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Abstract—The architectural design-space exploration (or DSE)
process—whether manual or automated—benefits greatly from
knowing the limits of the metrics of interest in advance. Data
movement is rapidly emerging as a critical metric for DSE due to
its increasing impact on both performance and energy efficiency.
Unfortunately, the commonly used algorithmic minimum (or
“compulsory misses”) limit for data movement is extremely loose,
limiting its utility in design-space search.

In this paper, we present Orojenesis, an approach to compute
data movement limits (or bounds) for tensor algorithms. Unlike
algorithmic-minimum bounds, Orojenesis comprehends reuse and
the ability of a buffer (such as a cache or scratchpad) to exploit
reuse to reduce data movement. Orojenesis provides a bound that
no dataflow or mapping can possibly exceed under varying on-
chip buffer capacity constraints, including mappings that fuse
a sequence of tensor operations to exploit producer-consumer
reuse. Orojenesis produces a plot that shows the relationship
between a buffer’s size and the lower data movement limit
to/from the next level in a memory hierarchy. This plot, dubbed
a ski-slope diagram, allows designers to gain critical insights into
the behavior of a workload as a function of storage capacity.
This analysis can inform early high-level design decisions before
embarking on thorough design space searches.

We use Orojenesis to analyze a set of valuable tensor algo-
rithms including batched and grouped matrix multiplications,
convolutions, and sequences of operations in Large Language
Models (LLMs). Our analysis reveals a range of architectural
insights, including the fact that attainable data movement can
be orders-of-magnitude higher than algorithmic minimum, that
there exists a sweet spot between SRAM and compute resource
provisioning for optimal throughput, and that up to 5.6x data
movement reduction can be achieved with fusion with a buffer
capacity of 320MB for the GPT-3-6.7b LLM.

I. INTRODUCTION

Data movement is becoming an increasingly significant
component of the energy consumption of many applications.
This is primarily because process technology scales compute
far more efficiently than wires. The phenomenon is exac-
erbated for tensor algebra algorithms because hardware/al-
gorithm co-designed optimizations such as quantization and
sparsity can disproportionately favor computation reduction
relative to data movement reduction. In addition to energy
costs, data movement also impacts performance if it saturates
any data movement channel in a system, such as memory
bandwidth. Therefore, optimizing data movement is becom-
ing increasingly critical in the pursuit of more performant
and efficient architectural designs. Unfortunately, this is non-
trivial. It isn’t sufficient to merely reduce memory bandwidth
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Fig. 1: Differences between the attainable data movement
and the algorithmic minimum (Gap 0), and between the
maximal effectual buffer (cache or scratchpad) size and the
total operand size (Gap 1). The green curve, which resembles
a ski slope, represents the desirable data movement bound in
relation to the buffer size requirement for a tensor operation.

demand—data movement is costly even within the on-chip
memory hierarchy [57].

Furthermore, newer architectures such as tensor accelerators
expose immense, multi-dimensional design spaces, and each
design exposes a large space of tiling, parallelization and
scheduling knobs (often referred to as the mapping space or
mapspace) for a single algorithm. This results in a complex co-
optimization problem that has been attacked by recent research
on mapspace exploration [17], [27], [31], [43], [57], [62], [82],
[85], design-space exploration (DSE) [18], [30], [35], [41],
[64], [68], [75], [81]-[84], and co-optimization of these spaces
[28], [38].

In the real world, architects rarely utilize naive searches
of massive design spaces. Instead, they start with limit (i.e.,
“speeds and feeds”) studies to develop intuition, craft a set of
baseline designs based on this intuition, and then launch more
constrained design-space exploration studies around these
baselines. Unfortunately, these studies are typically carried
out using a primitive data movement limit called algorithmic-
minimum accesses. This limit (or bound) is equivalent to
compulsory misses for caches and is simply the sum of all
input and output operand sizes. This bound is extremely
loose (Gap 0 in Fig. 1) because the achievable access counts
with any realistic design may be orders of magnitude higher,
especially for memory levels closer to arithmetic units. One



might think that it would be sufficient to determine optimal
traffic using Bellady’s [7] algorithm, which is sensitive to
cache capacity, but it only models a single mapping (i.e., tiling,
parallelization and schedule) of the algorithm. Other works
(see Sec. X) do not provide tight bounds for a comprehensive
set of scenarios. Thus, these data movement analyses have lim-
ited utility in informing an architect’s intuition for designing
new architectures, especially radical new designs for which
optimizing compilers do not yet exist.

In this work, we present a methodology to compute data
movement bounds for tensor algorithms, creating diagrams
such as Fig. 1. Because Fig. 1 looks like a ski slope on
the side of a mountain, we call the process of creating these
“mountains” Orojenesis'. Orojenesis provides tighter bounds
than algorithmic-minimum accesses because it comprehends
data reuse that a buffer (such as a cache, scratchpad or
buffet [61]) can exploit to reduce data movement. This is
especially true for the inner levels of a design’s memory
hierarchy, where data movement deviates significantly from
the algorithmic-minimum accesses. Orojenesis’ bound is also
mapping-independent because it provides a limit on what any
mapping of an algorithm can possibly extract from an archi-
tecture’s hierarchy without running an expensive mapspace
search on a complex hardware design. Given an unmapped
algorithm consisting of a sequence of tensor computations,
Orojenesis emits (Fig. 1) a Pareto-curve showing the minimal
attainable accesses for that algorithm subject to varying buffer
capacity constraints. Our main contribution is the Orojenesis
approach itself. Using a dramatically simplified proxy archi-
tecture called the Snowcar® to model data movement between
a variable-size buffer and an infinite backing store, Orojenesis
derives the “ski slope” curve for a given tensor computation
using a mapspace search on this architecture. For sequences
of tensor computations, we identify the least-restrictive con-
straints that allow producer and consumer computations to
exchange data using tiles, enabling a space of fused mappings.
These constraints enable Orojenesis to derive the ski-slope
curve for the entire fused sequence. Armed with this model,
we derive a diverse range of architectural insights.

First— we show how the ski-slope curve can be used to
address critical questions on the behavior of an algorithm on
an architecture, such as:

o Given a buffer capacity, what is the minimal attainable
backing store access count, or equivalently, the maximal
attainable operational intensity? [Gap 0]

o« How much additional buffer capacity is required to
achieve the algorithmic-minimum backing store access
count? [Gap 1]

o« How does the algorithm benefit from an incremental
increase in buffer capacity? [rate of change of Gap 0]

Second—we highlight trade-offs between fused and unfused
mapping strategies under varying buffer capacity constraints,

! Adapted from the word “orogenesis” which means mountain creation.
2Inspired by the snowcat vehicle used for crafting ski slopes [1].
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Fig. 2: Memory and cache accesses compared to algorithmic
minimum for a 4k_4k_4k GEMM on an NVIDIA A100 GPU.
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Fig. 3: Maximal effectual buffer size to enable full tensor reuse
normalized to total tensor size.

and show that fusion, while often beneficial, isn’t always opti-
mal due to the constraints it imposes on intra-layer mappings.

Third—we analyze fusion opportunities in the GPT-3-6.7b
Large Language Model (LLM), revealing that up to a 5.6
reduction in data movement can be achieved with a buffer
size of 320 MB.

Fourth—we develop a performance model that takes the
buffer-to-compute area ratio as input and yields throughput
performance, utilizing Orojenesis bounds. This model, which
is a concave function, facilitates rapid, one-shot design deci-
sions for various tensor algorithms.

We believe that Orojenesis is a radical new approach
for early-stage architectural DSE, providing significantly
improved accuracy over crude algorithmic-minimum or
operational-intensity based analyses, while avoiding the
implementation-specific pitfalls of traditional cache-based
studies and the intractable mapspace searches of contemporary
tensor accelerator frameworks.

II. MOTIVATION

During early hardware design space exploration, one of
the first analyses an architect conducts is a “speeds and
feeds” study on data movement and computation required by
the algorithms of interest. Often, operational intensities (OI)
[25]—i.e., the ratio of compute to data movement—of various
algorithms are used as input in a roofline performance model
[76] to quickly estimate whether a target workload is expected
to be computation-limited or memory bandwidth-limited.

The data movement metric used for this analysis is called
the algorithmic minimum (equivalent to compulsory misses
with a cache-based design) and is simply the sum of all
operand sizes. Unfortunately, this metric can be too optimistic.
For example, Fig. 2 compares the algorithmic-minimum tensor
accesses for a 4k_4k_4k GEMM workload with the data



movement across various levels on an NVIDIA A100 GPU
memory hierarchy. The data shows that actual DRAM traffic
is 6.5 larger than the algorithmic minimum. This gap arises
from both mapping inefficiencies and fundamental hardware
design choices, particularly buffer capacity constraints for
enabling data reuse. Worse yet, algorithmic-minimum’s gap vs.
L2-to-L1 traffic is even more dramatic—32.3x! While DRAM
access bandwidth and energy efficiency are critical first-order
design considerations, on-chip data movement has been shown
to be just as important [57], particularly for energy efficiency.
A deeply flawed data-movement metric can potentially mislead
an architect toward poor initial design decisions.

One might ask why architects cannot use a more precise
data movement estimation method during early design-space
exploration. The reason is twofold. First, data movement is
sensitive to the reuse that can be exploited by an architecture’s
memory hierarchy. Modeling this accurately requires the use
of a more detailed architectural model, which has dramatically
higher implementation and runtime costs than the simple
equations for algorithmic-minimum accesses.

Second, data movement is sensitive to the specific imple-
mentation of an algorithm. Thus, we cannot determine optimal
traffic using Bellady’s [7] algorithm, which is sensitive to
cache capacity, but it only models a single implementation
of the algorithm. For tensor algorithms, alternative imple-
mentations are called mappings [57] and reflect the tiling,
parallelization, scheduling and fusion choices that either an
expert programmer or optimizing compiler would make to
optimally exploit the available hardware resources and the
algorithm’s inherent reuse patterns. There has been an enor-
mous amount of research on fast models [46], [57], [79], and
automated mapspace searches [8], [22], [57], [86] for tensor
accelerators. However, an exhaustive mapspace search even
for a single design may consume an unacceptable amount of
time, rendering this approach useless for early DSE across a
large space of designs. Furthermore, a vast design-space search
is rarely employed in the real world. Instead, an architect
is looking for basic intuition about the behavior of target
algorithms that they use to create initial baseline designs,
followed by DSE within limited regions around the baselines.

In summary, architects find themselves trapped in a gap
between the sheer imprecision of algorithmic-minimum access
counts, and the modeling cost and implementation-dependence
of more precise models.

We believe we can bridge this gap for the domain of tensor
algorithms. Our approach:

o addresses the mapping-specificity of precise data-
movement counts by providing a bound on data move-
ment that no mapping can improve,

o addresses the reuse-obliviousness of algorithmic mini-
mum accesses by providing a backing-store access bound
for any given buffer capacity, allowing projection of
data movement bounds at all levels within any design’s
memory hierarchy.

o addresses the runtime cost of detailed modeling and
mapspace search by employing a simple proxy architec-
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(a) Example real design. (b) Snowcat architecture.

Fig. 4: Snowcat architecture compared to a real design.

ture we call a Snowcat architecture that exposes an ex-
tremely small mapspace and can be analyzed or modeled
extremely efficiently.

This tool is available at https://timeloop.csail.mit.edu/
orojenesis. In the next section, we describe Orojenesis in
detail. We describe its objectives, our methodology, and how
to use the results to extract key insights.

III. Orojenesis
A. Terminology

We first define a set of terms that we will use frequently in
the remainder of this paper. Our terminology is derived from
the TeAAL [47] work.

A tensor is a multi-dimensional array with a fixed number
of ranks. Each rank has a shape. For example, the tensor
A[5][4] has 2 ranks with shapes 5 and 4 respectively.

Operations on tensors such as matrix multiplications, convo-
lutions or contractions can be concisely expressed in Einstein
summation (or Einsum) notation [20], which has recently been
used and/or extended in a variety of works [24], [26], [40],
[47], [53], [57], [71]. For example, matrix multiplication is
expressed as the Einsum BN = Aﬁf,f W,f( ;LN7 where the
superscripts represent the shape of each rank.

A tensor algorithm is a computation on a set of tensors
that can be expressed either as a single Einsum or as a
sequence of Einsums in a producer-consumer cascade. A
tensor algorithm is always un-mapped, i.e., it has not been
tiled, parallelized, scheduled or fused for optimal execution
on a target architecture.

A mapping represents a specific way to tile, parallelize,
schedule and/or fuse a tensor algorithm on a target archi-
tecture. The set of legal mappings of an algorithm on an
architecture is known as the mapspace. A mapper is an
algorithm or heuristic that finds an optimal mapping within
the mapspace given one or more target optimization metrics
and a set of hyperparameters.

B. Orojenesis Methodology

Orojenesis is a methodology that derives the relationship
between the capacity of a buffer (i.e., an on-chip scratchpad,
cache or buffet [61]) and a lower bound on the accesses to the
next-outer level in a memory hierarchy (i.e., a backing store)
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Fig. 5: The Orojenesis flow.

that no mapping of a given tensor algorithm can improve. An
example of this relationship is depicted by the green curve in
Fig. 1.

The key insight this work leverages is that the data move-
ment behavior across any two consecutive memory levels is
fractal at the limit. For any given level within the memory
hierarchy, we can treat the total storage capacity at that level
as a collective “pool of bytes”. The maximum data reuse
achievable and the resulting traffic volume to the next level in
the hierarchy are bounded by the number of bytes that exist in
the pool, regardless of the specific memory level it represents.

Snowcat architecture. As a result, we can use a simple
architecture to study data movement behaviors that can be
generalizable to complex architectures. We refer to this archi-
tecture as the Snowcat. Unlike a real design (Fig. 4a), Snowcat
is a single processing-element architecture with two levels in
its storage hierarchy—an unconstrained buffer and a backing
store (Fig. 4b). Because the Snowcat architecture has just two
storage levels and does not need to consider parallelization,
its mapping space is considerably smaller and its modeling
complexity is lower. For instance, Snowcat’s mapspace for a
4k_4k_4k GEMM is 7350x smaller than that of an Eyeriss-
like architecture [12], [52], highlighting its effectiveness in
significantly reducing mapspace traversal complexity.

Bound Derivation. While static compile-time analysis and
optimization-based approaches [31], [54], [55] can be ap-
plied to find data movement bounds, prior publications do
not analyze fused mapspaces and leave gaps in the bounds.
Heuristic or data-driven mapspace search approaches [27],
[36], [77] offer an alternative, but they do not guarantee to
converge to the global optimum. Exhaustive search is the most
straightforward method to find all Pareto-optimal points that
optimize the combination of buffer size and data access count
across all mappings for a comprehensive set of workloads.
As noted earlier, the manageable modeling cost and compact
search space of the Snowcat architecture make exhaustive
search feasible for realistic workloads.

Tool Flow. Fig. 5 presents the overall Orojenesis flow.
Orojenesis accepts a workload specified as a single tensor
algebra Einsum or a chain of such Einsums as input. For a
given workload, the Orojenesis flow traverses the complete
unconstrained mapspace of that workload on the Snowcat ar-
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Fig. 6: Buffer size requirements and data accesses to the next
memory level derived from a matrix multiplication mapping.

chitecture. For each mapping encountered during this traversal,
we compute the backing-store access count and the tile sizes
(i.e., the live data footprint) for each tensor. Given this infor-
mation, the buffer’s size is expanded or contracted to exactly
fit the tile sizes that the mapping needs. We call this the buffer
size requirement for the mapping. Throughout this mapspace
traversal, Orojenesis collects the buffer size requirements and
the backing store access counts for all mappings, continuously
updating the best-achieved backing store accesses for different
buffer size requirements. Note that this process avoids explor-
ing the cross-product of buffer capacities and mappings, a key
difference from tensor accelerator mapspace searches. At the
end of the process, connecting the Pareto-optimal points in
this space gives us the ski-slope diagram.

We implement the Orojenesis flow using Timeloop’s [57]
mapper configured for exhaustive search, and its performance
model configured to report buffer size requirements and
memory accesses for the Snowcat architecture. For multi-
Einsum evaluation, we adapt Timeloop to accommodate fusion
optimization (details are elaborated in Sec.V). Timeloop uses
a robust polyhedral approach to compute tile sizes and access
counts, which works on a range of affine problems. However,
for pedagogical purposes, because GEMM is a straightforward
rectilinear affine problem, we illustrate in Fig. 6 how the
tile sizes can be derived using simple algebraic expressions.
The tile size for each tensor is the product of its inner-loop
bounds for relevant ranks (i.e., the dimensions that affect the
tensor’s size), and the total buffer size requirement is their
sum. Backing store accesses for each tensor can be calculated
by multiplying inner-loop tile sizes with outer-loop iterations.
These iterations are the product of loop tiles outside a relevant
loop tile in the backing store memory. For example, in Fig. 6,
tensor A’s iteration count is K1 x N1 x M1, while for tensor
B, the iteration count is N1 X M1 as K is an irrelevant rank.

Extrapolating Orojenesis bounds. The Snowcat-based
Orojenesis analysis is applicable to a variety of architectural
analyses. For example:

1) Multi-level Memory Hierarchy: As demonstrated in the
ski-slope diagram in Fig. 7, the Orojenesis bound for an
algorithm can be probed at different points to find data
movement bounds between any two levels (e.g., L1 and L2,
L2 and DRAM) in a memory hierarchy. Note that the Pareto-
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optimal mappings achieved may not always compose across
multiple levels. Hence, a multi-level backing store lookup
yields a lower bound, but it is not guaranteed to be tight.

2) Parallel Architecture: Parallelization of a mapping can
introduce data duplication since some tensor tiles may need
to be made available at multiple parallel instances. This leads
to either an effective reduction in the total buffer capacity at a
storage level, or more data movement traffic, which leads to a
sub-optimal data point relative to Orojenesis’ Snowcat-derived
Pareto bound. In Fig. 6’s example, parallelizing the buffered
MO loop leads to the same next-level access count, but the
new mapping requires either duplicating MO weights across
different parallel processing elements (PEs) or broadcasting
these weights to all PEs during execution, thus increasing net-
work traffic. Therefore, when parallelism is present, Orojenesis
returns a looser (but still correct) lower bound.

3) Constrained Mapspaces: Some architectures may con-
strain [57] the space of legal mappings to simplify their design,
particularly interconnection network design. Such constraints
shrink the mapspace, but the Orojenesis bounds are still
guaranteed to bound the resultant space.

These three scenarios describe the complete set of archi-
tectural attributes that can be fractally composed to create a
realistic tensor accelerator design. Because Orojenesis bounds
continue to be valid across these attributes, its bounds are
portable across all tensor accelerator architectures that can be
described in a framework such as [57]. This means that there
is no need to re-run Orojenesis for different architectures, so
long as the underlying algorithm remains unchanged.

C. Derivative Models

The Orojenesis bounds can be used as a foundation to build
more sophisticated models that combine computation with data
movement analysis. We show two examples in this paper.

Attainable Operational Intensity (OI) Model. Unlike
algorithmic OI derived from inherent algorithmic properties,
the attainable OI of a workload depends on the space of
mappings and is constrained by the hardware buffer capacity.
This attainable OI can be significantly lower than the algo-
rithmic OI. To offer more insight into how the optimal OI of
a tensor workload varies with the buffer capacity in a design,
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the Orojenesis data can be used to derive a maximal attainable
OI curve as shown in Fig. 8. Instead of the algorithmic OI or
an OI point calculated from a specific implementation, our
bound represents the best-possible OI subject to given buffer
size constraints. The shape of the diagram in Fig. 8 resembles a
mesa, a flat-topped ridge. Therefore, we name it an OI mesa. In
this diagram, OI can be either bounded by the buffer capacity
or the inherent algorithmic compute-to-tensor-size ratio. The
slope of the OI mesa serves as an indicator of how efficiently
the algorithm can leverage data reuse from the buffer.

Attainable Performance Model. The attainable OI model
can be combined with a traditional roofline model [76] to form
a performance model that takes buffer capacity along with the
memory bandwidth and compute capabilities of a hardware
architecture as input. The result is a new mapping-agnostic
performance model for guiding DSE. The output of this model
is called a performance mesa, as shown in Fig. 9. This model’s
usage is later showcased in Sec. VII-D.

IV. SINGLE-EINSUM BOUNDS ANALYSIS

In this section, we analyze the Orojenesis bounds for
commonly encountered tensor Einsums and demonstrate their
utility in guiding algorithm and hardware design choices.

1) Matrix Multiplication: A GEMM can be expressed with
the Einsum BMN = AM W/ N Fig. 10 shows the ski-
slope and OI mesa diagralﬁs for various GEMM shapes. For
each GEMM shape, the ridge point of the OI mesa represents
the maximal effectual buffer size. Fig. 11 shows the ratios of
these maximal effectual buffer sizes normalized to the total
operand size for each GEMM shape. These ratios represent
Gap 1 described in Sec. I. We observe that the maximal
effectual buffer size of a GEMM is approximately equal
to the size of its smallest operand. For instance, with
M = K = N, the chart shows that the maximal effectual
buffer size is about one-third of the total operand size, which
roughly matches the size of its smallest operand.

To validate this observation, we symbolically formulated the
maximal effectual buffer size calculation for GEMMs from
first principles and found that it is the size of its smallest
operand, plus the size of its smallest rank, plus 1. A rigorous
proof is omitted for space constraints, but the expression
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produces values that align with our empirical observations.
This study illustrates that Orojenesis can be used to uncover
valuable design insights.

Fig. 10a reveals more insights. For all GEMMs, the backing
store access bound exhibits a power-law decrease with increas-
ing buffer capacity. Notably, larger GEMMs experience more
data movement under the same buffer capacity and their data
access bounds exhibit steeper decreases. This highlights that
increasing the buffer capacity is more beneficial for larger
GEMMs, resulting in more substantial access savings, both in
absolute terms and relative to the original accesses.

Fig. 10b shows that the attainable OI also experiences
a commensurate power law increase as the buffer capacity
increases, before reaching the top of the mesa (peak OI). The
peak Ols of different GEMM shapes reveal that the optimal
OI of a GEMM is limited by its smallest dimension. This
observation can be further supported by the peak-OI equation

: : . _ MKN —
derived with perfect data reuse: Olpeqr = TRIRNTIIN =
%. Assuming M is the smallest dimension such that

M<<NandM<<K,wehave%—>Oand%—>0,in
which case OI¢qr converges to M.

4 le7
—~ 4
<) 1x1 conv 00 1x1 conv
§ 3x3 conv = 3x3 conv
3 2 ]
@ 5x5 conv S 300 5x5 conv
S 3x3 conv <} 3x3 conv
24 ) stride 2 2 T stride 2
g 3);3 pon\é ‘@ 200 1 3x3 conv
2 ilation g dilation 2
214 = 100 A
kv o
O
@
0 T T 0 T T
107 104 10?2 104
Buffer Size (B) Buffer Size (B)
(a) Data Accesses. (b) OL

Fig. 12: Impact of various convolution configurations.

2) Convolution: A multi-channel 2D  convolution

can be expressed with the Einsum B;; ;I%LN

TP+DR,TQ+DS,Cyy,C,N,R,S : :
bapt-duo oty gt sV eimors In this analysis, we set

C and K to 64, P and @ to 16, and vary the shapes of R, S,
and the convolution’s stride 7" and dilation D. The ski-slope
diagrams (Fig. 12) show that a larger filter size leads to more
backing store accesses and higher peak OI. It also leads
to a steeper decreasing slope in Fig. 12a, indicating that
convolution with larger kernel size benefits more from
increased buffer capacity. Meanwhile, stride and dilation
introduce slightly higher backing store accesses. The stride
of 2 lowers the peak OI as it accesses more input activations
to produce the output of the same size.

3) Batched Matrix Multiplication: Batched matrix multi-
plication (BMM) is an important tensor algorithm as it is
widely used in the multi-head attention (MHA) [74] design
of modern Transformer models. As its name suggests, it
allows GEMMs to be processed in batches by introducing
an additional batch dimension. Its Einsum is represented as
Bﬁ;ﬁﬁlN = Ai%,’cKW,f,;ﬁ’N, where M, K, and N are
the standard GEMM dimensions and H denotes the batch
dimension. In Transformers, H is also known as the number of
heads, with token features split into multiple heads to enhance
the modeling capability of the attention mechanisms.

Fig. 13 shows the ski-slope and OI mesa diagrams for
various BMM shapes with identical computation operations
(OPs) but varying reduction dimension size K and number
of heads H. As the number of heads increases, it leads to
higher overall backing store access. The slopes of the curves
become less steep with more heads, suggesting that increasing
the buffer capacity provides diminishing benefits for BMMs
with more heads. For instance, in a typical BMM with 32
heads and a head feature dimension of size K = 128, there is
very little utility in further increasing the buffer size beyond
100KB. Fig. 13 also shows that the maximal effectual buffer
size (ridge points in the OI mesa) decreases with more heads.
This suggests that simply increasing the buffer size cannot
improve the throughput performance of memory-bound
BMMs with small maximal effectual buffer sizes.

Fig. 13b shows that the peak OI decreases with the increase
in the number of heads. As a result, adding more computation
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Fig. 13: Impact of number of heads in BMM with dimensions
H = # of heads, M = 4k, K = 77— N = 4k with total
computation fixed at 128 GOPs.

is also not beneficial for BMMs with a small reduction
dimension K. On Google TPUvS5e [23] with an int8 Flops-to-
Bytes ratio of 480 and NVIDIA H100 SXM GPU [51] with an
int8 Flop-to-Bytes ratio of 1182, BMMs with head dimensions
smaller than 128 will be memory bound regardless of the
allocated on-chip buffer or last-level cache size as its peak
OI is lower than 256. The only feasible ways to improve
the performance of BMMs are to increase the memory
bandwidth or to enlarge the head feature dimension.

4) Grouped BMM: To alleviate MHA’s high memory access
costs, multi-query attention (MQA) [67] and grouped-query
attention (GQA) [4] have been introduced. They employ an
algorithm called grouped BMM, which can be expressed with
the Einsum Bf ;ﬁ/f;LN = AhH ;f;ﬂK Wf;fi’N , where G represents
the number of zc;rro’ups. In gfoﬂped BMM, instead of computing
multiple heads of both input operands, one operand’s head is
shared by g heads of the other operand. G = 1 corresponds to
MQA and G = H reverts to the original MHA. MQA allows
for a variable G between 1 and H.

Fig. 14 shows the Orojenesis outputs for a grouped BMM.
Observe that reducing the number of groups lowers data move-
ment and consequently increases the OI. The result reaffirms
the effectiveness of the MQA and GQA design in reducing
memory traffic. However, when the buffer capacity is larger
than 10 MB, the data access saving from MQA and GQA
diminishes, as shown by the converging bounds in Fig. 14.

V. Orojenesis FUSION

When the input to the Orojenesis flow is a chain of Einsums,
the backing store access bound cannot be simply derived from
the sum of bounds from all individual Einsums due to the
presence of fusion opportunities. By buffering intermediate
outputs of consecutive layers in an efficient storage like an
on-chip cache or scratchpad, fusion has the potential to further
lower the total minimum backing store accesses.

A. Fusion Methodology

For the remainder of this paper, Einsum and layer are used
interchangeably to refer to tensor operations in deep learning.
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Fig. 14: Impact of number of groups in grouped BMM with
dimensions H = 32, M = 4k, K = 128, N = 4k with
different number of groups in second input operand.
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Fig. 15: Layer Fusion Definition. The output of Einsum e is
an input of e 4+ 1. At level m of the memory hierarchy, the
output of e is completely consumed by e + 1.
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Definition of fusion. We define layer fusion based on two
key criteria, as illustrated in Fig. 15: First, for each Einsum in
a sequence of E layers indexed by e € [0, E—1), the Einsum’s
output must serve as an input for the subsequent Einsum e+ 1.
Second, within a given level m of the memory hierarchy, the
output of Einsum e, i.e., the intermediate output tensor, should
be completely consumed by Einsum e+ 1 without spilling over
to any outer memory level n, where n > m.

Untiled Fusion. Consider the execution of two Einsums in a
sequence on the Snowcat architecture, if the buffer can accom-
modate the full intermediate tensor, fusion does not impose
any constraints on the mappings of the individual Einsums
(i.e., the intra-layer mappings) in the chain, eliminating the
need to tile the intermediate tensor. This mapping approach is
termed “untiled fusion”. However, untiled fusion often leads
to a high buffer size requirement due to a large intermediate
tensor size. In Section VI, we show that fused mappings using
untiled intermediates tend to be suboptimal.

Tiled Fusion. For more effective use of the buffer, tiling
intermediate outputs is important. This requires each Einsum’s
execution order and granularity to be aligned throughout the
chain. We accomplish this by forcing all mappings in a chain
to conform to a set of constraints collectively known as the
Fusion Friendly Mapping Template (FFMT). Fig. 16 shows
the FEMT for a GEMM chain, which we use for all fusion
analyses in this paper. Other tensor algorithms will need their
own FFMTs to model Einsum fusion in the Orojenesis flow.

As shown in Fig. 16, the GEMM FFMT works on a block
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(a) Full: Only the M dimension
is tiled to fully consume an input
row and produce complete output
rows of final sums.

(b) TiledK: M and K dimensions
are tiled. A sub-partition of the
input row is consumed and partial
sums are produced.

(c) TiledN: M and N dimensions
are tiled. The input row is fully
consumed and it produces a sub-
partition of final-sum outputs.
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(d) TiledKN: All dimensions are
tiled, leading to sub-partition in-
put row consumption and sub-
partition of partial-sum outputs.

Fig. 16: The GEMM Fusion Friendly Mapping Template (FFMT). The GEMM FFMT is the union of four different constraint
sets. The outermost loops in the gray boxes are permutable in two-Einsum chains.
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Fig. 17: Imposed GEMM FFMT constraints for different
Einsums in the fusion chain. Each loopback arrow indicates
the number of times each inner buffer tile is executed. ‘K2(0)’
and ‘N2(0)’ denote the K2 and N2 loop bounds for Einsum
0. ‘N2(E — 1)’ represents the N2 loop bound for Einsum
E—-1

of MO input rows at a time and requires M1 iterations through
the chain to complete the entire computation. The reason
M1 is in the outermost loop is that it is the only shared
rank across all GEMMs in the chain. Having any contracted
ranks in the outermost fused loop can introduce recomputation
and more memory traffic. To model a fused Einsum flow,
we use a variant of the Snowcat architecture with a unified
InputOutputBuf for storing inputs and outputs, and a separate
WeightBuf for buffering weights.

Fig. 16a to Fig. 16d show four mapping patterns in loop
nest notation [57], each describing a constraint set that an
intra-layer mapping can obey to support fusion. The colored
loop tiles correspond to the innermost sub-problem whose
operands are always serviced by the buffer, and which will not
be further sub-divided for fusion purposes. For single Einsums,
new buffer data is loaded before each colored block starts
and the output is stored back to the backing store after each
colored block finishes. For a chain of Einsums, backing store
accesses can be elided when consecutive Einsums are fused. In
the figures above the loop nests, the colored tensor partitions
represent the region that is accessed during the execution of
the colored loop tiles. The colored partitions of the input and

output tensors A and B are also equal to their buffer capacity
requirements. For the weight tensor W, its colored partition
does not directly reflect its buffer capacity requirement. In-
stead, the inner-WeightBuf loop bounds determine the buffer
size requirement for the weights.

FFMT-Full (Fig. 16a) imposes the most restrictive intra-
layer constraints as it requires storing tiles with the complete
K and N ranks, which results in buffering MO full rows
of input and output tensors. FFMT-TiledK (Fig. 16b) relaxes
the constraints by permitting the K dimension to be tiled. It
only requires sub-columns of the input tensor to be stored in
the buffer. However, leaving the K2 tile outside of the fused
execution will result in partially reduced output sums. FFMT-
TiledN (Fig. 16¢) allows tiling along the N dimension. It only
requires the full row of the input tensor to be stored in the
buffer and produces a sub-partition of the output row. FFMT-
TiledKN (Fig. 16d) allows tiling along all ranks. This relaxed
mapping constraint helps to further reduce the input/output
buffer size requirements to enable fusion optimizations.

FFMT mapping constraints in the fusion chain vary by
the Einsum’s position, as depicted in Fig. 17. The variables
on the loopback arrows denote the number of iterations the
tiled execution in each Einsum needs to be repeated before
moving on to the next Einsum to ensure that no partial sum is
propagated. For example, Einsum O requires three outer loop
iterations, and its final data movement count is the product
of the inner buffer tiles (colored tiles in Fig. 16) and K2(0),
N2(0) and M1. K2(0) and N2(0) refer to the K2 and N2
loop bounds in Einsum 0.

The least restrictive FFMT-TileKN template can be applied
to the first Einsum (Einsum 0) as its input tensor is directly
loaded from the backing store. However, due to the partial
input tile consumed in Einsum 1, only a partial sum can be
produced. Therefore, it becomes necessary to reiterate back
to Einsum 0 N2(0) or K2(1) times (they are equivalent) to
obtain the entire output row in Einsum 1 with the final sums.



We avoid using a tiled output row in Einsum 1 because it
later becomes the input for Einsum 2, causing partial sums
in Einsum 2’s result. In order to produce the final sums in
Einsum 2, reloading Einsum 1’s input row becomes necessary,
but it has been evicted from the InputOutputBuf once we start
processing Einsum 2. Consequently, we must either recompute
the Einsum 1’s input row or spill and reload it to and from
the backing store, which defeats the purpose of fusion.

Since we disallow tiled output rows after Einsum 0, the
subsequent Einsums in the chain need to consume and produce
the full M0 input and output rows following the FFMT-Full
constraint until the last Einsum. The last Einsum permits a
FFMT-TiledN template because the output will be written back
to the backing store and there is no subsequent Einsum to
consume it.

A two-Einsum chain represents a special scenario where
propagating the partial output sums of the last Einsum to
the backing store is feasible. We can apply FFMT-TileKN to
both Einsum 0 and Einsum 1, with N2(1) and K2(1) loops
swapped in Einsum 1’s mapping template to avoid reloading
the intermediate outputs. Moreover, our flow explores alter-
native dataflows in the two-Einsum setup by enabling the
reordering of the M1(0) and N2(0) loops in Einsum 0’s
mapping template and the subsequent corresponding M 1(1)
and K2(1) loops in the Einsum 1’s template.

B. Buffer Size Requirements

The total buffer size requirement BufReg: . of tensor ¢
in a GEMM Einsum e is determined by multiplying loop
bounds of the relevant ranks of the tensor: BufRegq: . =
[Taeqar i, ny LoopTilege x Relevance(d,t). In the FFMT
shown in Fig. 16, we have the following buffer size re-
quirements: BufReqw,. = KO0(e)NO(e), BufReqr. =
MO(e)K1(e)KO(e), BufReqo,. = MO(e)N1(e)NO(e).
Here, Mi(e) denotes the loop tile bound of rank A/ at memory
level ¢ in Einsum e. The same notation applies to ranks K
and N. The total buffer capacity requirement for each Einsum
is the sum of the buffer size requirement for all tensors:
BufReq. = ZtE{A,W,B} BufReq,c.

Fusion can be implemented in a sequential or pipelined
manner, each with its own buffer size requirement. In se-
quential fusion, where one Einsum is processed at a time,
the buffer size requirement for the entire chain is determined
by the maximum buffer size requirement across all Einsums:
BufReq = max.(BufReq.), assuming the weight tensors
are tiled and reloaded for each Einsum during the re-traversal.

Alternatively, in scenarios where weight tensors are not
reloaded for chain re-traversal, buffers must hold the com-
plete weight tensors for all Einsums, with K0(e) = K
and NO(e) = N for all e. In this case, the buffer size
requirement becomes the sum of the full weight tensor sizes
of all Einsums, plus the InputOutputBuffer size requirement
to stream through a row (MO0 = 1) of tensor: BufReq =
(>-. K(e)N(e)) + max.(K1(e)KO0(e) + N1(e)NO(e)).

For a fused sequence of Einsums executed in a pipelined
manner, the buffer capacity requirement can be computed as

the sum of all weight tensor sizes and the maximum input
and output tile size sum among all Einsum e: BufReq =
(>-. BufReqw,e) + maz.(BufReqr.. + BufReqo,.). This
is because the weights involved in the pipelined sequence
must be present at all times to be multiplied by the pipelined
data. Pipeline fusion increases buffer capacity requirements for
achieving equivalent next-level data accesses due to concurrent
layer execution, rendering it less optimal. Therefore, in this
paper we focus on presenting the Orojenesis bounds for
sequential fusion.

C. Backing Store Access Count

The backing store access count consists of the sum of the
input access counts of Einsum 0 and the output access counts
of Einsum E'—1, in addition to the total weight accesses for all
Einsums. In the FFMTs in Fig. 16, the weight access for Ein-
sum e is calculated as Accessw,. = M1(e)K (e)N(e) when
the weights are not fully buffered, and is K (e) N (e) otherwise.
Here, M1 represents the outer buffer M tile, while K and N
are the complete sizes of the reduction and output dimensions
of Einsum e. The total weight accesses is the sum of all
Einsums’ weight accesses: Accessy = >, Accessy,. The
input access count for Einsum 0O is computed as Accessy g =
N2(0)M (0)K(0), while the output access count for Einsum
N-1 is calculated as Accessp,p—1 = M(E — 1)N(E — 1).
The total backing store access count for a fusion chain is:
Access = Accessy + Accessr o+ Accesso p—1.

D. Mapping Tradeoffs

Increasing MO raises the demand for buffer capacity but
simultaneously reduces M1 (the number of times the entire
chain needs to be re-traversed, which equals ]\]%), thereby
decreasing the total number of weight reloads. However, if we
can keep the entire weight tensors of a subsequence of layers
stationary for re-traversal, M1 does not affect weight reloading
for these layers. We can then set M0 = 1 to exclusively
minimize the buffer size requirement. These parameters, i.e.,
MO and the layers chosen to fully buffer their weights, are
choices in the space of fused mappings. We traverse this space,
along with each layer’s intra-layer mapspace, to produce the
Orojenesis bounds for fused mappings.

E. Tool Flow

To explore the multi-Einsum mapspace, we exhaustively
search each Einsum’s mapspace under FFMT constraints,
constructing valid fused mappings by combining compatible
single-Einsum mappings. As each Einsum can have multiple
valid mappings for fusion, the total fusion space is a Cartesian
product of these mappings. For each valid fused mapping,
buffer size requirements and accesses are derived using equa-
tions from Sections V-B and V-C. Finally, the Orojenesis curve
is derived by identifying the Pareto-optimal fused mappings.

F. Avoiding Partial Sum Propagation

In our current analysis, we focus solely on transferring the
final sums from the producer to the consumer Einsum. This
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Fig. 18: Fusing 32k_4k_16k and 32k_16k_4k GEMMs.

deliberate choice is made to avoid the transfer of partial sums,
which would necessitate either recomputation or additional
memory accesses to the backing store memory. As fusion
with recomputation changes the compute and data movement
simultaneously and complicates the performance analysis, we
leave it for future study.

VI. MULTI-EINSUM BOUNDS ANALYSIS

This section demonstrates how to analyze a sequence of
Einsums using Orojenesis and FFMT. Fig. 18 shows the Oroje-
nesis bounds for two fused GEMMs with shapes 32k_4k_16k
and 32k_16k_4k. In Fig. 18a, horizontal dashed lines show
minimum next-level accesses with (blue) and without (red)
fusion. It is important to note that Orojenesis bounds with
fusion do not always outperform the unfused bounds due to
the additional intra-layer constraints imposed by FFMT.

The purple curve shows the baseline backing store accesses
achieved without fusion, where we search for optimal intra-
layer mappings without constraints. To establish each point
on this curve, we sum the best data accesses for each Einsum
considering a specific buffer size limit. The step-like pattern
in the figures results from buffer under-utilization due to our
use of perfect factors as loop bounds. It’s important to note
that our single Einsum curve is constructed using discrete
mapping points. When integrating them for fusion, we adopt
a conservative approach and assume that data accesses remain
constant until we identify another Pareto-optimal mapping
with a larger buffer size on the X-axis. Using imperfect
factorization [29] can potentially smooth out the curve, which
would be a straightforward extension to this work.

The blue curve shows the untiled-fusion backing store
access bound with fully buffered intermediates, allowing flex-
ible intra-layer mappings. However, these large intermediates
dominate buffer size demand, resulting in a nearly vertical
line indicating similar capacities for varying accesses. This
suggests full buffering of intermediates isn’t essential for
optimal reuse.

The green curve represents the optimal access bound en-
abled with tiled fusion. Compared to untiled fusion, tiled
fusion is more effective in reducing backing store access with
a much smaller buffer capacity. Fig. 18b compares the data
movement reduction factor of tiled fusion to untiled execution.
It shows that tiled fusion can further reduce the backing store
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accesses of the optimal unfused mappings. However, when
the buffer size is smaller than 10 MB, we see a reduction
factor lower than 1, indicating that tiled fusion does not always
outperform unfused mappings. With a buffer size larger than
10 MB, tiled fusion becomes profitable. When provisioned
with a buffer larger than 256 MB, fusion can lead to up to
3.7x access count reduction. Another key insight drawn from
the slopes of the bounds is that a larger buffer benefits fused
mappings more than the optimal unfused ones.

VII. CASE STUDY: LARGE LANGUAGE MODEL

This case study leverages both intra-layer and inter-layer
data reuse in fused-layer large language models (LLMs) to
establish data movement bounds and guide accelerator DSE.

LLM architecture (Fig. 19) consists of repeated building
blocks with sequences of Einsums present in its Multi-Head
Attention (MHA) and Feedforward Network (FFN) modules.
The colored boxes in the figure show different Einsums: yellow
for GEMM and green for grouped BMM. The notation beneath
each layer name is the Einsum expressed in Numpy format
where the subscripts for input tensors are listed in a comma-
separated format, and the subscripts for the output tensor are
specified after the right-arrow symbol.

Our target workload is GPT-3-6.7b, characterized by a
feature dimension (d) of 4096, 32 attention heads (h), a head
dimension (f) of 128, and a hidden feature dimension (c) of
16384. We study the workload with an input sequence length
() of 32768, which is the product of the actual sequence
length of 2048 and a batch size of 16. For simplicity, we
assume that element-wise and reduction operations are already
integrated with the GEMMs and BMMs, and therefore, their
access counts are excluded from our analyses.

A. Comparison of MHA Fusion Strategies

Fusing the BMMs is critical for improving the throughput
performance of the memory-bound MHA in LLMs. FLAT [39]
and FlashAttention [15], [16] have optimized fused-layer
MHA with tiling strategies that can be modeled by FFMTs.
Here, we provide a comparison of them together with the
unfused baseline in Fig. 20.

In FLAT, the entire output row (shaped MO0 x N as in
Fig. 16) of the producer Einsum bmm_QK must be gen-
erated for the row-wise reductions performed by Softmax.
To avoid tiling its output row dimension N, we apply the
TiledK template in Fig. 16b with M1 — K2 (outer-to-inner)
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Fig. 20: MHA fusion strategies resemble
FlashAttention [16] and FLAT [39].

ordering for the producer Einsum. For the consumer Einsum
bmm_QKV, the TiledN (Fig. 16¢c with M1 — N2) template
is used to minimize the buffer size requirement. In contrast,
FlashAttention permits the tiling of the producer’s output
row by exploiting an algebraic manipulation to incrementally
perform Softmax reduction. Their fusion strategy resembles
using TiledN (Fig. 16¢c with N2 — M1) for bmm_QK and
TiledK (Fig. 16b with K2 — M1) for bmm_QKV.

As indicated by Fig. 20, the fusion strategy has a substantial
impact on data movement bounds. Notably, at a buffer size of
16 MB, FlashAttention (green curve) achieves over 6x lower
backing store accesses compared to FLAT (blue curve). How-
ever, once the buffer capacity reaches the maximal effectual
size at 32MB, both strategies become equally effective.

B. Impact of Chain Segmentation

To illustrate the impact of fusing more Einsums, we present
Fig. 21 that plots the data movement bounds for a sequence
of six Einsums in the GPT-3-6.7b block (Q_proj, bmm_QK,
bmm_QKV, Final_proj, mm_0 and mm_Il). Normalization
operation between fused GEMMs automatically imposes a
mapping constraint in FFMT: the producer Einsum’s output
column cannot be tiled.

In Fig. 21, the purple curve indicates the optimal unfused
bound, while the green curve represents the optimal tiled
fusion bound for the six-Einsum chain. Our observation reveals
that fusing a longer Einsum chain is not always beneficial. One
reason is that the additional Einsums increase the overall buffer
size demand, which is determined by the Einsum requiring
the most buffer. In addition, the FFMT constraints are more
restrictive to the middle-Einsum in a longer chain, further
increasing the buffer size requirement.

To mitigate this, we exhaustively explore all 2(* of Finsums-1)
possible ways to segment the chain and construct the yellow
curve using the optimal segmentation strategies at varying
buffer size constraints. Different points on the orange curve
can entail different segmentation strategies. The results show
that partitioning the fusion chain into shorter segments can
significantly reduce its data accesses, particularly with smaller
buffer sizes. This improvement is evident in the yellow curve,
which lies much closer to the purple baseline at lower buffer
capacities, compared to unsegmented fusion shown in the
green curve.

Fig. 21: Impact of segmentation on a six-
Einsums chain in GPT-3-6.7b.

Fig. 22: Orojenesis bounds for the entire
GPT-3-6.7b building block.

C. Optimal Full LLM Fusion Strategy

Fig. 22 displays the total backing store access requirements
for the sequential execution of all Einsums in a GPT-3-6.7b
building block (Fig. 19). The bounds follow a trend similar
to those in Fig. 21, but include additional accesses from two
unfused GEMMSs, K_proj and V_proj. Analysis of the bounds
shows that, with a last-level cache of 50 MB, the optimal
fused execution of LLMs can reduce the overall backing store
traffic by 2.5x (a 4.7 GB absolute reduction) compared to
optimal unfused mappings. The full potential of fusion can be
realized with an on-chip buffer of size larger than 320 MB
(the maximal effectual buffer size), resulting in up to 5.6x
reduction in DRAM accesses (a 6 GB absolute reduction).
This shows fusion is an effective strategy to reduce backing
store accesses of LLMs.

D. Bounds for Provisioning Buffer to Compute Area Ratios

A common challenge in DSE is determining the optimal
ratio of buffer to MAC area, given a fixed total chip area. The
DRAM bandwidth is typically predetermined by the memory
vendor and thus remains constant.

Our approach begins with a baseline chip specification akin
to the GF100 chip [48], which is implemented using 40 nm
technology and encompasses a total die area of 529 mm?,
operating at 700 MHz. The system’s DRAM bandwidth is set
at 149 GB/s. Using Accelergy [78], we calculate that the area
required per MAC is 332.25 um?, and the area per byte of
SRAM buffer is 2.59 um? for large SRAMs in 40 nm tech-
nology. The focus of our experiment is to adjust the on-chip
buffer size and the total number of MACsSs, within the die area
constraint, to optimize the hardware for supporting the GPT-
3-6.7b workload, as discussed in the preceding section. We
assume 20% of the die area is occupied with 1O0s, leaving 432.2
mm? area for SRAMs and MACs. Note that larger buffers can
lead to longer access times. However, since tensor accelerator
buffers are typically managed with explicit orchestration (e.g.,
double buffering) [60], [61], we assume that the extra latency
is hidden and offset by fewer data accesses with larger buffers.

In Fig. 23, we illustrate the chip’s throughput performance
in relation to varying buffer area ratios, assuming the re-
maining area is allocated to MACs. As we increase the
buffer area and size, we can look up the attainable DRAM
accesses from the Orojenesis bound presented in Fig. 21

such that: accesses = Orojenesis(b”f-m;‘;e";‘“l‘;;‘gal-ma). The




Actual Bound Actual Bound
< 800+ —— Compute-limited 5 1000 4 —— Compute-limited
OQ Memory-limited 8 Memory-limited
£ 600 - : £ 7501 :

[0 1
g i g !
c 400 1 s 500 1
£ l £ :
o 1
£ 200 : £ 250 i
& ratio=0.40 & iratio=0.28

04 size=113MB 0 size=46MB

0.0 0.5 1.0 0.0 0.5 1.0

Buffer Area Ratio

(a) Unfused LLM.

Buffer Area Ratio

(b) Fused LLM.

Fig. 23: Mountain-like performance model. The vertical
dashed line indicates the optimal buffer area to total chip area
ratio that achieves the peak throughput performance in a chip
with a die area of 529 um? in 40 nm technology.

memory-limited throughput performance, illustrated by the
orange line, is computed as oot The compute-limited
performance is directly derived from the MAC area using
the following equation (1_bm§§fpr :r"_(l’glig’ alared o frequency. As
depicted by the blue line, the compute-limited performance
decreases linearly with reduced area for MACs.

The actual achievable performance, highlighted by the
opaque green curve, is bounded by the minimum of memory-
limited performance and compute-limited performance. The
curve reveals that the throughput performance is a concave
function of the buffer area ratio. The X-axis value where
compute-bound and memory-bound performance intersect in-
dicates the optimal buffer area ratio for the peak performance.
Comparing the optimal hardware designs for unfused and
fused LLMs, the fused-LLM design demands a 60% lower
buffer area while achieving an overall 2.4 x higher throughput
performance. This is because fusion more effectively utilizes
the buffer area for data reuse and consequently leads to
higher memory-bound performance per unit area. This study
shows that different workload properties and mapspace choices
can significantly impact the optimal hardware design choices.
Meanwhile, our methodology can quickly reveal the important
design tradeoffs and offer analytical-model-based suggestions.

VIII. VALIDATION

We validate the Orojenesis bound for a 4k_4k_4k GEMM
on four NVIDIA GPUs and a model of the Simba [66] ac-
celerator. Fig. 24a shows the measured DRAM accesses from
running CUTLASS [72] on NVIDIA GPUs [50], [51] across
a range of last-level cache sizes (A2-2MB, A30-24MB, A100-
40MB, H100-50MB) and targeting different compute units
(SIMT and tensor core). It shows that Orojenesis provides
a valid bound for off-the-shelf GPUs, and that optimized
schedules targeting A100 and H100 achieve close to optimal
DRAM accesses. Fig. 24b shows the DRAM accesses gathered
from the analytical Timeloop model of Simba [66] with five
different buffer configurations. The plot uses different colors
to denote different Global Buffer sizes ranging from 128B to
512KB, where each point corresponds to a unique mapping.
It verifies that our ski-slope curve serves as a valid bound for
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Fig. 24: Measured DRAM accesses vs. Orojenesis.

TABLE I: Orojenesis comparison to Simba 100-design DSE.

Total Mapping Per-mapping Total

Evaluated Runtime (ms)  Runtime (s)

Simba (100 designs) [66] 2.6E+6 39 10009
Orojenesis 9.0E+4 0.2 18
Ratio 28.5x 19.5x 556

spatial accelerators. Additionally, it shows that less performant
mappings can result in substantial deviation from the Pareto
curve. Fig. 24c further validates our bounds for a chain of
Einsums. The purple curve represents the Orojenesis bound
for executing two unfused 1k_lk_1k GEMMs. The green
curve shows the bound when tiled fusion is applied. Blue
and orange data points depict the measured data accesses
with their corresponding minimal buffer size requirements on
Simba with and without fusion, respectively. This plot shows
that our multi-Einsum bounds are also valid as the measured
accesses consistently stay above the Orojenesis bounds.

IX. RUNTIME COMPARISON TO MAPPING-AWARE DSE

To demonstrate the Orojenesis runtime benefits compared
to a full mapping-aware DSE, we conduct a DSE experiment
on the Simba architecture in which we evaluate 100 samples,
each representing a different Global Buffer capacity. Table I
compares the runtime of Orojenesis vs. DSE for the Simba
accelerator targeting the 4k_4k_4k GEMM (as in Fig. 24b).

Each mapping evaluation on Simba takes approximately
3.90 ms on a 4-core Intel® Core™ i7-1185G7 processor @
3.00 GHz. In contrast, a single Orojenesis sample for the
Snowcat architecture on the same hardware takes only 0.20
ms, making it 19.5x faster. In the Simba DSE, evaluating



a single hardware configuration involves 26k evaluations to
identify the optimal mapping, resulting in 2.6m evaluations
for 100 configurations. In Orojenesis, 90k valid mappings are
evaluated in the exhaustive search on the Snowcat architecture.
Note that more valid mappings are found on the Snowcat
architecture than on a single Simba configuration. It is because
the mapspace in Orojenesis is less constrained. Overall, the run
time of Orojenesis is 556 faster than DSE with 100 Simba
configurations.

However, the numbers from this study do not tell the com-
plete story. Data from a single Orojenesis run is portable to a
huge (and possibly unbounded) space of tensor architectures
while the Simba run only yields data for the limited DSE on
this specific architecture. Even for this specific architecture,
a broader DSE may involve searching for different register-
file sizes, PE counts, and other parameters, dramatically com-
pounding the design space beyond the 100 samples shown in
our illustrative example. Compared to such a broader mapping-
aware DSE, the runtime speedup offered by Orojenesis would
be significantly higher because Orojenesis only needs to be
executed once, while the runtime of mapping-aware DSE
grows proportionally to the number of design points explored.
Furthermore, Simba is a relatively simple architecture with
a highly constrained dataflow. A more complex architecture
with more storage levels (such as a GPU with a tensor core)
increases the per-evaluation cost relative to the already 19.5x-
faster Snowcat, and a more flexible architecture increases the
mapspace size, all of which extends Orojenesis’ advantage.

X. RELATED WORK

Tensor algebra algorithms operating on multidimensional
tensors play a pivotal role in modern ML and HPC ap-
plications. A multitude of ML programming and compiler
frameworks have been developed to optimize tensor workloads
on existing computer hardware [2], [10], [11], [40], [49],
[58], [63]. In parallel, accelerator-specific mappers have been
designed to optimize tensor workloads on dedicated hard-
ware [27], [29], [31], [36], [37], [43], [46], [57], [82].

There also has been a growing body of research on layer
fusion optimization aimed at reducing data movement and
enhancing hardware utilization [5], [6], [8], [14]-[16], [21],
[22], [34], [39], [44], [59], [65], [73], [84], [86].

On the hardware side, many performance model [32], [42],
[46], [57], [79], [80] and DSE works [13], [28], [30], [35],
[38], [41], [64], [68], [70], [75], [81]-[84] have been proposed
to further enhance the tensor accelerator performance. Instead
of producing a single optimized mapping or accelerator design
points, our work presents precise data movement bounds under
various buffer budgets for tensor workloads, offering portable
design insights for diverse hardware.

Our bounds and their utility share similarities with the miss-
rate curves and working set studies [19], [45], [56]. However,
the key difference is that prior studies only involved fixed
mapping and implementation invariant to the cache capacity
constraints. Orojenesis curves, instead, provide bounds derived

with different optimal mappings subject to the varying cache
capacity constraints.

There have been some efforts [3], [9], [33], [54], [55], [69]
aimed at deriving data movement lower bounds between a
buffer and secondary storage. Asymptotic studies like [3], [9],
[33] focus on the behaviors of the tensor workload when the
input size gets large or reaches a limit. Closer to our domain,
[54], [55] use the polyhedral model to derive data movement
bounds for affine programs. While the promise of a strictly
symbolic bounds derivation is enticing, in reality they end up
using a blend of empirical and symbolic approaches. While
the symbolic bounds capture the overall data movement trend,
they leave room for underestimating either the data movement
or buffer size requirements for oblong-shaped tensor problems
(such as tall-and-skinny GEMMs), thus resulting in looser
bounds. Specifically, the maximal effectual buffer size reported
by IOOpt can be orders of magnitude lower than what Oroje-
nesis observes. This looseness is exacerbated by the absence
of fused mapping analysis for tensor computation sequences,
which as we show can further dramatically reduce the amount
of data movement. In addition to providing tighter bounds,
our paper also shows how to use this methodology to derive
a range of valuable architectural insights.

XI. CONCLUSION

This paper presents Orojenesis, a methodology to com-
pute data movement bounds for tensor algorithms. Orojenesis
provides tighter bounds than traditional algorithmic-minimum
accesses bound because it comprehends data reuse that a
buffer can exploit to reduce data movement. It also avoids the
mapping-specificity of traditional cache-based studies and the
intractable mapspace searches of contemporary tensor acceler-
ator frameworks. Orojenesis’s bound is mapping-independent
because it provides a limit on what any mapping of an
algorithm can possibly extract from an architecture’s hierarchy,
including mappings that exploit producer-consumer fusion.
This paper further demonstrates how to use Orojenesis’s
outputs to derive a diverse range of architectural insights,
culminating in a comprehensive case study of a contemporary
Large Language Model.

With the tight bounds it provides, Orojenesis can empower
architects to design well-balanced systems by steering clear
of the pitfall of designing with insufficient guard bands
around algorithmic-minimum traffic—a pitfall that could lead
to under-utilization of compute resources.

Looking ahead, future work includes further tightening the
Orojenesis bounds to account for parallelism, latency hiding,
pipelining, partial sum propagation, and tensor traversal pat-
terns beyond tiled raster traversals.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

This section describes how to access the artifacts for
Orojenesis and reproduce the key figures in the paper. This
artifact can be run on any machine with an x86-64 CPU. The
Orojenesis flow has been integrated into Timeloop [57], [79].

B. Artifact check-list (meta-information)

o Algorithm: Analytical analysis of tensor algorithms.
o Program: C++, python.
+ Run-time environment:
access is required.
Output: Key plots in the paper.

Experiments: Bounds for various tensor.

How much disk space required?: 20 GB.

How much time is needed to prepare workflow?: 30 minutes.
How much time is needed to complete experiments?: 12
hours.

« Publicly available?: Yes.

o Code licenses: BSD-3-Clause license.

o Archived: https://zenodo.org/doi/10.5281/zenodo.10850531

x86-64 machines. Root or docker

C. Description

1) How to access: We recommend accessing the arti-
fact through the archival repository (https://zenodo.org/doi/10.
5281/zenodo.10850531), which contains the latest updates and
bug fixes. The DOI for the version that passed the artifact
evaluation is 10.5281/zenodo.10957760.

D. Installation

1) Download Orojenesis artifacts: On a user machine,
download the archived orojenesis code by running:

E. Experiment workflow

We provide Jupyter notebooks,
/orojenesis_single.ipynb and
orojenesis_multi.ipynb, to guide you through generating
the key figures in the paper. Please launch the Jupyter GUI
under orojenesis by nnnﬁng:

orojenesis

orojenesis/

cd orojenesis && jupyter notebook

Follow the instructions displayed in the terminal output to
navigate to the Jupyter interface in your web browser. The
notebooks provide instructions and code to generate the Oro-
Jjenesis bounds.

If a GUI is not accessible, you can run the following
command to convert the notebooks to Python scripts.

jupyter nbconvert --to script <my-notebook.ipynb>

curl -Ls -w %{url_effective} -o a https://doi.org
/10.5281/zenodo.10850531 > DL_url

wget $(cat DL_url)/files/orojenesis.zip

unzip orojenesis.zip

2) Install Orojenesis: We provide an installation script
install.sh under the orojenesis repository to install
Timeloop and other software dependencies.

Before proceeding with the installation, we offer two meth-
ods for setting up the system environment:

« Native Host: If you have sudo access on a Debian-based
system with Python 3.10 or later installed, we recommend
directly executing the installation script.

o Docker: Alternatively, if sudo access is not available,
consider using a Docker container. You can find the
Dockerfile at orojenesis/docker/Dockerfile. Please
refer to orojenesis/README.md for detailed instructions
on building and running the Docker container.

Once the system is properly set up, proceed with the
following command to install Orojenesis:

cd orojenesis && ./install.sh

This command builds the Timeloop’s Orojenesis code and
adds its path to your TIMELOOP_BASE_PATH.

Running through the scripts will generate figures in the paper
under orojenesis/figs.

F. Evaluation and expected results

Single-Einsum: Executing the cells in
orojenesis_single.ipynb produces the following plots in the
paper:

o Fig. 1: Bound for 16k_1k_1k GEMM.

o Fig. 10: Bounds for various GEMM shapes.

o Fig. 11: Maximal effectual buffer ratio over total operand

size for various GEMMs.

o Fig. 12: Bounds for various convolution configurations.

e Fig. 13: Bounds for BMMs with different numbers of

heads but identical OPs.

o Fig. 14: Bounds for Grouped BMMs with different num-

bers of groups but identical OPs.

o Fig. 24b: Validation of Orojenesis bounds on Simba

accelerator.

orojenesis/

Multi-Einsum: Running the cells in
orojenesis_multi.ipynb generates the following plots:

o Fig. 18: Bounds for fusing 32k_4k_16k and 32k_16k_4k

GEMMs.

o Fig. 20: Bounds for fused MHA.

o Fig. 21: Bounds for sliced fusion.

o Fig. 22: Bounds for a single fused LLM block.

o Fig. 23: Optimal hardware buffer area ratio for LLMs.

orojenesis/

G. Experiment customization

To customize input workload shapes and constraints, please
refer to instructions and examples in the Jupyter notebook

orojenesis/orojenesis_example.ipynb.

H. Methodology

Submission, reviewing and badging methodology:

« https://www.acm.org/publications/policies/artifact-
review-and-badging-current

o http://cTuning.org/ae/submission-20201122.html

o http://cTuning.org/ae/reviewing-20201122.html
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