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Many Applications Involve DNNs

ChatGPT

N ESR
Natural Language Processing Autonomous Navigation Medical Imaging & Diagnostics

data and computation intensive
subject to prediction accuracy & latency requirements

In great need of optimizations and accelerations




r Different DNN Optimizations Introduce Different Sparsity ‘

Optimizations to Reduce Model Size
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r Different DNN Optimizations Introduce Different Sparsity ‘

Optimizations to Reduce Model Size Optimizations to Improve Accuracy
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Modern DNNs can weights and activations that are
either dense or sparse with various sparsity degrees




High-Level Opportunities for Sparse DNNs ‘

xX0 =0
x+0 =x
Zero Values Ineffectual Operations
Can be Compressed Away Can be Eliminated

Important to design sparse DNN accelerators
to exploit such opportunities




Requirements for an Ideal Sparse DNN Accelerator ‘
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Requirements for an Ideal Sparse DNN Accelerator ‘

Sparsity Degree Spectrum €
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0% sparse 100% sparse
(dense)
Flexible Efficient
exploit many sparsity degrees low sparsity tax for eliminating

ineffectual operations
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Existing Works Do Not Meet Such Requirements

‘

Unstructured Sparse Accelerators
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Register File (512x32Threadsx32bits) ) ‘
Unstructured sparse

UMIO Datapath

Dual-Side Sparse Tensor Core (DSTC)
[Wang, ISCA21]

NMIO Scheduler

Sparsity Degree Spectrum
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Continuously Translated into Savings

— High Sparsity Tax
+ Flexible

Structured Sparse Accelerators

Per-row
2:4 structured sparse
(G:H pattern)

NVIDIA Sparse Tensor Core (STC)
[NVIDIA, TechReport20]

Sparsity Degree Spectrum
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0% sparse 50% sparse (2:4)
(dense)

+ Low Sparsity Tax
— Inflexible



r Naive Way to Increase Flexibility Structured Sparse Designs ‘

Extend the Number of G:H Ratios Supported

Sparsity Degree Spectrum

50% slparse
2:4

0% sparse 67% sparse
(dense) 26

75% sparse
2:8

Not Scalable
Sparsity tax increases approximately in proportion to the nhumber
of sparsity degrees




Our Proposal

Efficient and Flexible DNN Acceleration
with
Hierarchical Structured Sparsity
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Hierarchical Structured Sparsity (HSS) ‘

Compose G:H sparsity patterns in a hierarchical fashion

N-Rank HSS: GGH — G:H .. — G:H
Rank N-1 Rank N-2 Rank 0

What does a 3:4— 2:4 pattern look like?

Dense Vector
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Hierarchical Structured Sparsity (HSS) ‘

Compose G:H sparsity patterns in a hierarchical fashion
What does a 3:4— 2:4 pattern look like?

Rank1: 3 nonempty blocks out of the 4 blocks

block0 block1 block2 block3

A A A A
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0/]0]0]0

Vector with Rank1 Sparsity Applied
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Hierarchical Structured Sparsity (HSS)

Compose G:H sparsity patterns in a hierarchical fashion
What does a 3:4— 2:4 pattern look like?

Rank1: 3 nonempty blocks out of the 4 blocks
RankO: 2 nonzero values out of 4 values within the block

block0 block1 block2 block3

A A A A
( Y \§ Y \

0 0 00 0/]0]0]0 0 0

Vector with Both Ranks’ Sparsity Applied
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Hierarchical Structured Sparsity (HSS) ‘

DNN Workloads Often Have Tensors with Multiple Dimensions

Per-Row 3:4-2:4 Tensor

HSS can be applied to an arbitrary dimension in a multi-dimensional tensor
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r HSS Introduces A Flexible Way to Express Sparsity Degrees ‘

4 Rank 1
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Sparsity Degree Spectrum
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r HSS Introduces A Flexible Way to Express Sparsity Degrees ‘

4 Rank 1 Rank O 3
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r HSS Introduces A Flexible Way to Express Sparsity Degrees ‘
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r HSS Introduces A Flexible Way to Express Sparsity Degrees ‘
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r HSS Introduces A Flexible Way to Express Sparsity Degrees ‘

4 Rank 1 Rank O 3
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Multiplication of Fractions
12 sparsity degrees

4:4-4:4 4:5-4:4 4:6-4:4 4:7-4:4 4:4-2:4 4:5-2:4 4:6-2:4 4:7-2:4 4:4-1:4 4:5-1:4 4:6-1:4 4:7-1:4
(0%) (20%) (33%) (43%) (50%) (60%) (67%) (71%) (75%) (80%) (83%) (86%)

Sparsity Degree Spectrum

-

0% 20% 33% 43%  50% 60% 67% 71% 83%
75%80% 86%

Fraction multiplication allows flexible representation of
many sparsity degrees in a wide range
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HSS Enables Modularized Acceleration ‘

Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization

Global Buffer
I@@;» . Banked | | Architecture

Cad | SRAM Level 1

Buffer Buffer Buffer

I- SRAM IW-> SRAM || I- SRAM

Architecture
Level O

| "Compute ] Compute | “Compute
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r HSS Enables Modularized Acceleration N

Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization

Global Buffer
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HSS Enables Modularized Acceleration

9

Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization

Global Buffer

Rank 1 I@@;» . Banked

4:4 4:5 4:6 4.7

@ <D | | SRAM

(0%) (20%) (33%) (43%)

Buffer

I' SRAM

Rank O

Buffer

Buffer
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(0%) (50%) (75%) HSS Rank 0 Acc. HSS Rank O Acc. HSS Rank O Acc.

[ Compute
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Compute

Compute

Architecture
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Architecture
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Each level only needs to accelerate for a few sparsity degrees
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HSS Enables Modularized Acceleration

Simple Acceleration at Each Architecture Level Leads to
Low Hardware Overhead

¥

Efficient Processing
with Low Sparsity Tax

‘
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HighLight: Flexible and Efficient Sparse DNN Accelerator

Hierarchical
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Reduce
Latency
and Energy
Consumption

[ RO Acc. RO Acc.

U | PE PE

E RO Acc. RO Acc.

: PE PE ot

E f oo 000 [ NN 000
[: RO Acc. |l RO Acc. .

PE PE e

--------

Activation
Function

_|Register
File

HSS-based Compressed
Representation Format

Reduce Storage
Requirement and
Energy Consumption

HighLight
translates
two-rank HSS
into reduction in
latency and energy
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Experimental Results
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rWe Compare HighLight with Representative Designs ‘

dense structured sparse unstructured sparse structured sparse
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rGeomean Across Various Hardware Performance Metrics ‘

We evaluate the designs with synthetic workloads with
Geomean different sparsity degrees ranging from 0%-75%

(lower is better)
1.2 pmTC g STC DSTC pmS2TA g HighlLight

1.0 -
0.8 -
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0.2

0.0

Energy-Delay?  Energy-Delay-Product Cycles Energy

27



rGeomean Across Various Hardware Performance Metrics ‘

We evaluate the designs with synthetic workloads with
Geomean different sparsity degrees ranging from 0%-75%

(lower is better)
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HighLight is efficient across evaluated metrics

28



r

Accuracy-Energy Delay Product Pareto Frontier ‘

We evaluate the designs with representative DNNs pruned to different
sparsity degrees, each with its respective sparsity structure (if any)
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Accuracy Loss
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We evaluate the designs with representative DNNs pruned to different
sparsity degrees, each with its respective sparsity structure (if any)
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Accuracy Loss

Accuracy-Energy Delay Product Pareto Frontier

We evaluate the designs with representative DNNs pruned to different
sparsity degrees, each with its respective sparsity structure (if any)
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Accuracy-Energy Delay Product Pareto Frontier ‘

We evaluate the designs with representative DNNs pruned to different
sparsity degrees, each with its respective sparsity structure (if any)
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HighLight sits on the accuracy-energy delay product pareto frontier
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More Details in Paper! ‘

 How to systematically represent the diverse sparsity patterns in
DNNs?

— Short answer: sparsity specification via fibertree abstraction.

 What does HighLight’s energy and area sparsity tax breakdowns
look like?

— Short answer: low sparsity tax as HighLight independently
accelerates simple sparsity patterns at different architecture
levels.
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Summary

http://emze.csail.mit.edu/highlight
SCAN ME

Hierarchical Structured Sparsity (HSS)

« Composed of multiple levels of simple sparsity patterns
* Allows flexible expression of diverse sparsity degrees

HighLight Accelerator

« Supports two-rank HSS for a few degrees at each level
* Implements low-overhead support for each rank at different architecture levels
* Ensures both efficiency and flexibility
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