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Many applications use highly sparse tensors
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Tiling reduces loads of nonstationary tiles
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Tiling reduces loads of nonstationary tiles

Larger tile sizes → greater data reuse → less DRAM traffic
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Tiling sparse tensors is challenging
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Tensors vary in the distribution of sparsity
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Tiling with uniform occupancy

• Always fetch enough nonzeros 
to fill the buffer (ideal buffer 
utilization)

• Leads to non-uniform tile 
shapes (hard to tile other 
operand)

Nonzeros ???
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Uniform shape tiling has poor buffer utilization
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• Constructing tiles based on 
the maximum tile occupancy 
may overprovision buffer 
space

• Most tiles do not fully 
occupy the buffer
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What if we could overbook buffer 
capacity?
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Sparsity leads to poor utilization

Tickets Sold
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Sparsity leads to poor utilization
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Sparsity leads to poor utilization
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Sparsity leads to poor utilization
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Overbooking improves utilization
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Overbooking improves utilization
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Overbooking improves utilization
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Overbooking improves utilization
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Overbooking improves utilization
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Overbooking improves utilization

How do we deal with the bumped data? 

Tailors
How do we determine how much to overbook? 

Swiftiles
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Managing unbumped data
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Objective: minimize DRAM traffic 
by maximizing data reuse
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Managing unbumped data with buffets

• Buffets are used to 
orchestrate data in a 
number of domain-
specific accelerators

• Buffets operate on a 
sliding window of data
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Managing bumped data with buffets
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• Buffets operate on a 
sliding window of data

• Sliding window leads to 
poor data reuse when 
data is bumped
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Managing bumped data with buffets
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Managing bumped data with buffets
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Tailors: Tail Overbooked Buffers for overbooked data
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• Tailors dynamically splits 
the buffer when 
overbooked to stream 
bumped data through the 
tail of the buffer

• Lose reuse for bumped 
data, but not for 
unbumped data
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Tailors: Tail Overbooked Buffers for overbooked data
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Tailors: Tail Overbooked Buffers for overbooked data
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Determining the size of a tile is challenging

Full traversal to find 
maximum occupancy % of buffer occupied 

Ideal
(every tile fits)
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Swiftiles: A swift tiling algorithm for overbooking

Random sampling to generate 
approximate occupancy 

distribution
Scale distribution to buffer size

Sampled
Predicted 
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Evaluation against other tiling options

• ExTensor-Naive
– No knowledge of tile 

occupancy, so must tile 
assuming dense tiles

• ExTensor-Prescient
– Uses the maximum tile 

size where all tiles still 
fit in the buffer

• ExTensor-Overbooking
– Tailors+Swiftiles where 

90% of tiles fit in buffer

[Hegde, MICRO 2019]
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Results – Speedup over ExTensor-N

52.7x speedup over ExTensor-N, 2.3x over ExTensor-P

higher is better
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Results – Energy Efficiency relative to ExTensor-N

22.5x more energy efficient than ExTensor-N, 2.5x more than ExTensor-P

higher is better
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Results – DRAM traffic compared to ExTensor-P

• Bumped data has no 
data reuse while 
unbumped data does

• Increase in DRAM 
traffic due to 
streaming bumped data 
is offset by reduced 
DRAM traffic from 
larger tiles

lower is better
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Key Takeaways

Overbooking

Intentionally under-provisioning buffer capacity can improve buffer utilization and reduce 
DRAM traffic

Tailors

Dynamically splitting buffer for bumped data maintains data reuse without additional area

Swiftiles

Samples tensor to estimate tile size with low preprocessing cost
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