
ACCELERATING RTL SIMULATION WITH

HARDWARE-SOFTWARE CO-DESIGN

Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen,
Joel S. Emer, Daniel Sanchez

MICRO 2023

Overview
2

 RTL simulation is crucial for digital design

 Current systems are ill suited for simulation
 CPUs: Can’t exploit fine-grained parallelism

 Emulation: Takes too long to compile, limited size

M
em

or
y

ASH Chip

Core Core Core Core

Task Management Unit

ASH Tile

ASH Compiler.sv

RTL code

 ASH is a co-designed architecture and compiler to
accelerate RTL simulation
 Fine-grained parallelism

 Selective Execution

 Compared to state-of-the-art software simulator
running on server CPU

 ASH is 32x faster while using
𝟏

𝟑
of the area

Limitation of Current Systems
3

 Consider simulating a large design
 128-core graph processing accelerator [Chronos, ASPLOS’20]

 Software Simulation
 RTL code CPU program (e.g., parallel C++ Program)

 Quick to compile / Slow simulation speed

 Hardware Emulation
 RTL code Logic gates on emulator

 Slow to compile / Fast simulation speed

System Compile Time Simulation Speed

Verilator on 32-core 2 Minutes 11 KHz

Emulation with 2xFPGA 13 Hours 1.4 MHz

ASH 2 Minutes 414 KHz

Outline
4

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation

Dataflow Graph Representation
5

Comb. logic

Wire

Register
clk

a[0]
b[0]

clk

a[1]
b[1]

clk

a[2]
b[2]

clk

a[3]
b[3]

clk

out

*

*

*

*

+

+

+
* * * * + +

+

Input Register Output
Dataflow node Dataflow edge

Pipelined Circuit Dataflow Graph

Extracting Parallelism from Dataflow Graph
6

* * * * + +
+

Input Register Output
Dataflow node Dataflow edge

 Task is the basic unit of computation

 Dataflow Node Task
 Tasks can be scheduled on different

threads

 Tasks can only run when inputs are
ready

 Coarser tasks reduce
synchronization
Work within a task is serialized Synchronization

Effects of Coarsening on Parallelism and Performance
7

Each Dataflow node is in
a separate task

All Dataflow nodes are in
a single task

 Design
 128-core graph processing

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs require too much coarsening

 Coarsening limits other optimizations!!

ASH

Selective Execution Needs Small Tasks
8

* * * *

 Assume a system that only runs tasks if inputs change from the previous cycle

 Fine-grained tasks Only does necessary work

 Coarse-grained tasks Does unnecessary work

Effects of Coarsening on Activity Factor
9

 Design
 128-core graph processing

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs can’t exploit low activity factor ASH

ASH

Outline
10

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation

ASH Hardware Overview
11

 Uses a multicore system as base architecture
 Non-coherent L2 Cache

 Dataflow ASH (DASH) exploits fine-grained parallelism
 Extends base system with hardware to orchestrate Prioritized Dataflow Execution

 Selective ASH (SASH) exploits selective execution
 Extends DASH with hardware to perform speculative execution

M
em

or
y

ASH Chip ASH Tile

other tiles

Core Core Core Core

L1 L1 L1 L1

L2 Cache (non-coherent)

DASH Task Management Unit

memory

other
tiles

SASH Task Management Unit

L2 Cache

Dataflow ASH – Basic Execution Model
12

 Compiler maps each task to a tile

 TMU can schedule tasks on cores

 Tasks can create argument descriptors to
communicate data

ASH Tile 0

other tiles

Core Core

L1 L1

Ta
sk Interconnect

Task Management Unit

ASH Tile 1

other tiles

Core Core

L1 L1

Task Management UnitA

C

BTile 0

Tile 1

A B

C, arg0 C, arg1

C

Prioritized Dataflow Execution
13

 Unordered dataflow execution
 Increases memory footprint because it produces

values much earlier than needed

 Hurts parallelism because it doesn’t focus on
critical path

 Requires expensive structures to track tasks

 DASH executes the graph in priority order
 Avoids the pitfalls of previous architectures

 Focuses on critical path; minimizes footprint;
simple hardware

 See paper for details of prioritization!

Ready at the
same time

ASH Compiler
14

Extract Dataflow Graph

Verilator IR

Basic DFG

Unroll
Unrolled DFG

Partition
Mapped DFG

Coarsen
Task DFG

Prioritize
+ Timestamps

Allocate Args (Reg/Mem)
+ DTTs

Generate Task Code

* + +
+

* * *

* + +
+

* * *

Cycle N
inputs

Cycle N+1
inputs

Cycle N
output

Cycle N+1
output

C
yc

le
 N

C
yc

le
 N

+
1

+ Task C++

 Builds on Verilator

 Unroll Dataflow graph
 Increase parallelism near cycle boundaries

 Partitioning
 Statically maps tasks to tiles

 Reduce data communication, maintains load-balance

 More details in paper!

Unroll

Partition

Selective ASH (SASH) Overview
15

 SASH adds selective execution to DASH
 Leverages low activity factors by running only tasks whose inputs have changed on

each cycle

 Dynamic scheduling strategies
A. If a task is not going to execute, broadcast to children
 This is inefficient for very low activity factors

B. Utilize speculation to lower communication

Speculation with SASH
16

ASH Tile 0

other tiles

Core Core

L1 L1

Ta
sk Interconnect

Task Management Unit

ASH Tile 1

other tiles

Core Core

L1 L1

Task Management UnitA

C

BTile 0

Tile 1

A B

C, arg0 C, arg1

C

 TMU doesn’t wait for all arguments
 Uses values from previous cycle

 If misspeculated, abort!

C

C

 Prioritization reduces aborts!

 SASH utilizes prior speculation
techniques [Swarm, MICRO’15] to
implement selective execution

 More details in the paper!!

Outline
17

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation

Evaluation Methodology/Benchmarks
18

Benchmark Type Configuration

Vortex GPU system 32-cores, 4warps/core, 2lanes/warp

Chronos with specialized PEs SSSP Accelerator 128-PE system

Chronos with RISC-V cores Multicore system 128 VexRiscv cores

Number Theoretic Transforms (NTT) Functional Unit 8-stage pipeline, 256-wide 1024 multiplies

 ASH is simulated as an ASIC running on 7nm technology
 256 simple in-order cores across 64 tiles, 1MB L2 cache per tile

 Task-unit (speculation, prioritized dataflow) only adds a 5% area overhead
 512 unmerged argument descriptors per tile

 Baseline System
 Verilator running on 32-Core AMD Zen2 CPU (Threadripper 3975WX)

Overall Performance
19

Vor
tex

Chr
on

os
/P

E

Chr
on

os
/R

V
NTT

gm
ea

n
0

5

10

15

20

25

30

35

40

45

50

Pe
rf

or
m

an
ce

 s
pe

ed
up

 o
ve

r
Z

en
2

ba
se

li
ne

System
Zen2

DASH

SASH

More Results in the Paper
20

 ASH system scales linearly with an increase of cores

 Prioritized dataflow execution reduces footprint by gmean of 17x compared
to unordered

 SASH spends little time on tasks that get aborted

Summary
21

 We introduce a co-designed architecture and compiler to accelerate RTL simulation

 ASH hardware architecture utilizes novel prioritized dataflow execution and selective
execution techniques in the design

 Compared to a 32-core server CPU running Verilator:
 SASH achieves 32x faster simulation speed with 3x less area

M
em

or
y

ASH Chip ASH Tile

other tiles

Core Core Core Core

L1 L1 L1 L1

L2 Cache (tile-private)

DASH Task Management Unit

memory

other
tiles

SASH Task Management Unit

