock Freq. 1.5 GHz Max Clock Freq. 1.5 GHz
Scalar MACC PEs 128 SIMT-8 Compute Tiles 128

Peak MACC Throughput 192 GFLOPS Peak FP Throughput 1.5 TFLOPS (8×)
Last-Level Buffer 30 MB Dot-C Capacity 30 MB (1×)

DRAM Bandwidth 68.2 GB/s DRAM Bandwidth 68.2 GB/s (1×)

Total PE area 28.2 mm2 Total CT area 39.7 mm2 (1.41×)
LLB area 13.1 mm2 DOT-C area 21.1 mm2 (1.61×)

Memory Ctrl/PHY area 20.7 mm2 Memory Ctrl/PHY area 20.7 mm2 (1×)

Total area 62.0 mm2 Total area 81.5 mm2 (1.32×)

comparison as possible, we examine the ExTensor architecture in Amadeus’s TSMC 7 nm pro-
cess using the same area model as above. Then, we construct a down-scaled variant of Amadeus
that we name Wolfgang with the same memory bandwidth, number of buffer levels, and entries per
buffer as ExTensor. However, Wolfgang keeps the HHP arrangement of using Symphony logical el-
ements for Intersection, Distribution, Collection, and so on, and uses the same configurable buffer
controllers, arranged as in Amadeus’s DOT-C2. For compute units, Wolfgang discards ExTensor’s
fixed-function MACC PEs and replaces them with SIMT Compute Tiles from Amadeus, excepting
the Dense Tensor Unit. This results in the 32% area overhead shown in Table 11, which demon-
strates that the bulk of the cost comes from the Compute Tile, with the benefits of introducing
programmability and increasing peak throughput by 8×.

As ExTensor is not general enough to execute arbitrary workloads (such as the ones evaluated
above), we use Wolfgang to run sparse-matrix sparse-matrix multiplication (SPMSPM), a key
workload of ExTensor. Via private communication with the authors, we obtained the ExTensor sim-
ulator used in Reference [35], which includes action counts for performing SPMSPM across various
data sets. We then use the energy costs-per-action as in Section 6.1, to fairly compare Wolfgang and
ExTensor, both in 7 nm. To obtain the energy consumption of Wolfgang, we adjusted Amadeus’s
energy model, following the programmability overheads quantified in Reference [17] where
necessary.

The results of the comparison are shown in Figure 14. As Wolfgang is general enough to run
the same dataflow and work schedule as ExTensor it obtains the same performance. The latency
differences in our generalized on-chip network are not significant enough to detract from the
steady-state performance over the course of the workload. This result is intuitively confirmed
by the roofline analysis of ExTensor in Reference [16] and our micro-benchmark analysis in
Section 6.2, which both independently demonstrate that these platforms are able to reach peak
memory-bandwidth utilization on this class of applications. Even though Wolfgang includes SIMT
datapaths, we only use them in scalar mode to facilitate a direct comparison to ExTensor, which
lacks SIMT units. As a result, Wolfgang pays for but does not use the Vector Pack Adaptor from
Section 3.1. Thus the performance result is conservative, as Wolfgang has a significantly higher
dense computation roofline, but this difference does not manifest on a memory-bound workload
like SPMSPM.

The energy cost for both accelerators is dominated by offchip memory. As 70%–97% of the
overall energy stack comes from DRAM, overall EDP only degrades by 4% on average. While the
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Fig. 14. Quantification of overheads compared to fixed-function accelerator running sparse-matrix

sparse-matrix multiplication (SPMSPM). GeoMean reduction in EDP is 4% to support Symphony-style

programmability.

architectures differ in their distribution of energy consumption across the programmable PE, flex-
ible NoC, and on-chip buffers, these components are limited to less than 14% of the total energy
usage–with the exception of the high-locality poisson3Da data-set, where on-chip buffering be-
comes more dominant (29% of energy for ExTensor versus 37% for Wolfgang).

Overall, this comparison demonstrates that accelerators for memory-bound applications can
profitably consider adding programmability features without significantly affecting EDP. The main
benefit is increasing peak throughput on a wide range of applications, for modest area invest-
ment. Symphony represents an architectural attempt at blending the styles of programmable GPUs,
compute-bound dense tensor accelerators, and memory-bound sparse tensor accelerators in a com-
plementary way. The Heterogeneous Hierarchical Processing approach shows a promising path
forward for combining the best features of all three worlds.

7 RELATED WORK

Recent research has developed a wide range of different acceleration approaches to sparse tensor
algorithms. Outerspace [38] is an SPMSPM accelerator based around an outer-product dataflow
that uses custom reduction logic for partial sums. SpArch [58] demonstrates that this approach
can be improved by custom update batching and reduction scheduling for higher spatial locality.
Matraptor [47] uses Gustavsson’s algorithm as an alternative dataflow that reduces read-modify-
writes of partial sums in exchange for more operand reads, which are less expensive. Sigma [42]
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uses a flexible dataflow approach that improves adaptability via customized network-on-chip rout-
ing and buffers. Tensaurus [48] demonstrates that co-designing the storage format and the custom
hardware can lead to further improvements. These and other narrow-domain architectures focus
on specific characteristics or dataflows of sparse tensor algorithms, while Symphony deploys finer-
grained building blocks and aims to serve a wider range of range of algorithms.

In addition to tensor accelerators, the domain of graph algorithms has been popular for acceler-
ator research. Most proposed graph accelerators use forms of decoupled access-execute and have
focused on a subset of the algorithm space. Examples include Graphicionado [13], Ozdal’s energy-
efficient graph analytics accelerator architecture [37], Chronos [1], and GraphPulse [43]. Dadu’s
PolyGraph paper makes a strong case for flexibility for graph analytics accelerators [9], which has
similar objectives to our Symphony architecture.

Coarse-grained reconfigurable architectures (CGRAs) aim to provide performance and ef-
ficiency approaching that of ASICs, coupled with the flexibility of FPGAs [24]. CGRA’s tend to
provide large building blocks such as the pattern compute unit (PCU) and pattern memory unit
of Plasticine [41] or the processing elements in the Wave Computing architecture [31]. In contrast,
Symphony employs medium-grained components that are more specialized (for efficiency) and
can be composed to create more complex data pipelines.

Possibly the most closely related work is the concurrent Sparse Abstract Machine project [59]
which extends a dense CGRA architecture [60] with a set of LE-like hardware units that fetch and
store tensor fibers, and perform intersection, reduction, and computation. The SAM compiler trans-
lates tensor algebra expressions in TACO format [21] into configurations, which could be added
as automation on top of SCUDA. SAM is not Turing Complete and only supports TACO tensor
algebra, making it complementary to SCUDA’s capabilities and Symphony’s notions of a hybrid
fully-programmable and specialized architecture using Heterogeneous Hierarchical Processing.

Separate from full domain specific accelerators, prior research has introduced a range of build-
ing blocks to accelerate sparse data processing that include: Extensor for fast metadata inter-
section [16], PHI for efficient data reductions [27], SpZip for streaming data compression and
decompression [56], and SPU for efficient processing of sparse streams [10]. Near-data process-
ing has also been explored in wide array of contexts [28]. For instance, prior work has developed
near-data processing architectures to process chains of dependent memory references in graph
workloads [2], execute small snippets of code in smaller processing elements in/near the DRAM
stack [20], and incorporate vector math units near various caches in a CPU [32]. In addition, prior
work has proposed Buffets as a composable storage idiom [40] and Pipette, which facilitates data
pipelining through time-division multiplexing of processing elements [29]. Symphony leverages
these prior works and incorporates them into a broader application and architecture domain, in-
troducing them as reusable logical elements.

8 CONCLUSION

With the demise of Moore’s Law and Dennard scaling, architecture innovations must play a greater
role in providing computer system performance and energy efficiency improvements. For applica-
tions areas such as sparse tensor algebra and graph processing, efficiency opportunities arise in
accelerating and streamlining compute and the movement of data. Our proposed Symphony ar-
chitecture provides medium-grained specialized hardware datapaths aimed at data orchestration
for both sparse and dense data structures. These datapaths are convenient building blocks that
when combined with programmable processing elements can form pipelines that are efficient like
dedicated accelerators but are flexible like programmable processors. Our results show that the
Symphony mechanisms facilitate mean improvements of 31× and 44× in runtime and energy over
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a comparably provisioned GPU. Such a platform opens opportunities for further innovation in ex-
tending the range of dynamic streaming operations, managing load balance and locality, and even
more efficient sparse data representations.

The key insight behind Symphony is that specialization is not just a technique that is impactful
on datapaths and processing elements, but equally applicable in the context of data orchestration.
In the future, we hope to expand Symphony’s toolbox of specialized modules and expand the
number of applicable domains that can be improved via explicit data orchestration. Furthermore,
we believe Symphony’s approach lends itself to productive system construction, and so we hope to
make it easier for others to create Amadeus-like design points out of the existing building blocks.
All in all, we hope that Symphony demonstrates an interaction model for general-purpose and
specialized hardware without memory-based polling that ultimately opens up new opportunities
for architectural innovation in all aspects of the chip.
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