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Overview
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 RTL simulation is crucial for digital design

 Current systems are ill suited for simulation
 CPUs: Can’t exploit fine-grained parallelism

 Emulation: Takes too long to compile, limited size
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 ASH is a co-designed architecture and compiler to 
accelerate RTL simulation
 Fine-grained parallelism

 Selective Execution

 Compared to state-of-the-art software simulator 
running on server CPU

 ASH is 32x faster while using 
𝟏

𝟑
of the area



Limitation of Current Systems
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 Consider simulating a large design
 128-core graph processing accelerator [Chronos, ASPLOS’20]

 Software Simulation
 RTL code  CPU program (e.g., parallel C++ Program)

 Quick to compile / Slow simulation speed

 Hardware Emulation
 RTL code  Logic gates on emulator

 Slow to compile / Fast simulation speed

System Compile Time Simulation Speed

Verilator on 32-core 2 Minutes 11 KHz

Emulation with 2xFPGA 13 Hours 1.4 MHz

ASH 2 Minutes 414 KHz



Outline
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 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



Dataflow Graph Representation
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Extracting Parallelism from Dataflow Graph
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* * * * + +
+

Input Register Output
Dataflow node Dataflow edge

 Task is the basic unit of computation

 Dataflow Node  Task
 Tasks can be scheduled on different 

threads

 Tasks can only run when inputs are 
ready

 Coarser tasks reduce 
synchronization
Work within a task is serialized Synchronization



Effects of Coarsening on Parallelism and Performance
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Each Dataflow node is in
a separate task

All Dataflow nodes are in
a single task

 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs require too much coarsening

 Coarsening limits other optimizations!!

ASH



Selective Execution Needs Small Tasks
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* * * *

 Assume a system that only runs tasks if inputs change from the previous cycle

 Fine-grained tasks  Only does necessary work

 Coarse-grained tasks  Does unnecessary work



Effects of Coarsening on Activity Factor
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 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs can’t exploit low activity factor ASH

ASH



Outline
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 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



ASH Hardware Overview
11

 Uses a multicore system as base architecture
 Non-coherent L2 Cache

 Dataflow ASH (DASH) exploits fine-grained parallelism
 Extends base system with hardware to orchestrate Prioritized Dataflow Execution

 Selective ASH (SASH) exploits selective execution
 Extends DASH with hardware to perform speculative execution
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Dataflow ASH – Basic Execution Model
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 Compiler maps each task to a tile

 TMU can schedule tasks on cores

 Tasks can create argument descriptors to 
communicate data
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Prioritized Dataflow Execution
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 Unordered dataflow execution
 Increases memory footprint because it produces 

values much earlier than needed

 Hurts parallelism because it doesn’t focus on 
critical path

 Requires expensive structures to track tasks

 DASH executes the graph in priority order
 Avoids the pitfalls of previous architectures

 Focuses on critical path; minimizes footprint; 
simple hardware

 See paper for details of prioritization!

Ready at the
same time



ASH Compiler
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Extract Dataflow Graph
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 Builds on Verilator

 Unroll Dataflow graph
 Increase parallelism near cycle boundaries

 Partitioning
 Statically maps tasks to tiles

 Reduce data communication, maintains load-balance

 More details in paper! 
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Selective ASH (SASH) Overview
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 SASH adds selective execution to DASH
 Leverages low activity factors by running only tasks whose inputs have changed on 

each cycle

 Dynamic scheduling strategies
A. If a task is not going to execute, broadcast to children 
 This is inefficient for very low activity factors

B. Utilize speculation to lower communication



Speculation with SASH
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 TMU doesn’t wait for all arguments
 Uses values from previous cycle

 If misspeculated, abort!

C

C

 Prioritization reduces aborts!

 SASH utilizes prior speculation 
techniques [Swarm, MICRO’15] to 
implement selective execution

 More details in the paper!!



Outline
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 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



Evaluation Methodology/Benchmarks
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Benchmark Type Configuration

Vortex GPU system 32-cores, 4warps/core, 2lanes/warp

Chronos with specialized PEs SSSP Accelerator 128-PE system

Chronos with RISC-V cores Multicore system 128 VexRiscv cores

Number Theoretic Transforms (NTT) Functional Unit 8-stage pipeline, 256-wide 1024 multiplies

 ASH is simulated as an ASIC running on 7nm technology
 256 simple in-order cores across 64 tiles, 1MB L2 cache per tile

 Task-unit (speculation, prioritized dataflow) only adds a 5% area overhead
 512 unmerged argument descriptors per tile 

 Baseline System
 Verilator running on 32-Core AMD Zen2 CPU (Threadripper 3975WX)



Overall Performance
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More Results in the Paper
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 ASH system scales linearly with an increase of cores

 Prioritized dataflow execution reduces footprint by gmean of 17x compared 
to unordered

 SASH spends little time on tasks that get aborted



Summary
21

 We introduce a co-designed architecture and compiler to accelerate RTL simulation

 ASH hardware architecture utilizes novel prioritized dataflow execution and selective 
execution techniques in the design

 Compared to a 32-core server CPU running Verilator:
 SASH achieves 32x faster simulation speed with 3x less area
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