
ACCELERATING RTL SIMULATION WITH

HARDWARE-SOFTWARE CO-DESIGN

Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, 
Joel S. Emer, Daniel Sanchez

MICRO 2023



Overview
2

 RTL simulation is crucial for digital design

 Current systems are ill suited for simulation
 CPUs: Can’t exploit fine-grained parallelism

 Emulation: Takes too long to compile, limited size

M
em

or
y

ASH Chip

Core Core Core Core

Task Management Unit

ASH Tile

ASH Compiler.sv

RTL code

 ASH is a co-designed architecture and compiler to 
accelerate RTL simulation
 Fine-grained parallelism

 Selective Execution

 Compared to state-of-the-art software simulator 
running on server CPU

 ASH is 32x faster while using 
𝟏

𝟑
of the area



Limitation of Current Systems
3

 Consider simulating a large design
 128-core graph processing accelerator [Chronos, ASPLOS’20]

 Software Simulation
 RTL code  CPU program (e.g., parallel C++ Program)

 Quick to compile / Slow simulation speed

 Hardware Emulation
 RTL code  Logic gates on emulator

 Slow to compile / Fast simulation speed

System Compile Time Simulation Speed

Verilator on 32-core 2 Minutes 11 KHz

Emulation with 2xFPGA 13 Hours 1.4 MHz

ASH 2 Minutes 414 KHz



Outline
4

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



Dataflow Graph Representation
5

Comb. logic

Wire

Register
clk

a[0]
b[0]

clk

a[1]
b[1]

clk

a[2]
b[2]

clk

a[3]
b[3]

clk

out

*

*

*

*

+

+

+
* * * * + +

+

Input Register Output
Dataflow node Dataflow edge

Pipelined Circuit Dataflow Graph



Extracting Parallelism from Dataflow Graph
6

* * * * + +
+

Input Register Output
Dataflow node Dataflow edge

 Task is the basic unit of computation

 Dataflow Node  Task
 Tasks can be scheduled on different 

threads

 Tasks can only run when inputs are 
ready

 Coarser tasks reduce 
synchronization
Work within a task is serialized Synchronization



Effects of Coarsening on Parallelism and Performance
7

Each Dataflow node is in
a separate task

All Dataflow nodes are in
a single task

 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs require too much coarsening

 Coarsening limits other optimizations!!

ASH



Selective Execution Needs Small Tasks
8

* * * *

 Assume a system that only runs tasks if inputs change from the previous cycle

 Fine-grained tasks  Only does necessary work

 Coarse-grained tasks  Does unnecessary work



Effects of Coarsening on Activity Factor
9

 Design
 128-core graph processing 

accelerator

 Simulator
 Verilator

 Platform
 32-Core Zen2 CPU

 CPUs can’t exploit low activity factor ASH

ASH



Outline
10

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



ASH Hardware Overview
11

 Uses a multicore system as base architecture
 Non-coherent L2 Cache

 Dataflow ASH (DASH) exploits fine-grained parallelism
 Extends base system with hardware to orchestrate Prioritized Dataflow Execution

 Selective ASH (SASH) exploits selective execution
 Extends DASH with hardware to perform speculative execution

M
em

or
y

ASH Chip ASH Tile

other tiles

Core Core Core Core

L1 L1 L1 L1

L2 Cache (non-coherent)

DASH Task Management Unit

memory

other 
tiles

SASH Task Management Unit

L2 Cache



Dataflow ASH – Basic Execution Model
12

 Compiler maps each task to a tile

 TMU can schedule tasks on cores

 Tasks can create argument descriptors to 
communicate data

ASH Tile 0

other tiles

Core Core

L1 L1

Ta
sk Interconnect

Task Management Unit

ASH Tile 1

other tiles

Core Core

L1 L1

Task Management UnitA

C

BTile 0

Tile 1

A B

C, arg0 C, arg1

C



Prioritized Dataflow Execution
13

 Unordered dataflow execution
 Increases memory footprint because it produces 

values much earlier than needed

 Hurts parallelism because it doesn’t focus on 
critical path

 Requires expensive structures to track tasks

 DASH executes the graph in priority order
 Avoids the pitfalls of previous architectures

 Focuses on critical path; minimizes footprint; 
simple hardware

 See paper for details of prioritization!

Ready at the
same time



ASH Compiler
14

Extract Dataflow Graph

Verilator IR

Basic DFG

Unroll
Unrolled DFG

Partition
Mapped DFG

Coarsen
Task DFG

Prioritize
+ Timestamps

Allocate Args (Reg/Mem)
+ DTTs

Generate Task Code

* + +
+

* * *

* + +
+

* * *

Cycle N
inputs

Cycle N+1
inputs

Cycle N
output

Cycle N+1
output

C
yc

le
 N

C
yc

le
 N

+
1

+ Task C++

 Builds on Verilator

 Unroll Dataflow graph
 Increase parallelism near cycle boundaries

 Partitioning
 Statically maps tasks to tiles

 Reduce data communication, maintains load-balance

 More details in paper! 

Unroll

Partition



Selective ASH (SASH) Overview
15

 SASH adds selective execution to DASH
 Leverages low activity factors by running only tasks whose inputs have changed on 

each cycle

 Dynamic scheduling strategies
A. If a task is not going to execute, broadcast to children 
 This is inefficient for very low activity factors

B. Utilize speculation to lower communication



Speculation with SASH
16

ASH Tile 0

other tiles

Core Core

L1 L1

Ta
sk Interconnect

Task Management Unit

ASH Tile 1

other tiles

Core Core

L1 L1

Task Management UnitA

C

BTile 0

Tile 1

A B

C, arg0 C, arg1

C

 TMU doesn’t wait for all arguments
 Uses values from previous cycle

 If misspeculated, abort!

C

C

 Prioritization reduces aborts!

 SASH utilizes prior speculation 
techniques [Swarm, MICRO’15] to 
implement selective execution

 More details in the paper!!



Outline
17

 Limitations of Software Simulation

 ASH Overview
 Dataflow ASH

 Selective ASH

 Evaluation



Evaluation Methodology/Benchmarks
18

Benchmark Type Configuration

Vortex GPU system 32-cores, 4warps/core, 2lanes/warp

Chronos with specialized PEs SSSP Accelerator 128-PE system

Chronos with RISC-V cores Multicore system 128 VexRiscv cores

Number Theoretic Transforms (NTT) Functional Unit 8-stage pipeline, 256-wide 1024 multiplies

 ASH is simulated as an ASIC running on 7nm technology
 256 simple in-order cores across 64 tiles, 1MB L2 cache per tile

 Task-unit (speculation, prioritized dataflow) only adds a 5% area overhead
 512 unmerged argument descriptors per tile 

 Baseline System
 Verilator running on 32-Core AMD Zen2 CPU (Threadripper 3975WX)



Overall Performance
19

Vor
tex

Chr
on

os
/P

E

Chr
on

os
/R

V
NTT

gm
ea

n
0

5

10

15

20

25

30

35

40

45

50

Pe
rf

or
m

an
ce

 s
pe

ed
up

 o
ve

r 
Z

en
2 

ba
se

li
ne

System
Zen2

DASH

SASH



More Results in the Paper
20

 ASH system scales linearly with an increase of cores

 Prioritized dataflow execution reduces footprint by gmean of 17x compared 
to unordered

 SASH spends little time on tasks that get aborted



Summary
21

 We introduce a co-designed architecture and compiler to accelerate RTL simulation

 ASH hardware architecture utilizes novel prioritized dataflow execution and selective 
execution techniques in the design

 Compared to a 32-core server CPU running Verilator:
 SASH achieves 32x faster simulation speed with 3x less area

M
em

or
y

ASH Chip ASH Tile

other tiles

Core Core Core Core

L1 L1 L1 L1

L2 Cache (tile-private)

DASH Task Management Unit

memory

other 
tiles

SASH Task Management Unit


