Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity

<u>Zi Yu (Fisher) Xue¹</u>, Yannan Nellie Wu¹, Joel S. Emer^{1,2}, Vivienne Sze¹

¹MIT ²NVIDIA

http://emze.csail.mit.edu/tailors

Many applications use highly sparse tensors

2

Tiling reduces loads of nonstationary tiles

Tiling reduces loads of nonstationary tiles

Tiling sparse tensors is challenging

Tensors vary in the *distribution* of sparsity

- Always fetch enough nonzeros to fill the buffer (ideal buffer utilization)
- Leads to non-uniform tile shapes (hard to tile other operand)

- + ideal buffer utilization
- hard to tile other operand

Tiling with uniform shape

+ Always construct tiles with the same shape (easy to tile both operands)

- All tiles must fit within the buffer (low buffer utilization)

- + ideal buffer utilization
- hard to tile other operand

Tiling with uniform shape

+ Always construct tiles with the same shape (easy to tile both operands)

- All tiles must fit within the buffer (low buffer utilization)

- + ideal buffer utilization
- hard to tile other operand

Tiling with uniform shape

+ Always construct tiles with the same shape (easy to tile both operands)

- All tiles must fit within the buffer (low buffer utilization)

Uniform shape tiling has poor buffer utilization

- Constructing tiles based on the maximum tile occupancy may overprovision buffer space
- Most tiles do not fully occupy the buffer

What if we could <u>overbook</u> buffer capacity?

Managing unbumped data

A Objective: minimize DRAM traffic В by maximizing data reuse Traversal order С ABCABC... DRAM Buffer (3) Compute

Managing unbumped data with buffets

- Buffets are used to orchestrate data in a number of domainspecific accelerators
- Buffets operate on a sliding window of data

Managing bumped data with buffets

- Buffets operate on a sliding window of data
- Sliding window leads to poor data reuse when data is bumped

Managing bumped data with buffets

- Buffets operate on a sliding window of data
- Sliding window leads to poor data reuse when data is bumped

Managing bumped data with buffets

- Buffets operate on a sliding window of data
- Sliding window leads to poor data reuse when data is bumped

Tailors: Tail Overbooked Buffers for overbooked data

- Tailors dynamically splits the buffer when overbooked to stream bumped data through the tail of the buffer
- Lose reuse for bumped data, but not for unbumped data

Tailors: Tail Overbooked Buffers for overbooked data

- Tailors dynamically splits the buffer when overbooked to stream bumped data through the tail of the buffer
- Lose reuse for bumped data, but not for unbumped data

Tailors: Tail Overbooked Buffers for overbooked data

Determining the size of a tile is challenging

Swiftiles: A swift tiling algorithm for overbooking

Evaluation against other tiling options

- ExTensor-Naive
 - No knowledge of tile occupancy, so must tile assuming dense tiles
- ExTensor-Prescient
 - Uses the maximum tile size where all tiles still fit in the buffer
- ExTensor-Overbooking
 - Tailors+Swiftiles where
 90% of tiles fit in buffer

Results - Speedup over ExTensor-N

52.7x speedup over ExTensor-N, 2.3x over ExTensor-P

Results - Energy Efficiency relative to ExTensor-N

22.5x more energy efficient than ExTensor-N, 2.5x more than ExTensor-P

Results - DRAM traffic compared to ExTensor-P

- Bumped data has no data reuse while unbumped data does
- Increase in DRAM traffic due to streaming bumped data is offset by reduced DRAM traffic from larger tiles

Key Takeaways

Overbooking

Intentionally under-provisioning buffer capacity can improve buffer utilization and reduce DRAM traffic

Tailors

Dynamically splitting buffer for bumped data maintains data reuse without additional area

Swiftiles

Samples tensor to estimate tile size with low preprocessing cost

This work was funded in part by the MIT AI Hardware Program