Incentive-Compatible Interdomain Routing with
Linear Utilities*

Alexander Hall', Evdokia Nikolova?, and Christos Papadimitriou?

1 UC Berkeley, USA, alex.hall@gmail.com, christos@cs.berkeley.edu
2 MIT CSAIL, USA, nikolova@mit.edu

Abstract. We revisit the problem of incentive-compatible interdomain
routing, examining the, quite realistic, special case in which the au-
tonomous systems’ (ASes’) utilities are linear functions of the traffic
in the incident links, and the traffic leaving each AS. We show that
incentive-compatibility towards maximizing total welfare is achievable
efficiently, and, in the uncapacitated case, by an algorithm that can be
implemented by BGP, the standard protocol for interdomain routing.

1 Introduction

The Internet is in many ways a mysterious object, a complex wonder which
we must approach with the same puzzled humility with which neuroscientists
approach the brain and biologists the cell. Even at the most basic level of rout-
ing, for example, it is not clear at all how and why the approximately 20,000
independent, and presumably selfish, autonomous systems (ASes) cooperate to
provide connectivity between any two of them. The problem is quintessentially
economic. ASes are known to have confidential financial agreements on how traf-
fic between them is to be handled and paid for, and such agreements are reflected
in the ways in which each AS routes traffic. We can think of the ASes as nodes
of an undirected graph, with edges signifying the existence of such an agreement
between the two endpoints (equivalently, the possibility of traffic routed directly
between the two). In particular, ASes communicate in terms of the border gate-
way protocol (BGP), a flexible protocol allowing them to implement routing
decisions of arbitrary complexity, by “advertising” paths to adjacent ASes, and
selecting among the paths advertised by their neighbors. Hence, the Internet is
in its essence an economy, a game, an arena where agents act selfishly and are af-
fected by everybody’s decisions; consequently, one can ask of it the questions we
usually ask of such systems, for example the price of anarchy, or the possibility of
incentive-compatible maximization of social welfare (questions typically studied
by algorithmic mechanism design [18]); in this paper we address the latter.
Indeed, starting with Feigenbaum et al. [10], BGP has been studied in the
past under the lens of algorithmic mechanism design, and in particular in terms of

* The authors were supported through: NSF grant CCF - 0635319, a gift from Yahoo!
Research, a MICRO grant, the American Foundation for Bulgaria Fellowship, and a
fellowship by the Swiss National Science Foundation PA002 - 113170 / 1.

the Vickrey-Clarke-Groves (VCG) mechanism (see, e.g., [17] for an introduction
to mechanism design). It was noticed [10] that social welfare can be optimized
in routing, if one assumes that each AS has a fixed per packet cost, via the VCG
mechanism with payments; and in fact, that this can be achieved in a way that is
very “BGP-friendly,” i.e., can be implemented by minimal disruption of BGP’s
ordinary operation. Furthermore, it was observed that in the real Internet VCG
would result in relatively very small overpayments.

In a subsequent paper [12], the problem of more realistic BGP routing was
addressed in the same spirit. Each AS was assumed to have a utility for each
path to the destination (assumed in this literature to be a fixed node 0), and
the goal is to maximize total utility. It was shown that the problem is too hard
to solve in general even with no consideration to incentive compatibility, while
a special case, in which the utility of a path only depends on the next hop, is
easy to solve in an incentive-compatible way, but hard to implement on BGP.
To show this latter negative result, the authors of [12] formalize what it means
for an algorithm to be “BGP-friendly”: roughly speaking, a local distributed al-
gorithm with quick convergence, small storage needs, and no rippling updates in
case of small parameter changes. All said, the message of Feigenbaum, Shenker
and Sami [12] was that, if one models BGP routing a little more realistically,
incentive compatibility becomes problematic. This negative message was ame-
liorated in [11], where it was pointed out that, if one further restricts the special
case of next-hop utilities so that paths are required to be of a particular kind
mandated by the kinds of inter-AS agreements seen in practice, called valley-free
in this paper, BGP-friendly incentive compatibility is restored.

There is an extensive literature on BGP (see, e.g., [9,14,16,20-22]). The
protocol has also been examined within other game-theoretic contexts, such as
with respect to network creation games, e.g., [2, 7], cooperative game theory [19],
and BGP oscillation prediction [8].

In this paper we present an elementary model of BGP routing. The key fea-
ture of our model is that path preferences are based exclusively on per packet
costs and per packet agreed-upon compensation between adjacent nodes. In other
words, we look into the utilities of each path to each AS, taken as raw data in
previous literature, and postulate that they are linear functions of the traffic,
depending on two factors: Objective per packet costs to each AS for each incom-
ing or outgoing link, and agreed per packet payment, positive or negative, to the
AS for this link and direction. As a result, social welfare optimization becomes
a min-cost flow problem, and incentive-compatibility can always be achieved in
polynomial time. If there are no capacity constraints, we show (Theorem 1) that
the resulting algorithm is BGP-friendly, essentially because the BGP-friendly
version of the Bellman-Ford algorithm in [10] can be extended to cover this case.
When capacities are present, the algorithm becomes a more generic min-cost flow
computation (Theorem 2), and, as we show by a counterexample, does not ad-
here to the criteria of BGP-friendliness (it may not converge fast enough), even
though it is still a local, distributed algorithm with modest memory requirements
and no need for global data. If, on top of this, we also require that the paths be

of the “valley-free” kind suggested by the kinds of agreements between ASes one
sees in practice (that is, the kind of restriction which led to tractability in [11]),
the resulting algorithm solves a rather generic linear program (Theorem 3), and
so local, distributed computation appears to be impossible.

2 Basic Model & the VCG Mechanism

We model interdomain routing as a symmetric directed network with node set
V ={0,1,...,n} and edges F, where node 0 is the given destination, assumed
unique as is common in this literature. Note that we postulate that the network
is symmetric, in that if (¢,7) € E then also (j,7) € E. There are no self-loops.
Each node i has a demand of k; packets it wants to send to the destination.
In addition, each node i has a per packet value v; . (sometimes also denoted as
v;(e)) for each of its incident edges e, and a value m; for each of its packets that
gets delivered. The cost of an edge e = (i,j) € E is the negative of the sum of
values of ¢ and j for it, pe = —(vie + vj.).

We denote by 6; the type of node i, that is the collection of values for its
incident edges and its value per packet delivery. Denote by 6 the vector of all
node types and by #_; the vector of all node types except that of node i.

If F' is an integer-valued flow through this network, with sink 0 and sources
at all other nodes with the given demands, then the utility of each node i # 0
from this flow is v;(F,0;) = 3=, vi(d,5)F (i,) + >, vi(4, 1) F(j,4) + 7 Fi, where
by F; = >, F(i,j) — >, F(j,i) we denote the flow out of i, assumed to be at
most k;. The total welfare of F'is W (F) = >_,cin qoy Tids — DcpPel'(€). Let
F*(0) be the optimum, with respect to W, flow for types 0; we denote W (F*(0))
simply by W*(0); W*(0_;) is the welfare of the optimum flow when node i is
deleted from the network. We assume initially that all capacities are infinite,
which implies that the optimum flow is the union of n or fewer flow-weighted
source-to-sink shortest paths; this assumption is removed in Section 2.2.

2.1 VCG Mechanism.

Notice that in order to compute the optimum flow we need to know the types
of all players; the difficulty is, of course, that the type of player ¢ > 0 is known
only to player ¢, who is not inclined to publicize it in the absence of appropriate
incentives. The VCG mechanism for this problem incentivizes the players to re-
veal their true types, and thus participate in a socially optimum flow, by making
payments to them. Let |a|p>0) = a for b > 0 and |a|;>0) = 0 otherwise. Consider
in particular the following transfers for each node (negative for payments made
by the node and positive for payments received by the node).

6(0) = [D v (P (0),05)] = [S v (F*(0-0),65)]
i it

= Z kj : (|7Tj - Pj_i|[7rj—PjZO] - |7Tj - Pj77i|[77j_Pj,—iZO])’
J#i

where Pj _; is the cost of the cheapest path from j to 0 which does not go
through node 1. Pjﬂ is the cost of the cheapest path p; from j to 0 without
taking costs potentially incurred by ¢ into account: if ¢ & p;, Pj_i = Pj, otherwise
Pfi = Pj + (Vie, + Vie,) With e1, ez € p; denoting the edges incident to 1.

The proof that these transfers lead to truthful reporting is the corresponding
proof about the Groves mechanism in [17] specialized to the current situation.
We repeat it here for completeness:

Proof. Suppose truth is not a dominant strategy for some node i, that is the node
gets higher utility by reporting a collection of values 6; different from his true
values #; when the other nodes report 6_;. The utilityA of the node is i‘gs welfare
plus the transfer imposed by the mechanism: v;(F*(6;,0-;),0;) + t;(0;,0_;) >
’Ui(F* (6‘), 0;) + ti(ei, 9_1').
Substituting the form of the transfer on both sides and canceling identical
terms, we get v; (F*(0;,0-,),0:) + | 3, Uj(F*(éiﬁ—i)a@j)} > vi(F(0),0:) +
D ik vj(F*(H),Oj)} & W(F*(0;,0_;),0) > W(F*(),0). The last inequality
contradicts the fact that F*(#) is the welfare maximizing choice of paths (i.e.,
the least cost paths) for node types 6. O

2.2 The Model with Capacities

In this subsection we consider the same basic model, with the addition that
each edge e has a corresponding capacity c.. We would like to find a min-cost
(multicommodity) flow from all nodes to the sink 0, satisfying the demands of
the nodes. We can transform the problem to an equivalent one by adding a new
node—a supersource, which is connected to each node j via an edge of cost —;
and capacity equal to the demand k; at node j.

Call the resulting min-cost flow with known types 6 by F*(6), and denote
the min-cost flow in the graph with node i removed as F*(0_;). We can now
get a VCG mechanism similar to the one in the basic model above. As before,
the total welfare is W(F*(6),0) = >, v;(F*(0),6;), where v;(F*(6),0;) is the
value of the flow from ¢ (more precisely, from the supersource through 7) to 0.
Similarly, the VCG mechanism is specified by the transfers

6(0) = | 20 (F(0),0)] = [Yo (5 (0-0).65)
J#i J#i
and a proof of truthfulness of the mechanism follows as before.
3 Economic Relationships
The economic relationships between individual ASes in the Internet severely

influence the paths which can be taken in the BGP graph. So far we assumed
that all paths which are present in the underlying undirected graph (there is an

edge between two ASes, if they are connected by a physical link) are valid. In
reality this is not the case. Routing policies which are based on the economic
relationships between ASes forbid many paths which theoretically exist. Inferring
these economic relationships and investigating the resulting consequences for the
connectivity of the BGP graph have attracted a large amount of scientific interest
recently, see, e.g., [1,3,4,6,14,15,22].

Below we will give a detailed description of the valley-free path model which
classifies the prohibited paths in the BGP graph.

The Valley-Free Path Model. In this model there are basically three different
types of relationships a pair of connected ASes can be in: either customer-
provider, in which the customer pays the provider to obtain access to the In-
ternet, or peer-peer, in which both peers agree on mutually routing traffic of
their customers for each other free of charge, or sibling, in which both siblings
agree on mutually routing any traffic for each other free of charge. Note that an
individual AS may take several roles—as customer, provider, sibling, or peer—
simultaneously; it can for instance be a customer of one AS and at the same
time a provider for another AS.

In the following for ease of exposition we will focus on customer-provider
relationships only. The other types of relationships (peer-peer, sibling) can be
incorporated easily, as we will note in Section 4.3.

We call a directed graph G = (V, E) a ToR graph, if it contains no self loops
and the edge directions describe the economic relationships. If the AS v is a
customer of a provider AS w, we direct the edge between v and w towards w.
This follows the terminology of [22].

In practice routing is done in the following way. If AS w is a provider of v
(i.e. (v,w) € E) it announces all its routes to v, but AS v on the other hand only
announces its own routes and the routes of its customers to w. In other words,
the customer v essentially advertizes only its incomming links to the provider w.
The idea behind this is that v pays w for the connection and thus is not inclined
to take over “work” for w. This would happen if v also announced the routes it
has from other providers. Then it would potentially have to donate bandwidth
to packets that arrive from the provider w, only to proceed to another provider.

This leads to the model proposed in [22] that a path p is valid if and only if it
consists of a sequence of customer-provider edges (&—>®) followed by a sequence
of provider-customer edges (®<—®). The first part, containing only customer-
provider edges, is also called the forward part of p. The last part, containing only
provider-customer edges, is called the backward part of p. It is easy to see that
the following is an equivalent definition of the validity of a path:

A path p = vy,e1,v9,€2, -+ ,€._1,v, in the ToR graph G is a valid v1-
vp-path in G, if and only if there is no inner node v; of p for which e;_;
and e; are outgoing edges of v;.

If such an inner node—one which does have this property—exists, it is called a
valley. The intuition behind this name is that outgoing edges point “upwards”,
out of the valley. In the literature the situation that a path contains a valley is

also called an anomaly. A flow which only uses valley-free paths we call a valid
or valley-free flow.

The VCG mechanism. The transfers can be specified as in Section 2.2 for the
model with capacities. The only difference is that all flows (i.e., F* and F*, for
all i) must be valley-free (and may be fractional).

4 Distributed Computation of VCG Payments

It is of great interest to determine to what extent the payments ¢;(0) can be com-
puted not only efficiently, but in a distributed manner which is “BGP-friendly,”
that is, compatible with current usage of the BGP protocol. In [12] this concept
of “BGP-friendliness” was formalized as three requirements:

1. The algorithm should converge in a number of rounds that is proportional
to the diameter of the graph, and not its size.

2. Only local data should be needed.

3. No rippling updates should be needed as data changes.

Here we relax requirement (1) to a number of rounds that is proportional to
the diameter times R, where R is the ratio between the largest and smallest edge
cost. This is necessary (also in [12], where the stricter version is used by over-
sight) because the computed shortest path, whose length is the upper bound
on convergence time, may be longer than the diameter. We do not bother to
formalize here the second and third requirement (the reader is referred to [12])
because our algorithms either trivially satisfy any conceivable version, or fail to
satisfy (1). As it turns out, this important aspect of BGP-friendliness sets the
basic model apart from the model with capacities. In both cases the implemen-
tation is quite simple and makes only modest use of local resources. But only in
the former case the strict conditions on the convergence time are fulfilled.

4.1 Basic Model

For the basic model it is easy to adapt the approach presented by Feigenbaum
et al. [10]. BGP is a path-vector protocol which computes the lowest-cost paths
(LCPs) in a sequence of stages. In a stage each node in the network sends all the
LCPs it knows of to its neighbors. It also receives LCPs from its neighbors. If
these contain shorter paths than the ones it has currently stored, it updates the
list of its own LCPs. This basically corresponds to a distributed computation of
all shortest paths via the Bellman-Ford algorithm. The computation terminates
after d stages and involves O(nd) communication on any edge, where d denotes
the maximum number of edges on an LCP.

Feigenbaum et al. give an interesting and easy to implement extension of the
path-vector protocol which computes not only the lowest cost paths, but at the
same time the lowest cost paths which do not traverse a given node i. These
two quantities are then used to compute the payments for node ¢. This increases

the number of stages and communication needed to d’ and O(nd’), respectively.
Here d' denotes the maximum number of edges on an LCP avoiding node ¢, over
all nodes ¢ for which G\ {7} is still connected. Feigenbaum et al. argue that this
is still an acceptable convergence time.

The only difference of the approach in [10] to ours is that the per packet
values in our model are given individually for each edge and node, i.e., as v; ¢,
and not only as one total value per node.? Hence, it is easy to adapt their method
to compute the values P; and P; _;, for j,7 € {1,...,n}, which is all we need to
compute t;(0) = >, ; (Pj—i — Pj_i)kj. Note that the partial path cost Pj_i can
be easily derived from the cost P; of the cheapest path from j to the sink.

Let diam’(G) denote the maximum diameter of G \ {i} (as d’, measured in
number of edges) over all nodes ¢ for which G\ {i} is still connected. Since
d" < diam’(G) - R, where R is the ratio between the largest and smallest edge
cost, we obtain the following theorem.

Theorem 1. In the basic per packet utility model without capacity constraints
(described in Section 2) the Vickrey-Clarke-Groves allocation and payments can
be computed in a distributed, BGP-friendly manner. The computation converges
in O(diam'(G) - R) rounds of communication.

4.2 Model with Capacities

Instead of lowest cost paths and lowest cost paths avoiding node i, we now need
to know a min-cost flow F'(6) and a min-cost flow F_;(f) avoiding node 4 for
each of the payments t;(0), i € {1,...,n}. In the following we will explain how
to compute F'() in a distributed fashion. The flow F_;(#) can be computed cor-
respondingly by blocking node i. Therefore, altogether (n+1) flow computations
are performed, one for F(#) and n for the F_;(0), 1 € V' \ {0}.

We assume the sink 0 controls all the computations: it chooses which node
is blocked (in the F_;(6) case), it selects paths to send flow along together with
the corresponding amounts, and it recognizes when a min-cost flow computa-
tion is finished. These all are computationally simple tasks. The only intensive
computations needed will be those to obtain the shortest paths with respect to
certain costs and where certain edges may be blocked. These will be done in a
distributed manner applying the standard distributed Bellman-Ford algorithm,
which is used by BGP as mentioned above.

Distributed Computation of F(0). We start with a description of a simple Ford-
Fulkerson approach [13] of computing a min-cost flow from the supersource to
the sink via augmenting shortest paths. Then we explain how to modify it to
use the Edmonds-Karp scaling technique [5].

A virtual residual graph is overlayed over the given network. The residual
edge capacities and costs are derived from the original graph. The residual ca-
pacities depend on the flow present on the corresponding residual edges and thus

3 This allows for more fine-granular and thus more realistic modeling.

cap: [+1
node 2 P node 0 (sink)

cost: 1

node 1
[nodes

Fig. 1. All edges have capacity 1, except the top edge with capacity [+ 1. The edge
costs are all 0, except the rightmost edge with cost 1. All nodes have a demand of 1 to
be sent to node 0.

may change during the computation of the flow. Each node keeps track of flow
values on residual edges incident to it.

Consider an original pair of directed edges (i,j) and (j,i) with costs p(; ;)
and p(; ;). We assume the costs to be greater or equal to 0. Let f; ; and f;
denote the flow amounts on these edges, only one of which may be greater 0.
Otherwise, a circular flow of min(f(; ;), f(;,)) is subtracted from both without
increasing the costs. The residual capacities are set to Cl(i,j) = ¢y — fug

and czj)i) = c(ji) — f(j.i)- Additionally, we add the virtual edges (4,7) and (5,1)
with capacities c= = f(i) and ¢G5y = fiy) and costs pr— = —p(,;) and
PGy = PG Flow sent onto these edges is subtracted from the corresponding
flow on the edge in the opposite direction. Finally, for each ¢ € V'\ {0} a virtual
edge is added from the supersource to node i with cost —;.

The algorithm now proceeds as follows, steps 2-4 comprise a phase.

1. For each node i € V initialize the flow values f(; ;) = f(;;) = 0 of all incident
residual edges. Update the local capacities as described above.

2. Compute the shortest paths in the current residual graph only considering
edges with capacities greater than 0. Do this with the distributed Bellman-
Ford algorithm, adapting the BGP implementation. Modify the algorithm
to also forward the bottleneck capacity of each path.

3. The sink checks the min-cost path to the supersource. If the cost is > 0, we
are done. Otherwise send a flow corresponding to the bottleneck capacity
along the path. This is done by sending a message along the path, which
notifies the contained nodes to update their local flow values (and thus ca-
pacities).

4. Continue at step 2 with the updated residual graph.

Time to Converge, Improvements. Each phase consists of a (re)computation of
the shortest paths in Step 2. Unfortunately, in the capacitated case the rounds
of communication for a shortest paths computation is not bounded by d or d’
anymore. It may actually take up to n rounds of communication, as the example
at the end of this subsection shows.

Let C' = max{c.|e € E} be the maximum capacity. The algorithm finishes
in O(|E| - C) phases. This can be improved to O(n - log C) by applying the

following well-known scaling technique. A variable A is introduced and initialized
to 2M°8C1=1 in step 1. In step 2 only edges with capacity > A are considered.
In step 3, A is updated to A/2, if no more negative cost paths are found (unless
A =1, then we are done). The updated A is broadcast to all nodes.

As mentioned, with (n + 1) such flow computations we can compute all node
payments t;(#). Altogether this yields the following theorem.

Theorem 2. In the per packet utility model with capacity constraints (described
in Section 2.2) the VCOG allocation and payments can be computed in a distributed
manner. The computation converges in O(n® -log C) rounds of communication.

Shortest Paths Computation. Unfortunately, the number of rounds of commu-
nication to compute the shortest path cannot be bound by d (or d’) anymore.
Figure 1 shows an example where the shortest path in the residual graph has
length n — 2, whereas the number of hops in the corresponding LCP in the
original graph is 2. Assume that all nodes have already (virtually) sent their
flow through the residual graph except node 1 which is selected last. Since the
nodes are indistinguishable, we may assume this. The only path remaining in
the residual graph is the one at the bottom of length n — 2, since the capacities
of all other edges (expect (1,2)) are fully saturated by flow sent to the sink via
node 2. This compares to the LCP from node 1 over node 2 directly to node 0
with only two edges.

4.3 Model with Economic Relationships

In the following we will explain the two-layer graph, a helpful notion which was
originally suggested in [6]. With the help of the two-layer model it will be easy
to see that one can compute min-cost valley-free flows as needed in our model
with capacities introduced in Section 2.2.

The Two-Layer Model. From a ToR graph G = (V, E) and source, sink s,t € V
we construct a two-layer model H, which is a directed graph, in the following
way (see Figure 2 for an example). Two copies of the graph G are made, called
the lower and the upper layer. In the upper layer all edge-directions are reversed.
Every node v in the lower layer is connected with an edge to the corresponding
copy of v, denoted o', in the upper layer. The edge is directed from v to v'.
Finally, we obtain the two-layer model H by identifying the two s-nodes (of
lower and upper layer) and also the two t-nodes, and by removing the incoming
edges of s and the outgoing edges of ¢.

A valid path p = v ---v, in G with v1 = s and v, = t is equivalent to a
directed path in H in the following way. The forward part of p, that is the part
containing all edges (v;,v;+1) € p, is routed in the lower layer. Then there is a
possible switch to the upper layer with a (v, v’)-type edge (there can be at most
one such switch for each path). The backward part of p is routed in the upper
layer. In other words for each original edge (v;41,v;) € p the corresponding edge
(vj,vj) of the upper layer is traversed. If there is only a forward (respectively

H
reverse(G')

backward part upper layer

lower layer

forward pért

Fig. 2. A path in the ToR graph G and the corresponding path in the two-layer model
H. (G is G, excluding s and t.)

backward) part of p, then the corresponding path in H is only in the lower
(respectively upper) layer.

This definition of the two-layer model can easily be extended to the case of
multiple sources. Note that a peer-peer relationship between two nodes v,u € V
can be incorporated by adding the edges (v,u') and (u,v") from lower to upper
layer (reflecting that at most one peer-peer edge is allowed between the forward
and the backward part of a path). Similarly, a sibling relationship between two
nodes v, u € V can be incorporated by adding the symmetric edges (v, u), (u,v),
(v',u'), and (v/,v’) in both layers (reflecting that sibling edges are allowed at
arbitrary points in a path).

Min-Cost Valley-Free Flows. By simply computing a min-cost flow in the two-
layer graph it is easy to derive a valley-free flow which will have at most the cost
of an optimum min-cost valley-free flow. The edge capacities may be violated
by at most a factor of two though, since each edge may be used twice: once in
the upper and once in the lower layer. Note that such a min-cost flow could be
computed in a distributed fashion by slightly modifying the approach described
in Section 4.2.

This approximate solution cannot be used to compute the VCG allocation
and payments though. To this end, we need the optimal solution. The latter
can be computed with the help of a standard LP flow formulation with added
constraints to bound the joint flow on the upper and lower layer edges. In other
words, for each edge (v,u) € E in the original ToR graph, we add a joint capacity
constraint for (v, u) and (u’,v’) in the two-layer model.

Theorem 3. In the per packet utility model with capacity constraints and eco-
nomic relationships (described in Section 3) the VCG allocation and payments
can be computed in polynomial time with an LP based approach.

Note that the existence of an optimal algorithm based on augmenting paths
seems unlikely. Usually, for integral capacities such algorithms aim at computing
an optimal integral solution, i.e., for unit capacities a solution would consist of
edge disjoint paths. However, computing the maximum number of disjoint valley-
free paths between two nodes s, t is inapproximable within a factor of (2 — &),
unless P = NP [6].

5 Conclusions and Open Problems

Despite the fact that incentive compatibility for BGP routing had been known to
be problematic in general, as well as for several apparently realistic special cases,
we have identified one important special case of practical importance, namely
the one in which path utilities depend on local per packet costs as well as delivery
values. In this case incentive compatibility is achievable through payments which
can be computed efficiently and in a BGP-compatible way; adding capacities and
the “valley-free” constraint for paths makes incentives harder to compute in a
BGP-compatible way, but still tractable.

Regarding the latter point, in this work we have simply pointed out that the
algorithms we devised for VCG incentive computation are not implementable
in a BGP-compatible way; it would be interesting to actually prove that this is
inherent to the problem, i.e., to prove a lower bound on the convergence time of
any algorithm for the min-cost flow problem and its valley-free constrained case.

Our model for path utilities is suggestive of a more general project for un-
derstanding BGP routing: We postulate that each directed edge in and out of
every node has a value for this node, depending on the cost to this node, as
well as agreed upon payments to or from its neighbors, for each packet sent or
received along this edge. Suppose that the graph, as well as the demand, and per
packet cost and delivery value of each node, are given. A game is thus defined in
which strategies are payment agreements between neighbors, and the utility to
each node is the one obtained by our model of BGP min-cost routing. This game
is thus a very realistic network creation game, with special emphasis on BGP
routing. The quality of equilibria compared to the social optimum (i.e., the price
of anarchy and its variants) for this game would be a most interesting research
direction. The social optimum is, of course, the min-cost flow with only costs
and delivery values taken into account. Further, such a model would allow one
to study how inter-AS agreements can depend on the underlying fundamentals
of each AS, such as costs, delivery value, demand, and position in the network.

References

1. D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute
sampling; or, power-law degree distributions in regular graphs. In STOC"05, pages
694-703, 2005.

2. E. Anshelevich, B. Shepherd, and G. Wilfong. Strategic network formation through
peering and service agreements. In FOCS’06, pages 77-86, Washington, DC, USA,
2006. IEEE Computer Society.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
deploying measurement infrastructure. In ACM SIGCOMM Internet Measurement
Workshop, November 2001.

G. Di Battista, T. FErlebach, A. Hall, M. Patrignani, M. Pizzonia, and
T. Schank. Computing the types of the relationships between autonomous sys-
tems. IEEE/ACM Transactions on Networking, 15(2):267-280, April 2007.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248-264, 1972.

. T. Erlebach, A. Hall, A. Panconesi, and D. Vukadinovic. Cuts and disjoint paths

in the valley-free path model of Internet BGP routing. In CAAN, pages 49-62,
2004.

A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a
network creation game. In PODC’03, pages 347-351, New York, NY, USA, 2003.
ACM Press.

A. Fabrikant and C. H. Papadimitriou. The search for equilibria: Sink equilibria,
unit recall games, and BGP oscillations. In submitted manuscript, 2007.

N. Feamster, J. Winick, and J. Rexford. A model of BGP routing for network
engineering. In SIGMETRICS ’04/Performance ’04, pages 331-342, New York,
NY, USA, 2004. ACM Press.

J. Feigenbaum, C. H. Papadimitriou, R. Sami, and S. Shenker. A BGP-based
mechanism for lowest-cost routing. In PODC’02, pages 173-182, 2002.

J. Feigenbaum, V. Ramachandran, and M. Schapira. Incentive-compatible inter-
domain routing. In FC’06, pages 130139, New York, NY, USA, 2006. ACM Press.
J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design for policy routing.
Distrib. Comput., 18(4):293-305, 2006.

L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419-433, 1958.

L. Gao. On inferring autonomous system relationships in the Internet. IEEE/ACM
Trans. Networking, 9(6):733-745, Dec 2001.

R. Govindan and A. Reddy. An analysis of Internet inter-domain topology and
route stability. In IEEE INFOCOM’97, pages 850-857, April 1997.

T. G. Griffin and G. Wilfong. An analysis of BGP convergence properties. In
SIGCOMM’99, pages 277-288, New York, NY, USA, 1999. ACM Press.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, New York, 1995.

N. Nisan and A. Ronen. Algorithmic mechanism design. In STOC’99, pages 129—
140, New York, NY, USA, 1999. ACM Press.

C. H. Papadimitriou. Algorithms, games, and the Internet. In STOC"01, pages
749-753, 2001.

Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4), 1995.

J. W. Stewart. BGP/: Inter-Domain Routing in the Internet. Addison-Wesley,
1998.

L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the Internet
hierarchy from multiple vantage points. In IEEE INFOCOM’02, 2002.

