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Overview
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 RTL simulation is crucial for digital design

 Current systems are ill suited for simulation
 CPUs: Can’t exploit fine-grained parallelism

 Emulation: Takes too long to compile, limited size
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 ASH is a co-designed architecture and compiler to 
accelerate RTL simulation
 Fine-grained parallelism

 Selective Execution

 Compared to state-of-the-art software simulator 
running on server CPU

 ASH is 32x faster while using 
𝟏

𝟑
of the area



Limitation of Current Systems
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 Consider simulating a large design
 128-core graph processing accelerator [Chronos, ASPLOS’20]

 Software Simulation
 RTL code  CPU program (e.g., parallel C++ Program)

 Quick to compile / Slow simulation speed

 Hardware Emulation
 RTL code  Logic gates on emulator

 Slow to compile / Fast simulation speed

System Compile Time Simulation Speed

Verilator on 32-core 2 Minutes 11 KHz

Emulation with 2xFPGA 13 Hours 1.4 MHz

ASH 2 Minutes 414 KHz



Outline
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 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



Dataflow Graph Representation
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Extracting Parallelism from Dataflow Graph
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* * * * + +
+

Input Register Output
Dataflow node Dataflow edge

 Task is the basic unit of computation

 Dataflow Node  Task
 Tasks can be scheduled on different 

threads

 Tasks can only run when inputs are 
ready

 Coarser tasks reduce 
synchronization
Work within a task is serialized Synchronization



Effects of Coarsening on Parallelism and Performance
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Each Dataflow node is in
a separate task

All Dataflow nodes are in
a single task

 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs require too much coarsening

 Coarsening limits other optimizations!!

ASH



Selective Execution Needs Small Tasks
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* * * *

 Assume a system that only runs tasks if inputs change from the previous cycle

 Fine-grained tasks  Only does necessary work

 Coarse-grained tasks  Does unnecessary work



Effects of Coarsening on Activity Factor
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 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs can’t exploit low activity factor ASH

ASH
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 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH
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ASH Hardware Overview
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 Uses a multicore system as base architecture
 Non-coherent L2 Cache

 Dataflow ASH (DASH) exploits fine-grained parallelism
 Extends base system with hardware to orchestrate Prioritized Dataflow Execution

 Selective ASH (SASH) exploits selective execution
 Extends DASH with hardware to perform speculative execution
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Dataflow ASH – Basic Execution Model
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 Compiler maps each task to a tile

 TMU can schedule tasks on cores

 Tasks can create argument descriptors to 
communicate data
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Prioritized Dataflow Execution
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 Unordered dataflow execution
 Increases memory footprint because it produces 

values much earlier than needed

 Hurts parallelism because it doesn’t focus on 
critical path

 Requires expensive structures to track tasks

 DASH executes the graph in priority order
 Avoids the pitfalls of previous architectures

 Focuses on critical path; minimizes footprint; 
simple hardware

 See paper for details of prioritization!

Ready at the
same time



ASH Compiler
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 Builds on Verilator

 Unroll Dataflow graph
 Increase parallelism near cycle boundaries

 Partitioning
 Statically maps tasks to tiles

 Reduce data communication, maintains load-balance

 More details in paper! 
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Selective ASH (SASH) Overview
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 SASH adds selective execution to DASH
 Leverages low activity factors by running only tasks whose inputs have changed on 

each cycle

 Dynamic scheduling strategies
A. If a task is not going to execute, broadcast to children 
 This is inefficient for very low activity factors

B. Utilize speculation to lower communication



Speculation with SASH
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 TMU doesn’t wait for all arguments
 Uses values from previous cycle

 If misspeculated, abort!

C

C

 Prioritization reduces aborts!

 SASH utilizes prior speculation 
techniques [Swarm, MICRO’15] to 
implement selective execution

 More details in the paper!!
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Evaluation Methodology/Benchmarks
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Benchmark Type Configuration

Vortex GPU system 32-cores, 4warps/core, 2lanes/warp

Chronos with specialized PEs SSSP Accelerator 128-PE system

Chronos with RISC-V cores Multicore system 128 VexRiscv cores

Number Theoretic Transforms (NTT) Functional Unit 8-stage pipeline, 256-wide 1024 multiplies

 ASH is simulated as an ASIC running on 7nm technology
 256 simple in-order cores across 64 tiles, 1MB L2 cache per tile

 Task-unit (speculation, prioritized dataflow) only adds a 5% area overhead
 512 unmerged argument descriptors per tile 

 Baseline System
 Verilator running on 32-Core AMD Zen2 CPU (Threadripper 3975WX)



Overall Performance
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More Results in the Paper
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 ASH system scales linearly with an increase of cores

 Prioritized dataflow execution reduces footprint by gmean of 17x compared 
to unordered

 SASH spends little time on tasks that get aborted



Summary
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 We introduce a co-designed architecture and compiler to accelerate RTL simulation

 ASH hardware architecture utilizes novel prioritized dataflow execution and selective 
execution techniques in the design

 Compared to a 32-core server CPU running Verilator:
 SASH achieves 32x faster simulation speed with 3x less area
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