
1

Tailors:
Accelerating Sparse Tensor Algebra

by Overbooking Buffer Capacity

Zi Yu (Fisher) Xue1, Yannan Nellie Wu1, Joel S. Emer1,2, Vivienne Sze1

1MIT 2NVIDIA

http://emze.csail.mit.edu/tailors

2

Many applications use highly sparse tensors

1 %.1 %.01 %10-2 %10-3 %10-4 %10-5 %10-6 %

Neural networksGraph Computing Scientific Simulations

Recommendation SystemsData Analytics

Density
(log scale)

10 % 100 %

[Hegde, MICRO 2019]

367K nonzeros 4.34M nonzeros 3.20M nonzeros

Zero Values Nonzero Values

3

Tiling reduces loads of nonstationary tiles

Tile

Tensor B

Buffer

Tensor A

×

Buffer

4

Tiling reduces loads of nonstationary tiles

Larger tile sizes → greater data reuse → less DRAM traffic

Tile

Tensor B

Buffer

Tensor A

×

Buffer

Tile

Tensor B

Buffer

Tensor A

×

Buffer

5

Tiling sparse tensors is challenging

Nonzeros Nonzeros

Tile

Tensor B

Buffer

Tensor A

×

Buffer

Empty Empty

NonzerosNonzeros

6

Tensors vary in the distribution of sparsity

email-Enron pdb1HYS amazon0312

7

×

Tiling with uniform occupancy

• Always fetch enough nonzeros
to fill the buffer (ideal buffer
utilization)

• Leads to non-uniform tile
shapes (hard to tile other
operand)

Nonzeros ???

8

NonzerosNonzeros ???

×

Tiling with uniform occupancy

Tiling with uniform shape

+ ideal buffer utilization
- hard to tile other operand

+ Always construct tiles with the
same shape (easy to tile both
operands)
- All tiles must fit within the
buffer (low buffer utilization)

Empty

Nonzeros

Nonzeros

Empty

×

9

Nonzeros ???

×

Tiling with uniform occupancy

Tiling with uniform shape

+ Always construct tiles with the
same shape (easy to tile both
operands)
- All tiles must fit within the
buffer (low buffer utilization)

+ ideal buffer utilization
- hard to tile other operand

×

Empty

Nonzeros

Empty

×

Nonzeros

10

Nonzeros

×

Tiling with uniform occupancy

Tiling with uniform shape

+ ideal buffer utilization
- hard to tile other operand

+ Always construct tiles with the
same shape (easy to tile both
operands)
- All tiles must fit within the
buffer (low buffer utilization)

Empty

Nonzeros

Empty

×

Nonzeros

11

Uniform shape tiling has poor buffer utilization

30

20

10

0

%
of

 T
ile

s
% of buffer occupied

0 20 40 60 10080

Maximum
Occupancy

100%

99th Percentile
Occupancy

34%

90th Percentile
Occupancy

6%

• Constructing tiles based on
the maximum tile occupancy
may overprovision buffer
space

• Most tiles do not fully
occupy the buffer

12┘

┌

What if we could overbook buffer
capacity?

13

Sparsity leads to poor utilization

Tickets Sold

14

Sparsity leads to poor utilization

Tickets Sold

Tensor

Buffer

Tile

15

Sparsity leads to poor utilization

Passengers Empty seats

Tickets SoldCancelled

Tensor

Buffer

Tile

16

Sparsity leads to poor utilization

Passengers Empty seats

Tickets SoldCancelled

Tensor

Buffer

Tile

Nonzeros

Empty

17

Overbooking improves utilization

Tickets Sold

Tensor

Buffer

Tile

Nonzeros

Empty

18

Overbooking improves utilization

Tickets Sold

Tensor

Buffer

Tile

19

Overbooking improves utilization

Passengers Empty seats

Tickets SoldCancelled

Tensor

Buffer

Tile

20

Overbooking improves utilization

Passengers Empty seats

Tickets SoldCancelled

Tensor

Buffer

Tile

Nonzeros

Empty

21

Overbooking improves utilization

Bumped data

Bumped passenger

Passengers

Tickets SoldCancelled

BufferNonzeros

Tensor

Tile

22

Overbooking improves utilization

How do we deal with the bumped data?

Tailors
How do we determine how much to overbook?

Swiftiles

Bumped data

Bumped passenger

Passengers

Tickets SoldCancelled

BufferNonzeros

23

Managing unbumped data

A

B

C

DRAM

Buffer (3)

Compute

Traversal order
A B C A B C …

Objective: minimize DRAM traffic
by maximizing data reuse

24

Managing unbumped data with buffets

• Buffets are used to
orchestrate data in a
number of domain-
specific accelerators

• Buffets operate on a
sliding window of data

A

B

C

DRAM

Compute

Traversal order
A B C A B C …

Buffer (3)

25

Managing bumped data with buffets

A

B

C

D

DRAM

Compute

Traversal order
A B C D A B C D …

Buffer (3)

• Buffets operate on a
sliding window of data

• Sliding window leads to
poor data reuse when
data is bumped

26

Managing bumped data with buffets

A

B

C

D

DRAM

Compute

Traversal order
A B C D A B C D …

Buffer (3)

• Buffets operate on a
sliding window of data

• Sliding window leads to
poor data reuse when
data is bumped

27

Managing bumped data with buffets

A

B

C

D

DRAM

Compute

Traversal order
A B C D A B C D …

• Buffets operate on a
sliding window of data

• Sliding window leads to
poor data reuse when
data is bumped

Buffer (3)

28

Tailors: Tail Overbooked Buffers for overbooked data

A

B

C

D

DRAM

Compute

Traversal order
A B C A B C …

A

B

C

DRAM

Compute

Unbumped Bumped

Traversal order
A B C D A B C D …

• Tailors dynamically splits
the buffer when
overbooked to stream
bumped data through the
tail of the buffer

• Lose reuse for bumped
data, but not for
unbumped data

29

Tailors: Tail Overbooked Buffers for overbooked data

A

B

C

D

DRAM

Compute

Traversal order
A B C A B C …

A

B

C

DRAM

Compute

Traversal order
A B C D A B C D …

Unbumped Bumped

• Tailors dynamically splits
the buffer when
overbooked to stream
bumped data through the
tail of the buffer

• Lose reuse for bumped
data, but not for
unbumped data

30

Tailors: Tail Overbooked Buffers for overbooked data

A

B

C

D

DRAM

Compute

Traversal order
A B C A B C …

A

B

C

DRAM

Compute

Traversal order
A B C D A B C D …

Unbumped Bumped
Tailors behave like

buffets when no data
is bumped, but

stream when data is
bumped

31

Determining the size of a tile is challenging

Full traversal to find
maximum occupancy % of buffer occupied

Ideal
(every tile fits)

32

Swiftiles: A swift tiling algorithm for overbooking

Random sampling to generate
approximate occupancy

distribution
Scale distribution to buffer size

Sampled
Predicted

% of buffer occupied

33

Evaluation against other tiling options

• ExTensor-Naive
– No knowledge of tile

occupancy, so must tile
assuming dense tiles

• ExTensor-Prescient
– Uses the maximum tile

size where all tiles still
fit in the buffer

• ExTensor-Overbooking
– Tailors+Swiftiles where

90% of tiles fit in buffer

[Hegde, MICRO 2019]

30

20

10

0
%

of
 T

ile
s

Maximum
Occupancy

100%

90th Percentile
Occupancy

6%

Dense
Tile Occupancy

1600x

% of buffer occupied

0 20 40 60 10080

34

Results – Speedup over ExTensor-N

52.7x speedup over ExTensor-N, 2.3x over ExTensor-P

higher is better

ge
om

ea
n

35

ge
om

ea
n

Results – Energy Efficiency relative to ExTensor-N

22.5x more energy efficient than ExTensor-N, 2.5x more than ExTensor-P

higher is better

36

Results – DRAM traffic compared to ExTensor-P

• Bumped data has no
data reuse while
unbumped data does

• Increase in DRAM
traffic due to
streaming bumped data
is offset by reduced
DRAM traffic from
larger tiles

lower is better

ge
om

ea
n

37

Key Takeaways

Overbooking

Intentionally under-provisioning buffer capacity can improve buffer utilization and reduce
DRAM traffic

Tailors

Dynamically splitting buffer for bumped data maintains data reuse without additional area

Swiftiles

Samples tensor to estimate tile size with low preprocessing cost

This work was funded in part by the MIT AI Hardware Program

