
PAC Reinforcement Learning in Noisy Continuous Worlds

Emma Brunskill∗ Bethany R. Leffler†
∗ Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02143

Lihong Li† Michael L. Littman†
† Department of Computer Science

Rutgers University
Piscataway, NJ 08854

Nicholas Roy∗

Continuous state spaces and stochastic, switching dy-
namics characterize a number of rich, real-world do-
mains, such as robot navigation across varying ter-
rain. We describe a reinforcement-learning algorithm
for learning in such domains. We prove that this algo-
rithm is provably approximately correct for certain en-
vironments. Unfortunately, no optimal planning tech-
niques exist in general for such problems; we instead
use fitted value iteration to solve the learned MDP,
and extend the error bounds from prior work on policy
performance to include the error due to approximate
planning. Finally, we provide a robotic car experiment
over varying terrain to demonstrate that these dynam-
ics representations adequately capture real world dy-
namics and that our algorithm can be used to effi-
ciently solve such problems.

1 INTRODUCTION

Reinforcement learning (RL) has had some impressive
successes, such as model helicopter flying (Ng 2003)
and expert software backgammon players (Tesauro
1994). Two of the key challenges in reinforcement
learning are scaling to large worlds, which gener-
ally involves a form of generalization, and efficiently
handling the exploration/exploitation tradeoff. Many
real-world problems involve real-valued state variables:
discretizing such environments causes an exponential
growth in the number of states as the state dimension-
ality increases, and so solutions that directly reason
with continuous-states are of important consideration.

In this paper, we build on recent work on provably
efficient reinforcement learning (Brafman & Tennen-
holtz, 2002; Strehl et al., 2006; Keans & Singh, 2002)
and focus on continuous-state discrete action environ-
ments. We focus on the case when the dynamics can
be described as switching noisy offsets where the pa-
rameters of the dynamics depend on the state’s “type”
t and the action taken a. More formally,

s′ = s + βat + εat (1)

where s is the current state, s′ is the next state, εat ∼
N (0, Σat) is drawn from a Gaussian with covariance
Σat and βat is the offset.

An example where we expect such dynamics to arise is
during autonomous traversal of varying terrain. Here,
types represent the ground surface, such as dirt or
rocks. The dynamics of the car may be approximated
by an offset from the prior state plus some noise, where
the offset and noise depend on the surface underneath
the car. These models could be useful approximations
in a number of other problems, including transporta-
tion planning (learning the mean speed and variance of
interstate highways and local streets and using this for
path planning to a goal location), and packet routing
(learning that wireless and ethernet have different us-
age patterns and bandwidth and routing accordingly).

We present a new RL algorithm for learning in
continuous-state, discrete action Markov decision pro-
cess (MDP) environments with switching noisy offset
dynamics and show that this algorithm is provably
approximately correct (PAC) in certain environments.
We perform planning using fitted value iteration (FVI)
and incorporate the error due to approximate planning
into our bounds.

Finally, we present experiments on a small robot task
that involves navigation over varying terrains. These
experiments demonstrate that these dynamics models
can accurately capture real-world dynamics and our
algorithm can quickly learn good policies in such en-
vironments.

2 CONTINUOUS-STATE TYPED

Rmax

This section introduces terminology and then presents
our algorithm.

2.1 BACKGROUND

The world is characterized by a continuous-state dis-
counted MDP M = 〈S, A, p(s′|s, a), R, γ〉 where S =
R

Ndim is the Ndim-dimensional state space, A is a set
of discrete actions, p(s′|s, a) is the unknown transition
dynamics that satisfy the parametric form of Equa-
tion 1, γ ∈ [0, 1) and R : S × A → R is the known
reward model, which is bounded by 1. In addition to
the standard MDP formulation, each state s is associ-
ated with a unique observable type t ∈ T and define
NT = |T |. The dynamics of the agent are determined
by the current state type t and action a taken:

p(s′|s, a) = p(s′|s, ts, a) = N (s′|s + βat, Σat). (2)

In this work, we focus on the known reward, unknown
dynamics model situation. The parameters of the dy-
namics model βat, Σat are assumed to be unknown for
all types t and actions a at the start of learning. This
model is a departure from prior related work (Abbeel
& Ng, 2005; Strehl & M.Littman, 2008), which focuses
on a more general linear dynamics model but assumes
a single type and that the variance of the noise Σat

is known. We argue there exist interesting problems
where the variance of the noise is unknown and es-
timating this noise may provide the key distinction
between the dynamics models of different types.

In the reinforcement learning, the agent must learn to
select an action a based on its current state s. at each
time step, it receives an immediate reward r also based
on its current state1. The agent then moves to a next
state s′ according to the dynamics model. The goal is
to learn a policy π : S → A that allows the agent to
choose actions. The value of a particular policy is the
expected discounted sum of future rewards that will
be received from following this policy, and is denoted
V π(s) = Eπ[

∑∞
j=0 γjrj |s0 = s], where rj is the reward

received on the j-th time step and s0 is the initial
state of the agent. Let π∗ be the optimal policy, and
its associated value function be V ∗(s).

2.2 ALGORITHM

Our algorithm draws from the R-max algorithm of
Brafman and Tennenholtz (2002). We first form a set
of 〈t, a〉 tuples, one for each type-action pair. Note
that each tuple corresponds to a particular pair of dy-
namics model parameters, 〈βat, Σat〉. A tuple is con-
sidered to be “known” if if the agent has been in type
t and taken action a NTA times. At each timestep,

1For simplicity, the reward is assumed to be only a func-
tion of state in this paper, but the arguments can be easily
extended to where the reward model is also a function of
the action chosen.

Algorithm 1 Noisy Offset Continuous-State RL

1: Input: NA,Ndim,NT , R, Σmax, Σmin, γ, ǫ, and δ.
2: Set all type-action tuples 〈t, a〉 to be unknown and

initialize the dynamics models (see text) to create
a known MDP model MK .

3: Select a set of fixed evenly spaced points to use for
fitted value iteration.

4: Start in a state s0.
5: loop

6: Solve MDP MK using fitted value iteration with
Gaussian kernels spaced as above.

7: Select action a = argmaxa QMK
(s, a).

8: Transition to the next state s′.
9: Increment the appropriate nt,a count (where t is

the type of state s) given the observed transition
tuple 〈s, a, s′〉.

10: If nt,a exceeds NTA where NTA is specified
according to the analysis, then mark 〈t, a〉 as
“known” and estimate the dynamics model pa-
rameters for this tuple.

11: end loop

we construct a new MDP MK as follows. If a tuple
has been experienced NTA or more times, then we es-
timate the parameters for this dynamics model using
maximum-likelihood estimation:

β̃at =

∑T1

i=1(s
′
i − sat,i)

T1

Σ̃at =

∑T−1
i=1 (s′i − sat,i)

′(s′i − sat,i)

T1 − 1
.

Otherwise, we set the dynamics model for this type-
action tuple to be a transition with probability 1 back
to the same state. We also modify the reward function
for all unknown state-action tuples 〈tu, au〉 so that all
state-action values Q(stu

, au) have a reward of Vmax

(the maximum value possible, 1/(1 − γ)). We then
seek to solve MK . This MDP involves switching dy-
namics with continuous states, and (to the authors’
knowledge) there exist no exact optimal planners for
such MDPs. Instead, we will use fitted value iteration
to approximately solve the MDP.

In FVI, the value function is estimated explicitly at
only a fixed number of points that are (for example)
uniformly spaced over the state space. Planning re-
quires performing Bellman backups for each grid point
fi. Since we are only performing backups of the value
function at a set of grid points fi we need some func-
tion approximator to estimate the value of other points
that are not in this fixed set. We can use Gaussian ker-
nel functions to interpolate the value at the grid points
to other points. The value of a state s that is not a

fixed point is

V (s) =

F
∑

d=1

N (s; fd, Σd)Q(fd, a) (3)

where N (s; fd, Σd) represents a Gaussian with mean
at grid point fd and variance Σd evaluated at state s.
The grid points and variances (fd, Σd) are defined so

F
∑

d=1

wdN (s; fd, Σd) ≈ 1 (4)

for all states s of interest. We would like this expres-
sion to exactly equal 1 for all states of interest as that
guarantees the function approximator is an averager
and therefore discounted infinite horizon fitted value
iteration is guaranteed to converge (Gordon, 1995). In
practice if Gaussians are placed at uniform intervals
over the state space of interest then this expression can
be extremely close to 1. Indeed, as long as the sum
in equation 4 sums to less than or equal to 1 for all
states then the approximator operator is guaranteed
to be a non-expansion in the max norm and therefore
discounted infinite horizon approximate value function
is still guaranteed to converge.

Substituting this representation of the value function
in place of V (s′) and using the dynamics model in the
Bellman backup equation, we can perform the integra-
tion over future reward in closed form to get

V (fi) = R(fi) + γ max
a

∑

d

wd ·

N (fd; fi + βati
,Σati

+Σd)V (fd).

For a given set of fixed states fd, the majority of the
right side can be computed once and used repeatedly
during value iteration; essentially the continuous-state
MDP is converted to a new discrete-state MDP where
the states are the fixed points.

At each timestep, the agent chooses the action that
maximizes the estimate of its current value according
to MK : a = arg maxQMK

(s, a). Our complete algo-
rithm is shown in Algorithm 1.

3 LEARNING COMPLEXITY

In Section 4, we will analyze an instance of our learning
algorithm and prove it is PAC-MDP (provably approx-
imately correct in Markov decision processes).

When analyzing the performance of a learning algo-
rithm, there are many potential criteria to use. In
our work, we will focus predominantly on sample com-
plexity with a brief mention of computational com-
plexity. Computational complexity refers to the num-
ber of operations executed by the algorithm for each

step taken by the agent in the environment. We will
follow Kakade (2003) and use sample complexity as
shorthand for the sample complexity of learning, which
Kakade defined as the number of timesteps at which
the algorithm’s policy at the current state is not ǫ-
optimal; that is, Q∗(s, a)−Qπt(s, a) > ǫ where πt is the
policy of the algorithm at time t. Strehl et al. (2006)
defined an algorithm as PAC-MDP if, for a given ǫ and
δ, with probability at least 1− δ, the algorithm’s sam-
ple complexity is less than a polynomial function of
the problem’s parameters(|S|, |A|, 1/ǫ, 1/δ, 1/(1− γ)).
Note that this definition only requires the algorithm
to learn and execute a near optimal policy with high
probability. As the agent acts in the world, it may
be unlucky and experience a series of state transitions
that poorly reflect the true dynamics, due to noise.

Strehl et al. (2006) described and proved the condi-
tions for an algorithm to be PAC-MDP. First, they de-
fined an algorithm to be greedy if it chooses its action
on timestep t to be the one that maximizes the value
of the current state st (at = argmaxa∈A Qt(st, a)).
Their main result goes as follows: let A(ǫ, δ) denote
a greedy learning algorithm. Maintain a list Kt of
“known” state-action pairs. At each new timestep t,
this list stays the same unless during that timestep a
new state-action pair becomes known. MDP MKt

is
a constructed “known” state-action MDP (where the
construction is very similar to what we described ear-
lier) and πt is the greedy policy of MKt

. Assume that
ǫ and δ are given and the following 3 conditions hold
for all states, actions and timesteps:

1. Q∗(s, a) − Qt(s, a) ≤ ǫ.

2. Vt(s) − V πt

MKt
≤ ǫ.

3. The total number of times the agent visits a state-
action tuple that is not in Kt is bounded by ζ(ǫ, δ)
(the learning complexity).

Then, on any MDP M , A(ǫ, δ) will follow a 4ǫ-
optimal policy from its initial state on all but Ntotal

timesteps with probability at least 1−2δ where where
Ntotal is a polynomial in the problems’ parameters
(ζ(ǫ, δ), 1

δ , 1
ǫ , 1

1−γ).

The majority of our analysis will focus on showing
that our algorithm fulfills these three criteria. We
will briefly discuss some intuition for these criteria and
how we will proceed in proving our algorithm satisfies
them. Together, the first and second criteria can be
interpreted as saying that the algorithm should pro-
duce accurate value estimates of the known MDP, and
that it should be optimistic about the values of all
state-action pairs. The first criterion is the more chal-
lenging to demonstrate. In order to show our esti-
mates of known state-action pairs are close to their

real values, we must consider two potential sources of
error that could prevent it. The first is that the model
dynamics are only estimated from the samples experi-
enced, and so the dynamics model estimates may be
far from the true dynamics. In Proposition 4.1 and
Lemmas 4.2, 4.3, and 4.4, we bound the number of
samples necessary to ensure the dynamics model pa-
rameter estimates are close to the true dynamics. The
second source of error comes solving the MDP. We can-
not currently perform exact optimal planning for these
continuous-state noisy offset MDPs, and therefore we
do approximate planning. In Section 4.2, we bound
the error due to this approximate planning. We then
combine these results in Lemma 4.5 to bound the error
between our estimate of the value of the known state
MDP and the true optimal values. Theorem 4.6 uses
this result to prove the algorithm is PAC-MDP.

Note that our use of an approximate planner is a de-
parture from most related work on PAC RL. Existing
work typically assumes the existence of a planning or-
acle for choosing actions given the estimated model.

To ensure fitted value iteration produces highly accu-
rate results, our algorithm’s worst-case computational
complexity is exponential in the number of state di-
mensions. While this fact prevents it from satisfying
the conditions to be efficient PAC-MDP (Strehl et al.,
2006), our experimental results demonstrate our algo-
rithm performs well compared to related approaches
in a real-world robot problem.

4 ANALYSIS

This section provides a formal analysis of the al-
gorithm. For simplicity, it assumes a diago-
nal variance matrix for the noise model: Σ =
diag(σ2

1 , σ2
2 , · · · , σ2

Ndim
). We believe the algorithm is

correct in the non-diagonal case as well, but the anal-
ysis is more involved. We also assume that the abso-
lute values of the components in βat and Σat are upper
bounded by Bβ and Bσ, respectively, for some known
constants Bβ and Bσ. This assumption is often true
in practice.

4.1 MODEL ACCURACY

We first establish the distance between two dynamics
models with different parameters. Following Abbeel
and Ng (2005), we use the variational distance

dvar(P (x), Q(x)) =
1

2

∫

X
|P (x) − Q(x)|dx. (5)

Proposition 4.1 Assume that both Σ1 and Σ2 are di-
agonal matrices and let σmin be the minimum variance

along any of the dimensions. Then,

dvar(N (s′|β1 + s, Σ1),N (s′|β2 + s, Σ2))

≤ 1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

+
||β2 − β1||2
√

(2π)σmin

where σ2
ki is the variance of the k-th Gaussian along

dimension i.

Proof Assume w.l.o.g. that |Σ1| ≤ |Σ2|. Then,

dvar(N (s′|β1 + s, Σ1),N (s′|β2 + s, Σ2))

=
1

2

∫

s′

|N (s′|β1 + s, Σ1) −N (s′|β2 + s, Σ2)|ds′

=
1

2

∫

s′

|N (s′|β1 + s, Σ1) −N (s′|β2 + s, Σ1) +

N (s′|β2 + s, Σ1) −N (s′|β2 + s, Σ2)|ds′

where we have simply added and subtracted the same
term. Using the triangle inequality, we can split the
expression into two terms:

dvar(N (s′|β1 + s, Σ1),N (s′|β2 + s, Σ2))

≤ 1

2

∫

s′

|N (s′|β1 + s, Σ1) −N (s′|β2 + s, Σ1)| ds′

+
1

2

∫

s′

|N (s′|β2 + s, Σ1) −N (s′|β2 + s, Σ2)| ds′,

one where the means are the same and the variances
are different, and one where the variances are the same
and the means are different. The second term equals

1

2
(2 − 2A) = 1 − A, (6)

where A is the area of the intersection between two
Gaussians with the same mean and different variances.

To upper bound this term, we would like to find a lower
bound on A. We can construct a new weighted Gaus-
sian that lies entirely within the intersection area and
has the same mean as the two Gaussians (β2 + s) (see
Figure 1 for a one dimensional example). We can set
the covariance of this new Gaussian by setting its vari-
ance along each dimension i to be the smaller of the
two Gaussians’ variances: σ2

int,i = min[σ2
i1, σ

2
i2]. We

then determine the weight on the Gaussian wint by
requiring that its height at the mean be no more than
the smaller of the two Gaussians. Since we have as-
sumed that |Σ1| ≤ |Σ2|, then the height at the mean of
the smaller Gaussian is simply 1/((2π)Ndim/2|Σ2|0.5).
Therefore, we can set wint as

wintNint(β2 + s|β2 + s, Σint) =
1

(2π)Ndim/2|Σ2|0.5
.

Solving for wint, we get

wint =

(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

.

µ
2

N(µ
2
, Σ

1
)

N(µ
2
, Σ

2
)

w
int

N(µ
2
,Σ

1
)

Figure 1: Two Gaussians with identical means and
different variances, and a new weighted Gaussian that
lies entirely inside their intersection.

This weighted Gaussian always lies within the inter-
section region and therefore the A is at least

∫

wintNint(s
′|β2 + s, Σint)ds′ = wint.

Now, substituting this expression back into Equation 6

1

2

∫

s′

|N (s′|β2 + s, Σ1) −N (s′|β2 + s, Σ2)| ds′

≤ 1 − wint = 1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

. (7)

Next, consider the first term in Equation 6, which
looks at the difference between two Gaussians with
different means and identical variances. From Abbeel
and Ng (2005) (Proposition 7), this expression is upper
bounded by

||β2 + s − (β1 + s)||2√
2πσmin

=
||β2 + β1||2√

2πσmin

, (8)

where σmin is the minimum standard deviation along
any of the dimensions. Combining Equations 8 and 7
immediately gives the desired result.

Note this function is 0 when the means and the vari-
ances are the same, as one would hope. 2

We next seek to determine the number of samples nec-
essary to ensure that dvar is tightly bounded when
evaluated at the estimated model parameters and the
true model parameters.

2The true dvar is upper bounded by 1, whereas this
expression can go higher, so it is overly pessimistic when
the difference between the two Gaussians’ parameters is
large, but more accurate as their difference goes to 0. Since
we need to estimate the parameters fairly precisely, we are
more concerned with this second case.

Lemma 4.2 Given ǫ and δ, let Tβ ≥
2NdimB2

ǫ2 ln 6Ndim

δ where B > 0 is arbitrary. Then,
if there are Tβ transition samples (s, a, s′) where
‖s′ − s‖∞ < B then with probability at least 1− δ

3 , the

estimated offset parameter β̃ is within ǫ of the true
offset parameter β∗: Pr(‖β̃ − β∗‖2 ≤ ǫ) ≥ 1 − δ

3 .

Proof Since the difference between successive states
‖s′ − s‖ is bounded above and below by B, we can
apply Hoeffding’s inequality:3

Pr

(

|β̃i − β∗
i | ≥

ǫ√
Ndim

)

≤ 2 exp

(

−2T 2
1

ǫ2

Ndim

T1(2B)2

)

.

(9)
To find the number of samples T1 needed to ensure this
bound holds with probability at least 1− δ

3Ndim
, solve

for T1 = 2NdimB2

ǫ2 ln 6Ndim

δ . Doing so independently

for each dimension and using the fact ‖β̃ − β∗‖2 ≤√
Ndim maxi |β̃i − β∗

i |, we can ensure ‖β̃ − β∗‖2 ≤ ǫ
with at least probability 1 − δ

3 .

We next analyze the number of samples necessary to
estimate the variance.

Lemma 4.3 Let ǫ and δ be given and let Tσ ≥
8B4

ǫ−ǫ2 ln 6Ndim

δ for arbitrary B > 0. Then if there
are Tσ samples where ‖s′ − s‖∞ < B, then with with
probability at least 1 − δ

3 , the estimated variance pa-

rameter σ̃2
i along each dimension i is within ǫ of the

true variance parameter σ2
i along the same dimension:

Pr(maxi |σ̃2
i − σ2

i | ≤ ǫ) ≥ 1 − δ
3 .

Proof We can independently estimate the variance
along each dimension. Assume maxi |β̃i − β∗

i | ≤ ǫ.
By definition, σ2

i = E[(s′i − (si + β∗
i))2], where E de-

notes expectation with respect to s′i ∼ N(si + β∗
i , σ2

i).
But, since β̃i 6= β∗

i in general, σ2 6= E[(s′i−(si + β̃i))
2].

Define σ̄2
i = E[(si − (si + β̃i))

2]. Then,
∣

∣

∣
σ̄2

i − σ2
i

∣

∣

∣
=
∣

∣

∣
E
[

(s′i − (si + β̃i))
2 − (s′i − (si + β∗

i))
2
]
∣

∣

∣

=
∣

∣

∣
E
[(

β∗
i − β̃i

)(

2s′i − (si + β∗
i) − (si + β̃i)

)]∣

∣

∣

≤ ǫ
∣

∣

∣
E
[

2s′i − (si + β∗
i) − (si + β̃i)

]∣

∣

∣

= ǫ
∣

∣

∣
E
[

(si + β∗
i) − (si + β̃i)

]
∣

∣

∣
≤ ǫ2.

Therefore, Pr
(
∣

∣

∣
σ̃2

i − σ2
i

∣

∣

∣
> ǫ
)

is at most

Pr
(∣

∣

∣
σ̃2

i − σ̄2
i

∣

∣

∣
+
∣

∣

∣
σ̄2

i − σ2
i

∣

∣

∣
> ǫ
)

, due to the tri-

angle inequality, which in turn is at most

3Strictly speaking, the true mean of s′i − si is not β∗

i

as we ignore a sample when |s′i − si| > B, which can
introduce a bias. But, this bias is insignificant when
B ≫ max[Bβ, Bσ]. In fact, if B = Ω(ǫ−0.5 max[Bβ , Bσ]),
then the introduced bias is at most ǫ, and we will obtain
asymptotically identical results.

Pr
(∣

∣

∣
σ̃2

i − σ̄2
i

∣

∣

∣
+ ǫ2 > ǫ

)

as |σ̄2
i − σ2

i | ≤ ǫ2. Since

(s′i − (si + β̃i))
2 ∈ [0, 4B2], we can apply Hoeffding’s

inequality to upper bound Tσ: solving

Pr
(
∣

∣

∣
σ̃2

i − σ̄2
i

∣

∣

∣
+ ǫ2 > ǫ

)

= Pr
(
∣

∣

∣
σ̃2

i − σ̄2
i

∣

∣

∣
> ǫ − ǫ2

)

≤ 2 exp

(

−2T 2
σ(ǫ − ǫ2)2

T2(4B2)2

)

=
δ

3Ndim
,

for Tσ gives Tσ = 8B4

(ǫ−ǫ2)2 ln 6Ndim

δ . Applying a

union bound to all Ndim dimensions, Tσ ensures

Pr(maxi |σ̃2
i − σ2

i | ≤ ǫ) ≥ 1 − δ
3 .

One final lemma is used to bound how many samples
must be collected until enough “good” samples are col-
lected that fulfill our criteria that ‖s′ − s‖∞ < B.

Lemma 4.4 Let T be the number of observed sam-
ples before T0 = max[Tβ, Tσ] good samples are col-
lected. Then, Pr(T > δT0

δ−3Ndimp0

) < δ
3 , where p0 =

√

8
π

B3

σ

(B−Bβ)3 and setting B > Bβ +
6

√

72N2

dim

πδ2 Bσ en-

sures δ > 3Ndimp0.

Proof It follows from the union bound that
Pr(‖s′ − s‖∞ > B) ≤ Ndim Pr(|s′i − si| > B) for all
i. We will show that Pr(|s′i − si| > B) is small. Let
ϕ(x) and Φ(x) be the probability density function and
cumulative distribution function of the standard Gaus-
sian distribution, respectively. Then,

Pr(s′i − si > B) = 1 − Φ

(

B − β∗
i

σi

)

≤ 1√
2π

exp

(

− (B − β∗
i)2

2σ2
i

)

1
B−β∗

i

σi

=
σi√

2π(B − β∗
i)

exp

(

− (B − β∗
i)2

2σ2
i

)

,

where the first equality follows from the definition, and
the inequality follows from the fact that 1 − Φ(y) <
ϕ(y)

y when y > 0. Now, we can apply the inequality

e−x < 1
1+x to obtain

Pr(s′i − si > B) ≤ σi√
2π(B − β∗

i)
· 1

1 +
(B−β∗

i
)2

2σ2

i

<

√

2

π

σ3
i

(B − β∗
i)3

≤
√

2

π

B3
σ

(B − Bβ)3
.

Similarly, we may upper bound Pr(s′i − si < −B) and
thus Pr(|s′i − si| > B) < p0 where p0 is given in the
lemma statement.

Now, return to the full multivariate case:

Pr(‖s′ − s‖∞ > B) ≤ Ndimp0 =

√

8

π

B3
σNdim

(B − Bβ)3
.

This inequality indicates that every sample is a “bad”
sample with probability at most Ndimp0. Given T i.i.d.
samples, let N(T) be the number of bad samples. Our
estimation algorithm fails to have T0 good samples if
and only if N(T) > T − T0. By Markov’s inequality,

Pr(N(T) > T − T0) ≤
E[N(T)]

T − T0
<

TNdimp0

T − T0
.

Solving for T by letting the last expression equal δ
3

gives T = δT0

δ−3Ndimp0

. We can obtain the minimum
value of B by solving 3Ndimp0 = δ for B.

Combining these results with Lemmas 4.2 and 4.3 gives
a condition on the minimum number of samples nec-
essary to ensure, with high probability, the estimated
parameters of a particular type-action dynamics model
are close to the true parameters:

T = max[Tβ, Tσ] = O

(

NdimB4

ǫ2
ln

Ndim

δ

)

.

4.2 PLANNING ERROR

We next bound the error between the value func-
tion found by solving our particular continuous state
Markov decision process using fitted value iteration
compared to the optimal value function V ∗. Recall
that by performing FVI, we are essentially mapping
the original MDP to a new finite-state MDP where
the states are the chosen fixed points.

Under a set of four assumptions, Chow and Tsit-
siklis (1991) proved that the optimal value function
Vε of a discrete-state MDP formed by discretizing a
continuous-state MDP into O(ε)-length (per dimen-
sion) 4 grid cells is an ε-close approximation of the
optimal continuous-state MDP value function V ∗:

||Vε − V ∗|| ≤ ε.

The first two assumptions used to prove the above re-
sult include that the reward function and probability
distribution are Lipschitz-continuous. In our work the

4More specifically, the grid spacing hg must satisfy

hg ≤ (1−γ)2ε

K1+2KK2
and hg ≤ 1

2K
where K is the larger of

the Lipschitz constants arising from the assumptions dis-
cussed in the text, and K1 and K2 are constants discussed
in Chow and Tsitsiklis (1991). For small ε any hg satisfy-
ing the first condition will automatically satisfy the second
condition.

reward function is assumed to be given so this con-
dition is a prior condition on the problem specifica-
tion. Our probability distributions are Gaussian dis-
tributions which are Lipschitz-continuous so the sec-
ond condition holds. The third key assumption is that
the dynamics probablity represent a true probablity
measure that sums to 1 (

∫ ′
s p(s′|s, a) = 1), though the

authors show that this assumption can be relaxed to
∫ ′

s
p(s′|s, a) ≤ 1 and the main results still hold. In

our work our dynamics models represent true proba-
bility models. Chow and Tsitsiklis’s final assumption
is that there is a bounded difference between any two
controls: in our case we handle finite controls and this
holds directly.

In summary, assuming the reward model fulfills the
first assumption, our framework satisfied all four as-
sumptions made by Chow and Tsitsiklis. Therefore,
by selecting fixed grid points at a regular spacing
of O(ǫFV I) in each dimension, we can ensure that
||ṼFV I − V ∗||∞ is at most ǫFV I where ṼFV I is the
FVI optimal value function.

4.3 APPROXIMATE REINFORCEMENT

LEARNING

The next lemma relates the accuracy in the dy-
namics model parameters, and the error induced
by approximate planning, to the value function of
two MDPs. The proof strongly parallels a simi-
lar Simulation Lemma in recent work by Strehl and
M.Littman (2008).

Lemma 4.5 Let M1 = 〈S, A, p1(s
′|s, a), R, γ〉 and

M2 = 〈S, A, p2(s
′|s, a), R, γ〉 be two typed MDPs

with dynamics as characterized in Equation 1 and
non-negative rewards bounded above by 1. Assume
||β1−β2||2√

2πσmin

≤ F1 and |1− |Σ1|0.5

|Σ2|0.5 | ≤ F2 for all types t and

actions a. Also assume that the difference between the
value function Ṽ obtained by performing approximate
planning by fitted value iteration (FVI) compared to
the optimal value function V ∗, ||Ṽ − V ∗||∞ is at most
F3. Let π be a policy that can be applied to both M1

and M2. Then, there exists a set of constants C1, C2

and C3 such that for any 0 < ǫ ≤ Vmax and station-

ary policy π, if F1 = C1(
(1−γ)2ǫ

γ) F2 = C2(
ǫ(1−γ)2

γ),

and F3 = C3(
ǫ(1−γ)

γ), then for all states s and ac-

tions a, |Qπ
1 (s, a) − Q̃π

2 (s, a)| ≤ ǫ,where Q̃π
2 denotes

the state-action value obtained by performing FVI on
MDP M2 and Qπ

1 denotes the optimal state-action
value for MDP M1.

Proof Let ∆Q = maxs,a |Qπ
1 (s, a) − Q̃π

2 (s, a)|. Note
that since we are taking the max over all actions, ∆Q

is also equal or greater than maxs |V π
1 (s) − Ṽ π

2 |. Let

Lp2(s
′|s, a) denotes an approximate backup of FVI.

Since these value functions are the fixed-point solu-
tions to their respective Bellman operator, we have
for every (s, a) that

|Qπ
1 (s, a) − Q̃π

2 (s, a)|

=

∣

∣

∣

∣

(

R(s, a) + γ

∫

s′∈S

T1(s
′)V π

1 (s′)ds′
)

−
(

R(s, a) + γ

∫

s′∈S

LT2(s
′)Ṽ π

2 (s′)ds′
)∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

∫

s′∈S

[

T1(s
′)V π

1 (s′) − LT2(s
′)Ṽ π

2 (s′)
]

ds′
∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

∫

s′∈S

[

T1(s
′)V π

1 (s′) − T1(s
′)Ṽ π

2 (s′)
]

ds′+

∫

s′∈S

[

T1(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)
]

ds′
∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

∫

s′∈S

T1(s
′)(V π

1 (s′) − Ṽ π
2 (s′))ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

T1(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)ds′
∣

∣

∣

∣

where the last step follows from the triangle inequality.
Now add and subtract

∫

s′∈S
T2(s

′)Ṽ π
2 (s′)ds′ and again

apply the triangle inequality:

|Qπ
1 (s, a) − Q̃π

2 (s, a)|

≤ γ

∣

∣

∣

∣

∫

s′∈S

T1(s
′)(V π

1 (s′) − Ṽ π
2 (s′))ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

[

T1(s
′)Ṽ π

2 (s′) − T2(s
′)Ṽ π

2 (s′)
]

ds′+

∫

s′∈S

[

T2(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)
]

ds′
∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

∫

s′∈S

T1(s
′)(V π

1 (s′) − Ṽ π
2 (s′))ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

(T1(s
′) − T2(s

′))Ṽ π
2 (s′)ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

T2(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)ds′
∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

∫

s′∈S

T1(s
′)(V π

1 (s′) − Ṽ π
2 (s′))ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

(T1(s
′) − T2(s

′))Ṽ π
2 (s′)ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

T2(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)ds′
∣

∣

∣

∣

.

This expression must hold for all states s and actions

a, so it must also hold for ∆Q:

∆Q ≤ γ∆Q + γ

∣

∣

∣

∣

∫

s′∈S

(T1(s
′) − T2(s

′))Ṽ π
2 (s′)ds′

∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

T2(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)ds′
∣

∣

∣

∣

≤ γ∆Q + γVmax

∣

∣

∣

∣

∫

s′∈S

T1(s
′) − T2(s

′)ds′
∣

∣

∣

∣

+

γ

∣

∣

∣

∣

∫

s′∈S

T2(s
′)Ṽ π

2 (s′) − LT2(s
′)Ṽ π

2 (s′)ds′
∣

∣

∣

∣

≤ γ∆Q + γVmaxdvar(T1, T2) + γǫFV I

where we have again used the triangle inequality.
Therefore

∆Q ≤ γ∆Q + γVmaxdvar + γǫFV I

=
γ dvar

1−γ

1 − γ
+

γǫFV I

1 − γ
.

So, we have now expressed the error in the value func-
tion as the sum of the error due to the model approxi-
mation and the error due to using fitted value iteration
for planning. If we can bound the error of each to be
less than or equal to ǫ/2, then the overall error ∆Q ≤ ǫ.

First, note that that we can bound the error due to

FVI to be less than or equal to ǫ(1−gamma)
2γ by selecting

a grid width of O(ǫ(1−gamma)3

γ) as discussed in Section

4.2. This ensures that γǫF V I

1−γ ≤ ǫ
2 .

We now wish to bound the error due to the model
approximations to be no more than ǫ/2:

γdvar

(1 − γ)2
≤ ǫ

2
=⇒ dvar ≤ (1 − γ)2ǫ

2γ
. (10)

From Proposition 4.1, dvar ≤ 1 −
(

∏Ndim

i=1
min[σ2

1i,σ
2

2i]

σ2

2i

)0.5

+ ||β2−β1||2√
(2π)σmin

. So, in order

for Equation 10 to hold, we split the error into two
terms and require that

||β2 − β1||2
(2π)Ndim |Σ1|0.5

≤ (1 − γ)2ǫ

4γ
(11)

and

1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

≤ (1 − γ)2ǫ

4γ
. (12)

Adding and subtracting max[σ2
1i, σ

2
2i] from

the numerator of the fraction in Equa-

tion 12 we get 1 −
(

∏Ndim

i=1
min[σ2

1i,σ
2

2i]

σ2

2i

)0.5

=

1 −
(

∏Ndim

i=1
min[σ2

1i,σ
2

2i]+max[σ2

1i,σ
2

2i]−max[σ2

1i,σ
2

2i]

σ2

2i

)

0.5.

There are two cases for each i: either σ2
2i ≥ σ2

1i or
vica versa. If σ2

2i ≥ σ2
1i then

min[σ2
1i, σ

2
2i + max[σ2

1i, σ
2
2i] − max[σ2

1i, σ
2
2i]]

σ2
2i

=

σ2
1i − σ2

2i + σ2
2i

σ2
2i

=

1 − |σ2
1i − σ2

2i

σ2
2i

.

If σ2
2i < σ2

1i then

min[σ2
1i, σ

2
2i + max[σ2

1i, σ
2
2i] − max[σ2

1i, σ
2
2i]]

σ2
2i

=

σ2
2i − σ2

1i + σ2
1i

σ2
2i

=

σ2
1i

σ2
2i

− |σ2
1i − σ2

2i

σ2
2i

≥

1 − |σ2
1i − σ2

2i|
σ2

2i

So in both cases 1 − |σ2

1i−σ2

2i

σ2

2i

is a lower bound to the

fraction. Therefore

1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

≤ 1 −
(

Ndim
∏

i=1

1 −
∣

∣σ2
1i − σ2

2i

∣

∣

σ2
2i

)0.5

.

We can further upper bound this by substituting in the
minimum variance and maximum difference between
variances over any dimension:

1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

≤ 1 −
(

1 − maxi

∣

∣σ2
1i − σ2

2i

∣

∣

σ2
min

)Ndim/

Since (1 − x)C ≥ 1 − ⌈C⌉x ∀C ≥ 0

1 −
(

Ndim
∏

i=1

min[σ2
1i, σ

2
2i]

σ2
2i

)0.5

≤ 1 −
(

1 − ⌈Ndim

2
⌉
∣

∣σ2
1i − σ2

2i

∣

∣

σ2
min

)

= ⌈Ndim

2
⌉
∣

∣σ2
1i − σ2

2i

∣

∣

σ2
min

We now set the right hand side to (1−γ)2ǫ
4γ (to upper

bound our desired expression) and solve for |σ2
1i−σ2

2i|:
∣

∣σ2
1i − σ2

2i

∣

∣ ≤ σ2
min(1 − γ)2ǫ

4γ⌈Ndim/2⌉ .

From Lemma 4.4, we know that after

O(
N3

dimB4γ2

σ4

min
(1−γ)4ǫ2

ln Ndim

δ) samples, this bound is

guaranteed to hold with probability at least 1 − δ.
This number of samples is also sufficient to ensure
that Equation 11 holds with probability at least 1− δ.

4.4 APPROXIMATELY OPTIMAL

REINFORCEMENT LEARNING

Theorem 4.6 For any given δ and ǫ in a continuous-
state noisy offset dynamics MDP with NT types where
the variance along each dimension of all the dynam-
ics models is bounded by [σ2

min, B2
σ] and the offset pa-

rameter is bounded by |βi| < Bβ on all but Ntotal

timesteps, our algorithm will follow a 4ǫ-optimal policy
from its current state with probability at least 1 − 2δ,
where Ntotal is polynomial in the problem parameters
(NT , |A|, 1

δ , 1
ǫ , 1

1−γ , 1
σmin

, Bσ, Bβ , Ndim).

Proof In short, we demonstrate that our algorithm
fulfills the three criteria outlined earlier. From the
analysis done in the prior section, we know that af-

ter NTA = O
(

N3

dimB4γ2

σ4

min
(1−γ)4ǫ2

)

samples, with probability

1 − δ, the errors ‖β1 − β2‖2 and for each state di-

mension i |σ2
i − σ̃2

i | will be O((1 − γ)2ǫ). We also
chose the spacing of our fixed grid points such that
ǫF V Iγ
1−γ ≤ ǫ

2 . Then, the Simulation Lemma (4.5) guar-
antees that the approximate value of our known state
MDP solved using FVI is ǫ-close to the optimal value
of the known state MDP with the true dynamics pa-
rameters ||Ṽ π

K̃
− V π

K ||∞ ≤ ǫ. All unknown type-action
pairs that have not yet been experienced NM times
are considered to be unknown and their value is set to
Vmax. So, condition (1) and (2) (Strehl et al., 2006)
hold. The third condition limits the number of times
the algorithm may experience an unknown type-action
tuple. Since there are a finite number of types and ac-
tions, this quantity is bounded above by NTANT |A|,
which is a polynomial in the problem parameters
(NT , |A|, 1

δ , 1
ǫ , 1

1−γ , 1
σmin

, Bσ, Bβ , Ndim). Therefore, our
algorithm is PAC-MDP.

5 EXPERIMENT

To examine the performance of our algorithm, we per-
formed experiments in a real world robotic environ-
ment involving a navigation task where a robotic car
must traverse multiple surface types to reach a goal
location. Our experiments seek to demonstrate both
that our dynamics models provide a sufficiently good
representation of real world dynamics to allow our al-
gorithm to learn good policies, and that our approach
can outperform an alternative related approach.

An alternate model to that suggested in this paper
is to discretize the world environment. Recent work
by Leffler et al. (2007) provided RAM-Rmax, a prov-
ably efficient RL algorithm for learning in discrete-
state worlds with types. The authors demonstrated
that by explicitly representing the types they could
get a significant learning speedup compared to Rmax,

Figure 2: Image of the environment. The start loca-
tion and orientation is marked with an arrow. The
goal location is indicated by the circle.

which learns a separate dynamics model for each state.
This algorithm represents the dynamics model using a
list of possible next outcomes for a given type. Our
approach assumes a fixed parametric distribution that
automatically constrains the size of the representa-
tion. Though the RAM-Rmax approach can handle
a more general set of dynamics models, we expect our
approach to outperform RAM-Rmax when our para-
metric representation is a good approximation of the
true dynamics.

5.1 EXPERIMENTAL SETUP

For our experiment, we ran a LEGO R© Mindstorms
NXT on a multi-surface environment. This domain,
shown in Figure 2, consisted of two types: rocks em-
bedded in wax and a carpeted area. The goal was for
the agent to begin in the start location (indicated in
the figure by an arrow) and end in the goal without
going outside the environmental boundaries. The re-
wards were −1 for going out of bounds, +1 for reaching
the goal, and −0.01 for taking an action. Reaching the
goal and going out of bounds ended the episode and
resulted in the agent getting moved back to the start
location.

One difficulty of this environment is the difference in
dynamics models. Due to the close proximity of the
goal to boundary, the agent needs an accurate dynam-
ics model to reliably reach the goal. To make this
task even more difficult, the actions were limited to
going forward, turning left, and turning right. By re-
moving the ability for the agent to move backwards,
it increased the need for the agent to accurately ap-
proach the goal reliably. A robot with an inaccurate
transition model would be likely to judge this task as

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25

R
ew

ar
d

Episode Number

Average Per Episode Reward

CRAM
RAM

Figure 3: Reward received by algorithms averaged over
three runs. Error bars show one standard deviation.

impossible.

For the experiments, we compared our algorithm (la-
beled as “CRAM” in the figures) and the RAM-Rmax
algorithm (labeled as “RAM”). The fixed points for
the fitted value iteration portion of our algorithm were
set to the discretized points of the RAM-Rmax algo-
rithm. Both algorithms used an EDISON image seg-
mentation system to uniquely identify the current sur-
face type. The reward function was provided to both
algorithms.

The state space is three dimensional: x,y, and orien-
tation. Our algorithm implementation for this domain
uses a full covariance matrix to model the dynamic’s
variance model. For the RAM-Rmax agent, the world
was discretized to a forty by thirty by ten state space.
In our algorithm we used a function approximator of a
weighted sum of Gaussians, as described in Section 2.2.
We used the same number of Gaussians to represent
the value function as the size of the state space used in
the discretized algorithm, and placed these fixed Gaus-
sians at the same locations. The variance over the x
and y variables was independent of each other and of
orientation, and was set to be 16. In order to aver-
age orientation vectors correctly (so that -180 degrees
and 180 degrees don’t average to 0) we converted ori-
entation vectors to an x,y representation θx, θy. The
variance over these two was set to be 9 for each variable
(with no covariance). The value of all variances were
set by informal experimentation. For our algorithm
and the RAM-Rmax algorithm, the value of NTA was
set to four and five, respectively, which was determined
after informal experimentation. The discount factor
was set to 1.

6 RESULTS

Figure 3 shows the average reward of each of the algo-
rithms with standard deviation over three runs. Both
algorithms are able to receive near optimal reward on

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25 30

C
om

pu
ta

tio
n

T
im

e

Episode Number

Average Per Episode Computation Time

CRAM
RAM

Figure 4: Total time taken by algorithms averaged over
three runs. Error bars show one standard deviation.

a consistent basis choosing similar paths to the goal.
This demonstrates that our dynamics representation
is sufficient to allow our algorithm to learn well in a
real-world environment.

In addition, by using a fixed parametric representa-
tion, the computational time per episode of our algo-
rithm is roughly constant, compared to the computa-
tion time of the RAMRmax algorithm, as shown in
Figure 4. This suggests that in addition to our theo-
retical results, our algorithm is an interesting practical
alternative to discretized techniques in certain environ-
ments.

7 CONCLUSION

We have presented a new reinforcement-learning al-
gorithm for handling continuous-state typed worlds
where the dynamics can be modeled as a noisy offset.
We proved that when the noise covariance matrix is
diagonal, the algorithm is PAC-MDP. We also demon-
strated that these dynamics representations provide a
reasonable approximation of real-world dynamics by
running our algorithm in a small robotic experiment.

References

Abbeel, P., & Ng, A. Y. (2005). Exploration and ap-
prenticeship learning in reinforcement learning. Pro-
ceedings of the 22nd International Conference on
Machine Learning (pp. 1–8).

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a
general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learn-
ing Research, 3, 213–231.

Chow, C., & Tsitsiklis, J. (1991). An optimal multigrid
algorithm for continuous state discrete time stochas-

tic control. IEEE Transactions on Automatic Con-
trol, 36, 898–914.

Gordon, G. (1995). Stable function approximation in
dynamic programming. Proc. International Confer-
ence on Machine Learning.

Kakade, S. (2003). On the sample complexity of rein-
forcement learning. Doctoral dissertation, Univer-
sity College London.

Keans, M. J., & Singh, S. P. (2002). Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49, 209–232.

Leffler, B. R., Littman, M. L., & Edmunds, T. (2007).
Efficient reinforcement learning with relocatable ac-
tion models. AAAI-07: Proceedings of the Twenty-
Second Conference on Artificial Intelligence (pp.
572–577). Menlo Park, CA, USA: The AAAI Press.

Strehl, A., L.Li, & Littman, M. (2006). Incremen-
tal model-based laerners with formal learning-time
gaurantees. Uncertainty in Artificial Intelligence.
Cambridge, USA.

Strehl, A., & M.Littman (2008). Online linear regres-
sion and its application to model-based reinforce-
ment learning. Neural Information Processing Sys-
tems 20.

