HighLight: Efficient and Flexible DNN Acceleration with Hierarchical Structured Sparsity

Yannan Nellie Wu¹, <u>Po-An Tsai</u>², Saurav Muralidharan², Angshuman Parashar², Vivienne Sze¹, Joel S. Emer^{1,2}

¹MIT, ²NVIDIA

http://emze.csail.mit.edu/highlight

Many Applications Involve DNNs

Natural Language Processing

Autonomous Navigation

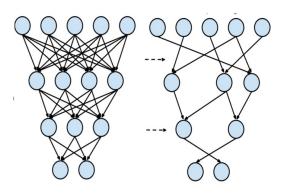
Medical Imaging & Diagnostics

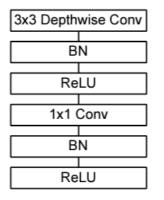
data and computation intensive subject to prediction accuracy & latency requirements

In great need of optimizations and accelerations

Different DNN Optimizations Introduce Different Sparsity

Optimizations to Reduce Model Size



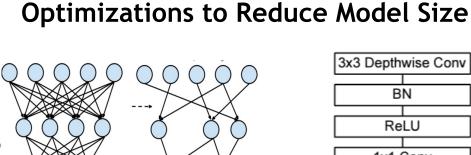


Pruning Techniques [Han, NeurIPS15]

Introduces Sparse Weights Depth-wise Separable Layers [Howard, CVPR17]

Introduces Dense Weights

Different DNN Optimizations Introduce Different Sparsity



3x3 Depthwise Conv ΒN ReLU 1x1 Conv ΒN ReLU

Pruning **Techniques** [Han, NeurlPS15]

--->

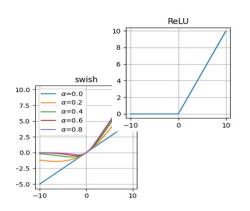
Introduces **Sparse Weights**

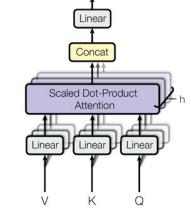
Depth-wise Separable Layers [Howard, CVPR17]

Introduces

Dense Weights

Optimizations to Improve Accuracy



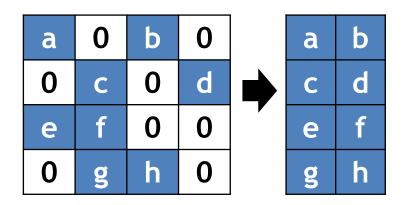


Activation Functions [Apicella, NN21]

Introduces Introduces **Dense/Sparse Activations Dense Act./Weights**

Modern DNNs can weights and activations that are either dense or sparse with various sparsity degrees

High-Level Opportunities for Sparse DNNs



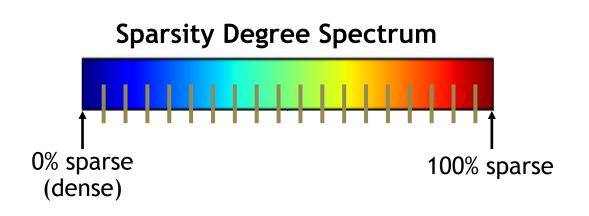
 $x \times 0 = 0$ x + 0 = x

Zero Values Can be Compressed Away

Ineffectual Operations Can be Eliminated

Important to design sparse DNN accelerators to exploit such opportunities

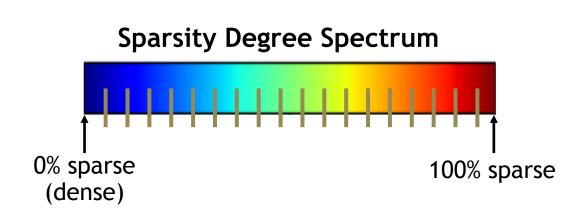
Requirements for an Ideal Sparse DNN Accelerator



Flexible

exploit many sparsity degrees

Requirements for an Ideal Sparse DNN Accelerator



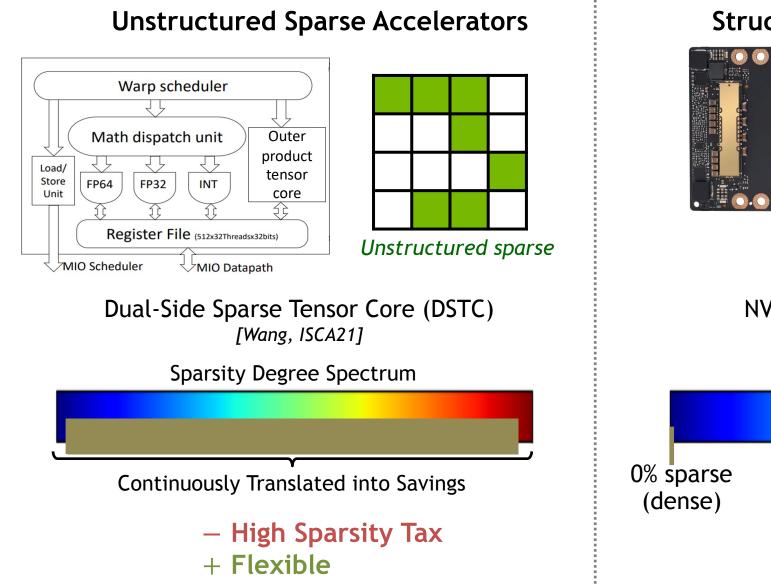
Flexible

exploit many sparsity degrees

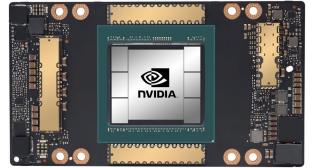
Efficient

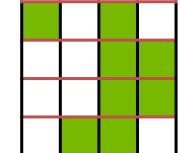
low <u>sparsity tax</u> for eliminating ineffectual operations

Existing Works Do Not Meet Such Requirements

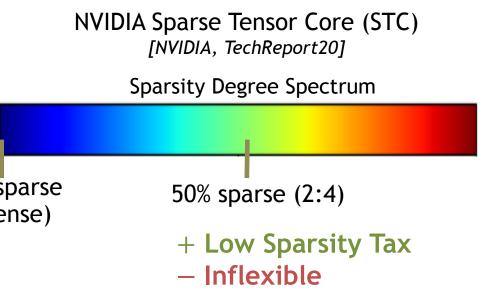


Structured Sparse Accelerators



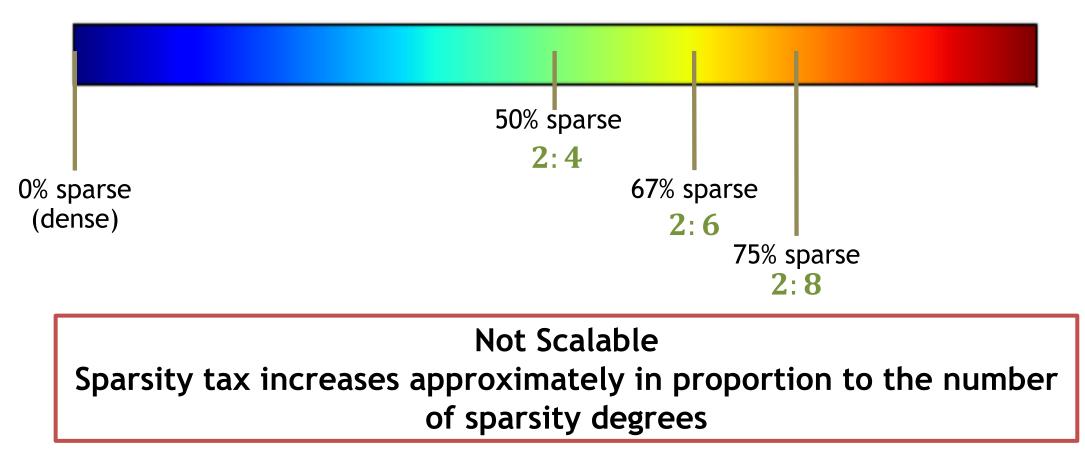


Per-row 2:4 structured sparse (G:H pattern)



Naïve Way to Increase Flexibility Structured Sparse Designs

Extend the Number of G:H Ratios Supported



Our Proposal

Efficient and Flexible DNN Acceleration with <u>Hierarchical Structured Sparsity</u>

Compose G:H sparsity patterns in a hierarchical fashion

N-Rank HSS: G:H \rightarrow G:H ... \rightarrow G:H Rank N-1 Rank N-2 Rank O

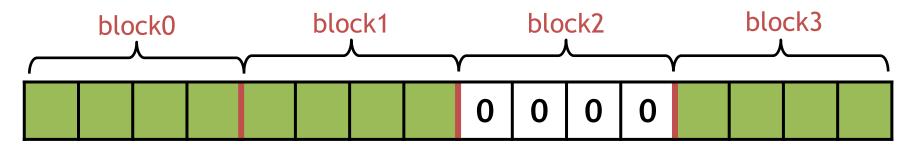
What does a 3:4 > 2:4 pattern look like?

Dense Vector

Compose G:H sparsity patterns in a hierarchical fashion

What does a $3:4 \rightarrow 2:4$ pattern look like?

Rank1: 3 nonempty blocks out of the 4 blocks

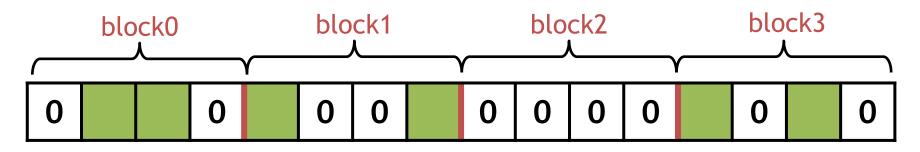


Vector with Rank1 Sparsity Applied

Compose G:H sparsity patterns in a hierarchical fashion

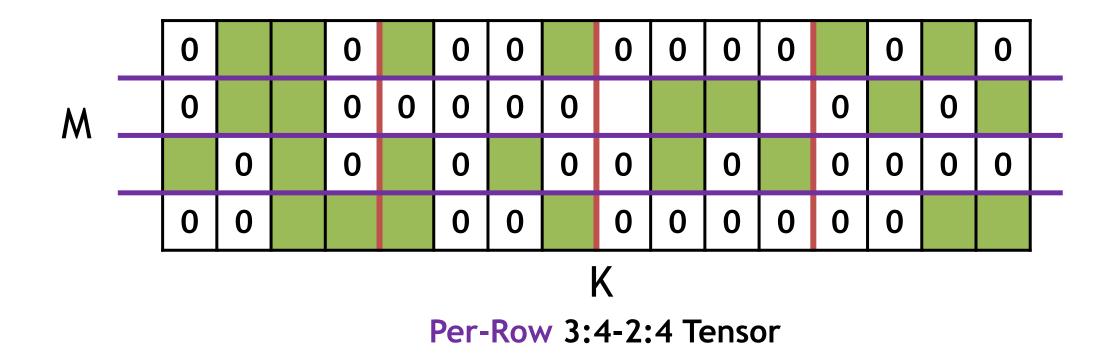
What does a 3:4→2:4 pattern look like?

Rank1: 3 nonempty blocks out of the 4 blocks Rank0: 2 nonzero values out of 4 values within the block



Vector with Both Ranks' Sparsity Applied

DNN Workloads Often Have Tensors with Multiple Dimensions



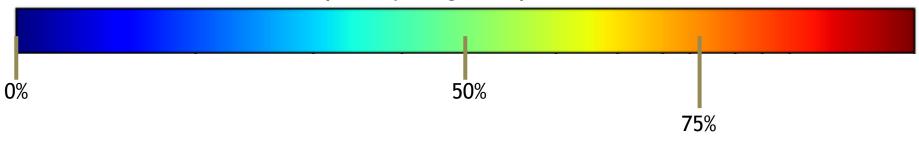
HSS can be applied to an arbitrary dimension in a multi-dimensional tensor

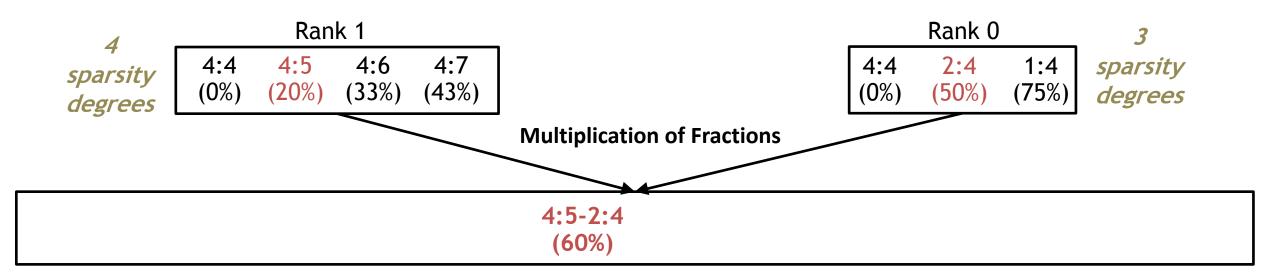
Δ	Rank 1			
sparsity	4:4	4:5	4:6	4:7
degrees	(0%)	(20%)	(33%)	(43%)

			_		
0%	20%	33%	43%		

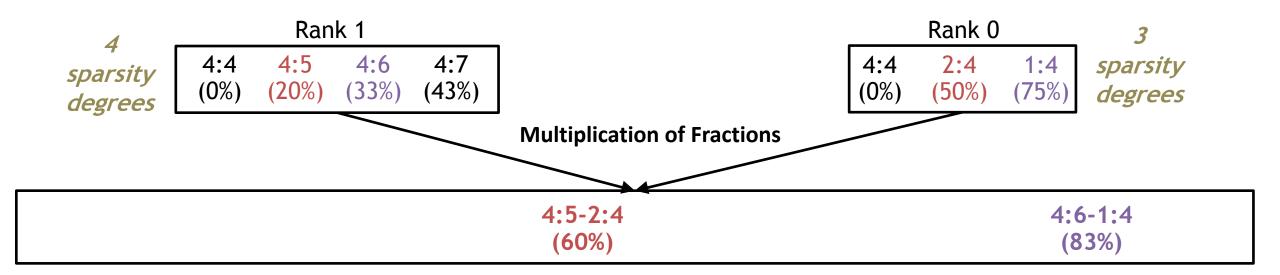
Δ	Rank 1				
sparsity	4:4	4:5	4:6	4:7	
degrees	(0%)	(20%)	(33%)	(43%)	

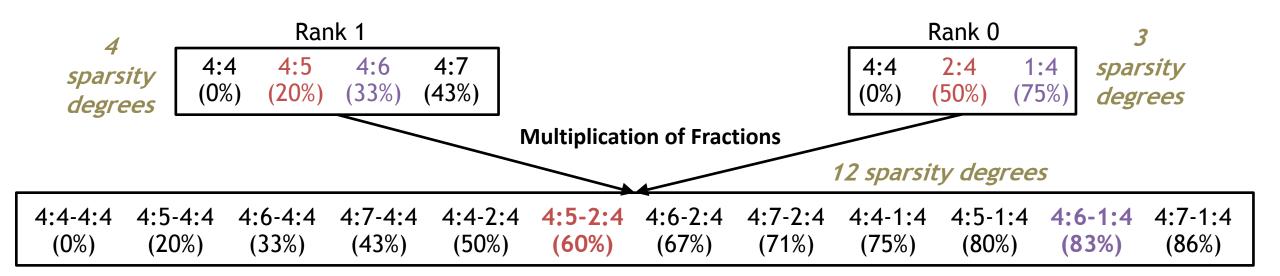
	Rank 0	3	
4:4	2:4	1:4	sparsity
(0%)	(50%)	(75%)	degrees



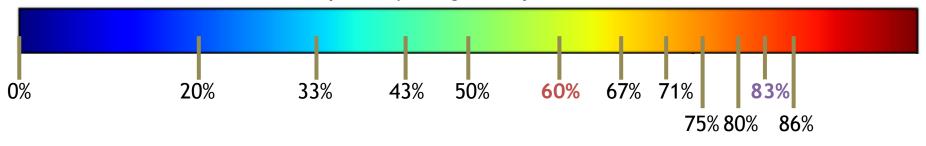








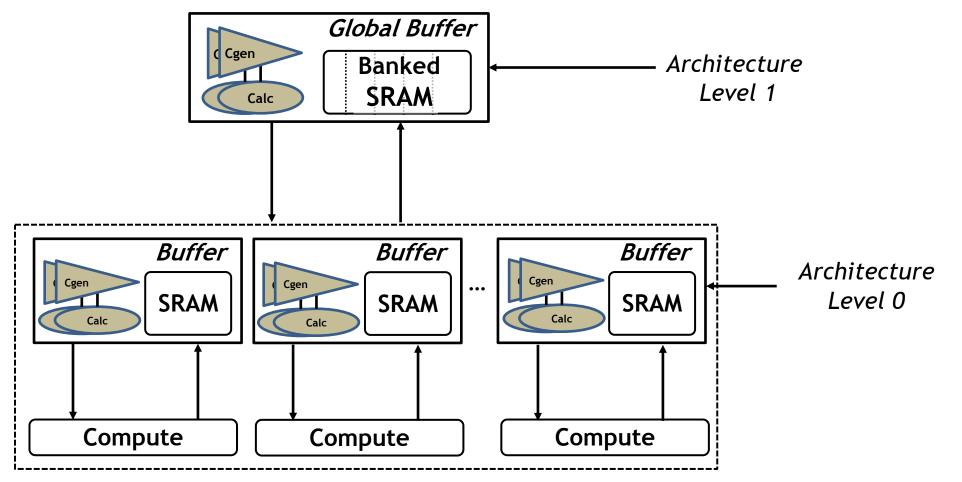
Sparsity Degree Spectrum



Fraction multiplication allows flexible representation of many sparsity degrees in a wide range

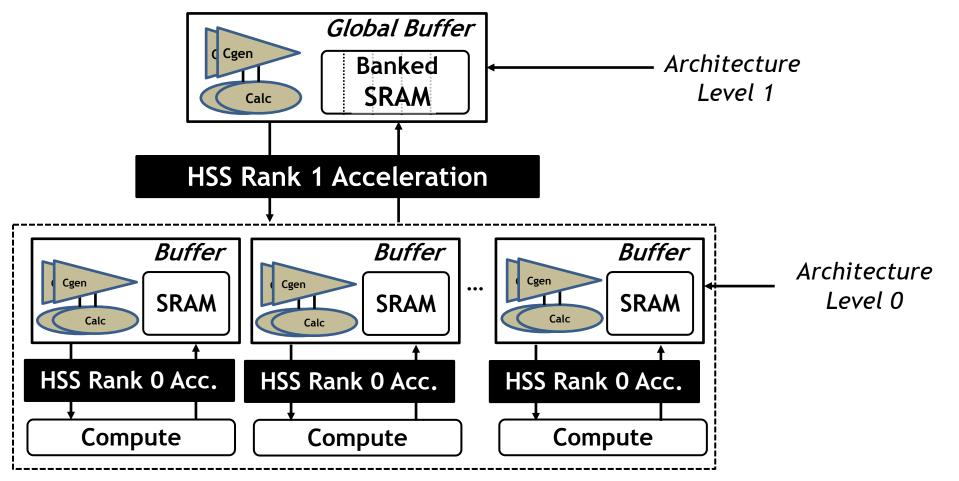
Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization



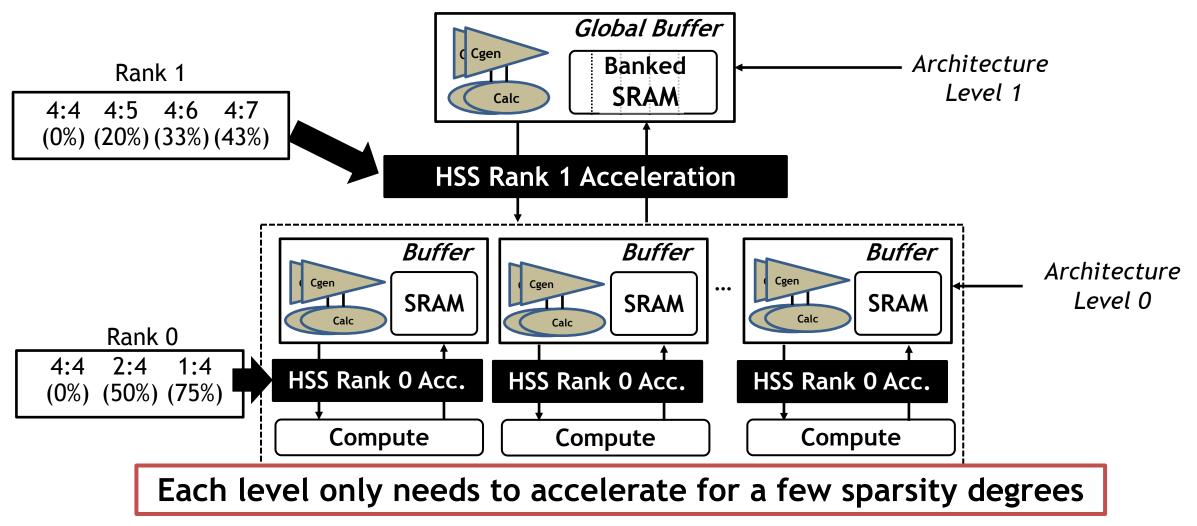
Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization



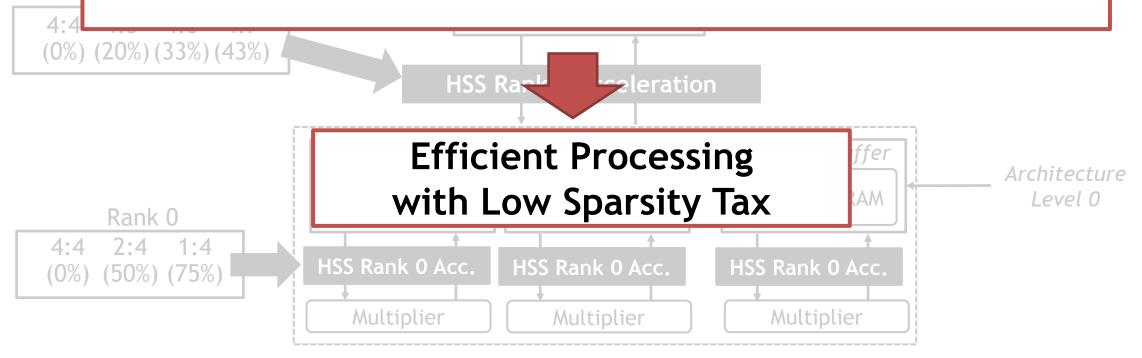
Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Example Accelerator Architecture Organization



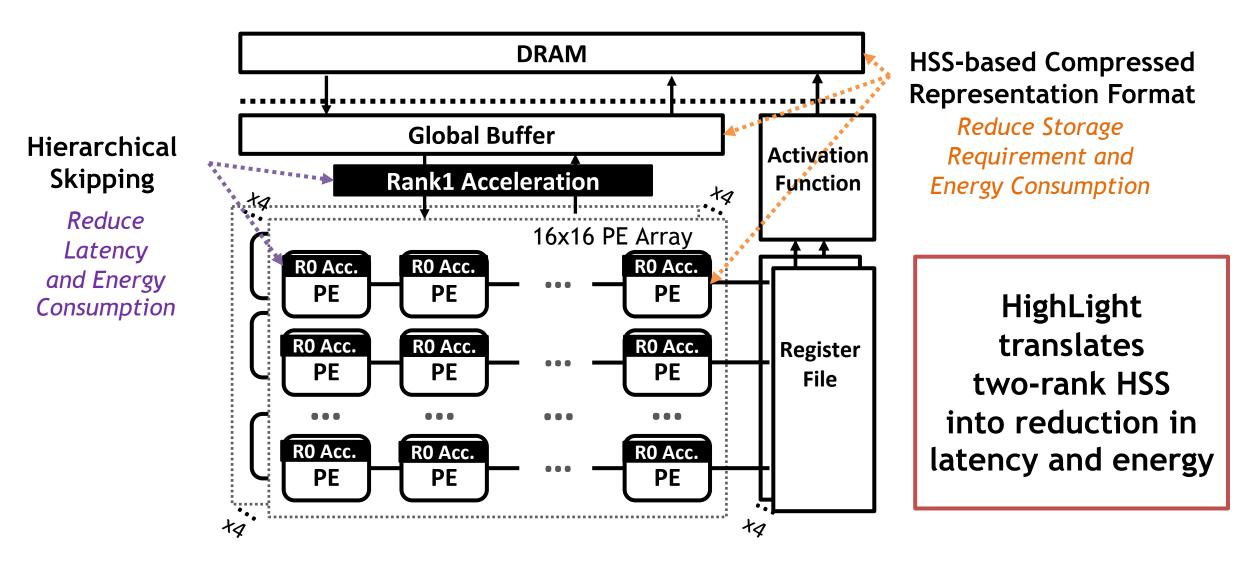
Modularity of HSS allows different architecture levels to accelerate for different HSS ranks

Simple Acceleration at Each Architecture Level Leads to Low Hardware Overhead



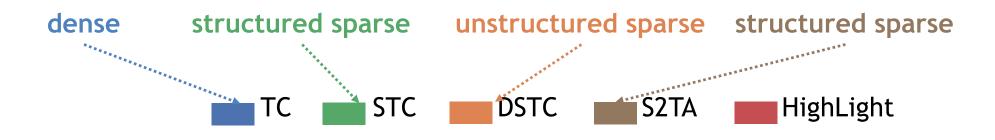
Each level only needs to accelerate for a few sparsity degrees

HighLight: Flexible and Efficient Sparse DNN Accelerator

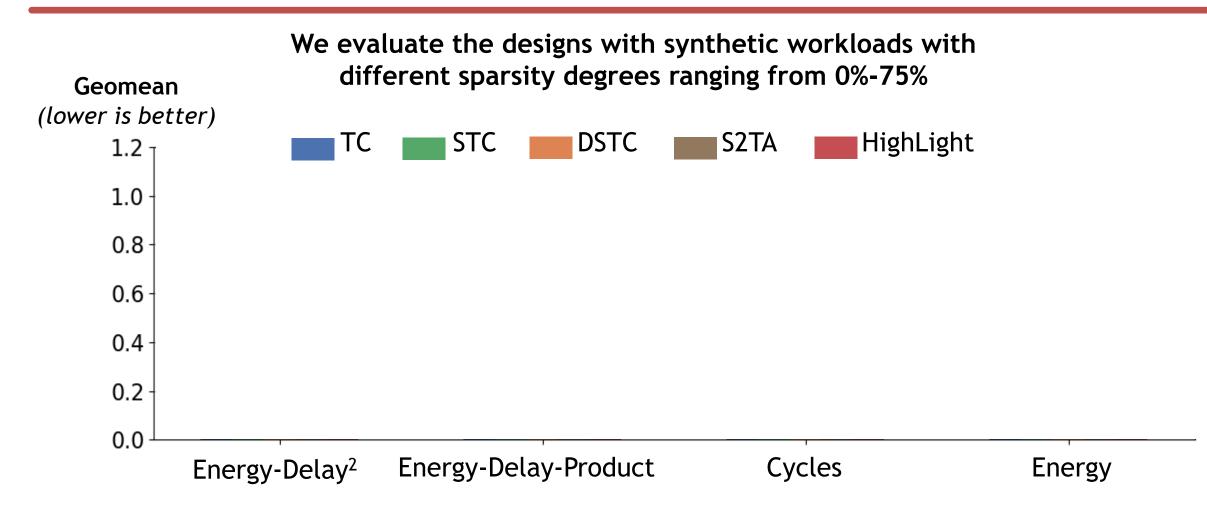


Experimental Results

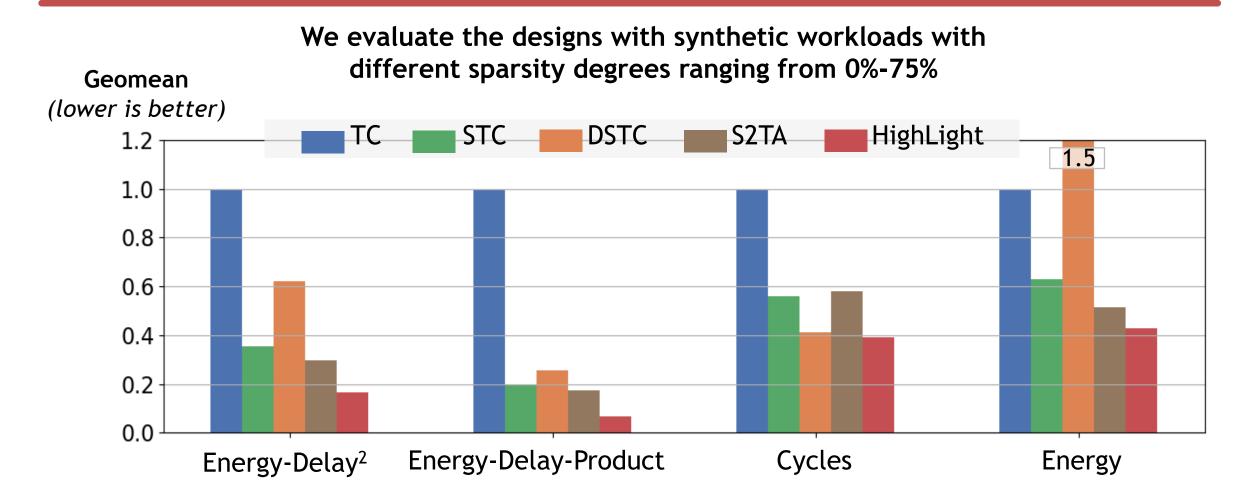
We Compare HighLight with Representative Designs



Geomean Across Various Hardware Performance Metrics



Geomean Across Various Hardware Performance Metrics

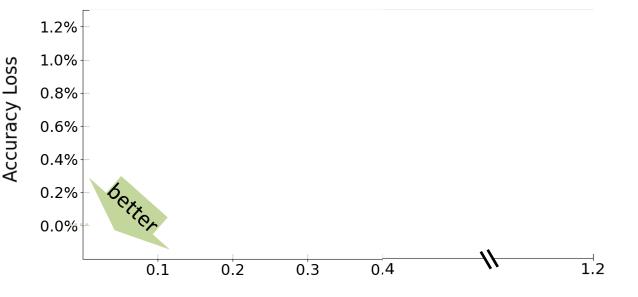


HighLight is efficient across evaluated metrics

We evaluate the designs with representative DNNs pruned to different sparsity degrees, each with its respective sparsity structure (if any)

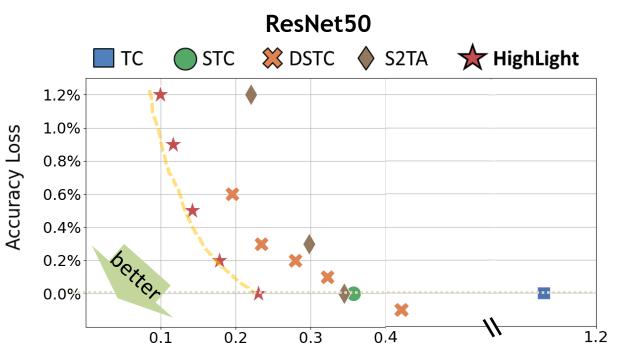
We evaluate the designs with representative DNNs pruned to different sparsity degrees, each with its respective sparsity structure (if any)

ResNet50



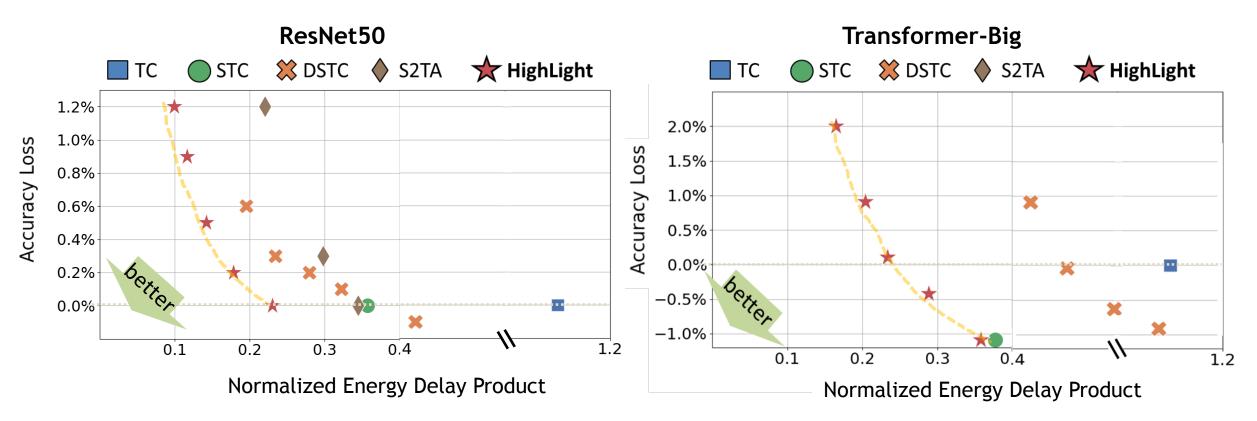
Normalized Energy Delay Product

We evaluate the designs with representative DNNs pruned to different sparsity degrees, each with its respective sparsity structure (if any)



Normalized Energy Delay Product

We evaluate the designs with representative DNNs pruned to different sparsity degrees, each with its respective sparsity structure (if any)



HighLight sits on the accuracy-energy delay product pareto frontier

More Details in Paper!

- How to systematically represent the diverse sparsity patterns in DNNs?
 - Short answer: sparsity specification via fibertree abstraction.
- What does HighLight's energy and area sparsity tax breakdowns look like?
 - Short answer: low sparsity tax as HighLight independently accelerates simple sparsity patterns at different architecture levels.

Summary

http://emze.csail.mit.edu/highlight

Hierarchical Structured Sparsity (HSS)

- Composed of multiple levels of simple sparsity patterns
- Allows flexible expression of diverse sparsity degrees

HighLight Accelerator

- Supports two-rank HSS for a few degrees at each level
- Implements low-overhead support for each rank at different architecture levels
- Ensures both efficiency and flexibility