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Abstract

This thesis discusses the the rigid registration of MR data and biplanar, 
uoroscpic
radiographs of the head, by means of an intensity-based measure of similarity. We
investigate a number of similarity measures which have been applied in other multi-
modal registration contexts, including that of CT-
uoroscopy registration. The sim-
ilarity measures are evaluated by probing the space of transformations between the
coordinate frames of an MR volume and biplanar, digitally-reconstructed radiographs
(DRRs) produced from a corresponding CT volume. This method allowed us to know
the \ground truth" of the registration, which could be established by proven methods
for the 3D-3D CT-MR alignment.

Futhermore, we propose a method of DRR production called voxel-projection

which drastically reduces processing time relative even to optimized ray-casting meth-
ods. The computational eÆciency of voxel-projection makes it a useful tool for the
investigation of similarity measures in this 3D-2D context. Its speed may also enable
3D-2D registration methods which rely on evaluation of a similarity measure over the
entirety of a DRR and model radiograph.

Based on similarity measure chacteristics observed in our probing experiments,
and using the voxel-projection method, we adapted the uphill-simplex optimization
algorithm to implement an intensity-based MR-
uoroscopy rigid registatration en-
gine.

Thesis Supervisor: William Wells III
Title: Research Scientist, MIT AI Lab
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Chapter 1

Introduction

1.1 Multimodal Medical Image Registration

The variety of medical imaging techniques currently available o�ers a wide range of

functionalities which are relevant to medical diagnosis, monitoring, surgical treatment

planning, and surgical guidance. These functionalities are complementray across

di�erent modalities which convey di�erent types of information. For instance, some

imaging techniques give real-time information on changes in structure or function,

but are limited in resolution or the manner of visualization they can a�ord. Whereas

other techniques o�er great sophistication of visualization and feature resolution,

but require longer imaging and processing times. For this reason, many modern

procedures involve the use of multiple imaging techniques. Very often, however, the

process of using multiple images of di�ering modalities is a diÆcult one: it may be

hard for a doctor to fully process and quantitatively compare the disparate data, or

such a comparison may require tedious or error-prone measurement schemes. As a

result, signi�cant e�ort has been directed toward �nding computational solutions to

this problem of integrating di�ering images. An essential part of this integration is

the registration, or spatial alignment, of these images. A signi�cant amount of work

has been done to automate this process for a variety of imaging modalities because

of improvements in visualization and guidance that such multi-modal registration

enables. Furthermore, as medicine continues to pursue less invasive alternatives to
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traditional surgical therapies, the impetus to bring multiple imaging techniques to

bear in concert will be sustained.

1.2 Registering MR Images to Biplanar, Fluoro-

scopic Radiographs

In this thesis, we are interested in the problem of rigidly registering volumetric data

from Magnetic Resonance Imaging (MR) to 2D, 
uoroscopic images, and we work

towards an algorithm by which this may be performed automatically. This kind of

registration promises to have broad application in improving and facilitating guidance

in a variety of interventional contexts. To understand these applications, we need to

explore the complementary functionalities of these imaging modalities. We give an

overview of this functionalities here, and defer discussion of the imagining processes

and other data characteristics until chapter 2.

Biplane 
uoroscopy is an x-ray imaging modality that is widely used in interven-

tional medicine because it simultaneously provides two, often orthogonal, radiographic

views of targeted structures in real time. This technique has a number of properties

which make it very well suited for intraoperative monitoring of certain interventions.

� Acquisition is fast.

� Software methods exist to correct for geometric distortions introduced by the

imaging apparatus, which can be characterized by imaging a reference phantom[26].

� Bony structures are well imaged by radiography in general, so 
uoroscopy can

provide updates on the intraoperative orientation internal bodies structurally-

associated with bones.

� With two radiographic views, the position of interventional instruments can be

located relative to the imaging apparatus and, thus, relative to any internal

structures whose intraoperative position can also be so determined.

14



Unfortunately, 
uoroscopy provides limited and ambiguous information about inter-

nal structures in general, due to the fact that it does not well resolve soft tissue

without the introduction of contrast agents. Furthermore, volumetric information is

drastically reduced by the radiographic process which \compresses" that 3D informa-

tion into a 2D perspective projection.

On the other hand, MR is used widely for diagnostic purposes and in stereotactic

guidance for the following reasons:

� MR data is volumetric with millimeter (in-slice) linear resolution, and can be

processed to allow for sophisticated visualization (
y-through, zoom, and cut-

away views) of internal structures [4].

� MR can di�erentiate many tissue types in a way that allows for identi�cation

and localization of a broad range of internal structures and pathologies.

However, acquisition and processing times for MR are generally long, and MR s-

canners generally obstruct access to the patient, so that imaging for intraoperative

guidance is limited.

While these modalities individually have their strengths and weaknessnes, when we

consider their qualities in union, we see that MR and biplane 
uoroscopy together o�er

a more complete joint functionality for surgical guidance. Indeed, there are a num-

ber of therapies to which we might �nd application for the fusion of preoperatively-

processed MR and intraoperatively-acquired 
uoroscopy. Examples would be ther-

apies that involve access to soft tissue targets, such as tumors, by their relation to

bony structures nearby. Such therapies are suited to improvement by MR-
uoroscopy

registration because MR can de�ne preoperatively and in 3D the relationship of the

soft tissue to bony structures with con�dence, and the 
uoroscopy can give accurate

information about the state of the bony structures (and, by inference, the soft tissue)

during the procedure. Structures in the head and spine are well suited to this tech-

nique because these areas are particularly critical, and surgeries performed in them

often require superior guidance which, by current methods, require complicated mea-

surement and reference schemes, use of �ducials, or near-continuous use of 
uoroscopy

15



(which not infrequently results in radiation-related injuries such as hair loss).

1.3 Procedures

Here we present a variety of therapies which might bene�t from the fusion of MR to


uoroscopy. These descriptions are the product of correspondence with Dr. Alexan-

der Norbash, Head of Neurointerventional Radiology at the Brigham and Women's

Hospital in Boston, MA.

Pallidotomy The 
uoroscopically-guided Pallidotomy is a prototypical example

of a stereotactic neurosurgical procedure performed with the intraoperative aid of


uoroscopy. In this procedure, a small-diameter probe is passed through the brain,

and its tip is placed in a very precise location where a small controlled injury results

in interruption of the bundles that cause the symptoms found in Parkinsonism. This

stereotaxy is currently performed using a cumbersome series of linear measurements

on preprocedural MR data that relate the target location to a reference region in the

ventricular system. The the validity of these measurements relies on the rigidity of

calvarial structures, so that structures will not have shifted between the times of MR

and 
uoroscopic image aquistions.

The reference can be con�dently visualized intraprocedurally using ventriculog-

raphy, whereby it is temporarily made radiopaque with the introduction of contrast;

however, the complicated coordination of MR and 
uoroscopy that de�nes the current

approach introduces a degree of error into the stereotaxy, which might be improved

by an accurate, automatic image registration method.

Resection of Brain Tumors An outstanding problem in neurosurgery is the real-

time update of residual volumes as a tumor is being resected. Present method of

ultrasound, MR, and CT updating are inde�nite and cumbersome. Preoperative MR

images can de�ne tumor volume accurately and in relationship to bony lankmarks or

possibly implanted radiographic markers. Use of 
uoroscopy during surgery would

provide the surgeon with a real-time update of the course of his surgical apprach

16



relative to the bony or marker environment. This MR-
uoroscopy fusion could provide

him with a valuble real-time update of tumor margin relative to resection boarder.

Spinal Surgery A large nubmer of disc decompressions and spinal tumor resection-

s are performed each year. These rely primarily on the identi�cation of the correct

disc level by intraoperative 
uoroscopy. Preopertive MR images, however, can clearly

reveal in 3D, the position of disc, neural abnormalites, and spinal, soft-tissue tumors.

By MR-
uoroscopic fusion, the position of such critical target volumes can be vi-

sualized on the 2D 
uoroscopic views, enabling the removal of a precise amount of

the disc to decrease neural impingement, or the complete and safe removal of spinal

tumors.

1.4 Overview of the Thesis

In Chapter 2, we present background on relevant imaging modalities, and technical

information on how medical image data is stored in memory. In Chapter 3, we de�ne

the problem of registration in general and specify it to the MR-
uoroscopy context. In

Chapter 4, we present algorithms for simulating radiographic imaging on volumetric

data, focusing on a new method voxel-projection which is signi�cantly faster than

more straightforward approaches. In Chapter 5, we present probing experiments

which evaluate a number of objective functions on the basis of utility in an intensity-

based MR-
uoroscopy registration algorithm. In Chapter 6, we adapt the Uphill-

simplex optimization scheme for an automatic 3D-2D registration method. Finally,

in Chapter 7, we discuss the thesis and its extensions into future or related work.
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Chapter 2

Technical Issues and Background

In this chapter, we detail the characteristics and functionality of MR and 
uoroscop-

ic imaging. We also discuss CT imaging, as it is relevant to the justi�cation of our

investigations in this thesis. Understanding these characteristics not only provide

background information on how these imaging techniques can be brought to bear

clinically, but they are a primary consideration in approaching the problem of auto-

matically registering medical images of disparate modalities. Clearly, to automate the

registration of two images, we must understand what information they contain which

might relate them, and what are the limitations of the data that might complicate

the process.

We also discuss how medical datasets are stored digitally. This will be relevant to

the description and eÆcient implementation of the algorithms our method employs.

2.1 Fluoroscopic Image Formation

In this section we describe the process by which 
uoroscopic images are formed[23].

Refer to Figure 2-1 during this discussion for a diagram illustrating this process and

the 
uroscopic apparatus. Fluoroscopic images are radiographs that are produced

by the interaction of x-ray photons with a planar photon detector called an image

intensi�er. X-rays are emitted radially from a small-diameter, x-ray tube anode,

located at a distance, the focal length, from the image intensi�er which measures

19



X-ray source

Image Intensifier

Patient

Figure 2-1: Fluoroscopic Image Formation

the intensity of rays incident on it. The imaging process that occurs when a body

is placed between the x-ray source and the image-intensi�er is based on variations

in the attenuating properties of di�erent types of tissues. The intensity of an x-ray

emitted from the x-ray source and terminating at point (x; y) of the image intensi�er

is ideally governed by the following expression

I(x; y) / exp(�
Z
ray

�(x; y; z)dr) (2.1)

where �(x; y; z) is the linear attenuation coeÆcient of the tissue located at (x, y, z)

in space. The attenuation coeÆcient is primarily a function of tissue density, com-

ponent atomic number, and x-ray energy. Due to the above relationship whereby

attenuation coeÆcients are summed along the rays traveled by emitted x-ray photon-

s, a radiograph is ideally a function of the perspective projection of tissue attenuation

properties. The image intensi�er de�nes the plane of this projection, and is construct-

ed such that it gives submillimeter image resolution.

2.1.1 Distortions

Real radiographs di�er from this idealized description of the imaging process in a

number of ways[11]. A non-uniformity in the intensities of rays emitted from the x-ray

tube results in the heel e�ect which is characterized by a gradual change in average
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image intensity values from top to bottom of radiograph. The image intensi�er's

response to incident rays is also non-uniform, so that the center of the radiograph is

slightly brighter than the periphery. These intensity non-uniformities can be corrected

by machine-speci�c calibration of the radiographic data. The image intensi�er also

introduces a geometric distortion called the pincushion e�ect.1 Fortunately, software

methods exist to correct this geometric distortion, which can be characterized by

imaging a reference phantom[26][25].

2.1.2 Di�erentiation of Tissue Types

Due to the integral in the above radiographic-imaging equation, structures are re-

solved in radiography both by their local attenuation properties and by their extent.

In decreasing order of attenuation-coeÆcient magnitude, we have bone; soft tissue

and blood; and air (with value zero). Due to the large contrast between these di-

visions, bone and air are well-resolved in radiographs; however, di�erences between

the coeÆcients of soft tissue and blood are not so great, so that the details of soft-

tissue structures cannot be well visualized with radiography, except temporarily if

high-attenuation-coeÆcient contrast mediums can be introduced (as they can into

blood vessels, for instance). Interventional instruments are made out of radiopaque

materials, so that they are very easily discerned in 
uoroscopic images.

2.2 MR

We will discuss MR imaging from a qualitative point of view, primarily in relation

to 
uoroscopy. For details on the image formation, readers are refered to [23] or [12]

which is an online text.

Magnetic Resonance Imaging (MR) is a technique which can produce volumetric

renderings of anatomical structures based on the response of their component atomic

nuclei to an external magnetic �eld. MR volumes are produced by measurements

1The next generation of 
uoroscopic will have solid state image intensi�ers that should not
produce this kind of distortion.
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and processing taken over tissues located in adjacent transverse slices of anatomy;

these slices are stacked to form a volumetric image. The in-slice resolution is typi-

cally better than that between slices. High resolution MR is typically composed of

slices containing 2562 pixels of area 0:92 mm2, whereas the slices are spaced by 1 mm.

Low resolution MR has slices of the same number of pixels, but their pixel areas are

1:252 mm2, and their slices separated by 4 mm [13]. Figure 2-2 shows the three planes

cutting through the center of a low resolution MR aquistion (limited to the brain cav-

ity). Within slices, pixel intensities map the alignment intensity of hydrogen nuclei

Figure 2-2: Three Central Planes of a Proton Density MR Volume

(protons) at those locations to an external, uniform magnetic �eld. Variations in the

imaging technique emphasize di�erent characteristic magnetic relaxation times (de-

noted T1 and T2) of aligned protons. These properties relate directly to the proton

density of the nuclei, not the tissue density, so MR identi�es tissue properites which

are very di�erent from the x-ray attentuation properties rendered in 
uoroscopy. As

a result, the two modalities have very di�erent functionalities. Most notably, MR

renders soft tissue variations very well due to their high hydrogen concentrations and

22



di�ering chemical composition. On the other hand, as hard bone is relatively anhy-

drous, it is given the same low intensity as is air in MR. Contrast this to 
uroscopy

which poorly distinguishes soft tissues, but whose rendering of bone most contrasts

that of air.

MR imaging is subject to a number of nonidealities including intensity variations

and geometric distortions. The intensity variations are the product of nonuniformities

in the imaging apparatus and inhomogeneties in the magnetic �elds and RF pulses

used in imaging [14]. Geometric distortions are most pronouced at boundaries be-

tween regions of signi�cantly di�erent magnetic susceptibility (e.g. soft tissue/bone,

tissue/air). Software methods are available for the correction both of intensity vari-

ations [24] and geometric distortions[8].

2.3 CT

Like MR, Computed Tomography (CT) can be used to produce volumetric images of

anatomical structures by the stacking of slices produced from measurements taken

over transverse slices of anatomy[23]. High resolution CT is typically composed of

slices containing 2562 or 5122 pixels of area 0:62{0:92 mm2, with slices spaced by 1.5

mm. Low resolution CT has slices of the same number of pixels, with pixel areas 0:65

mm2, and their slices separated by 4 mm [13]. A low-resolution CT volume is shown

in Figure 2-3. Compare it to the MR of the same head in Figure 2-2.

CT imaging is based in x-radiography and measures tissues' x-ray attenuating

properties in the same way that 
uoroscopy does. Each CT slice is produced by

rotating an apparatus around the patient that casts a plane of x-rays through the

patient in a number of di�erent directions. Processing is then performed such that

a CT slice gives a map of the x-ray attenuating properties of the tissue section at

each position. Conventionally, each of these attenuation coeÆcients are rescaled by

a linear function to produce an intensity called a CT number. CT intensites di�er

from those given by 
uoroscopy, as CT is processed with x-rays of energy less than

those used in 
uoroscopic radiography. This has the e�ect that there is less contrast
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Figure 2-3: Three Central Planes of a CT Volume

between the attentuation coeÆcients of bone and soft tissue.

Modern CT imaging does not su�er from any signi�cant geometric distortions, and

is often used as the \gold standard" basis for trying to correct geometric distortion

in MR.

2.4 Data Representations

In this section we'll discuss the manner in which medical data is typically stored in

memory as this will bear on our discussion of DRR algorithms in Chapter 4.

Medical image data represents a sample of modality-speci�c measurements taken

over a distribution of locations in space. Accordingly, this data consists of two parts:

the measured values of these samples, and a mapping between each sample and its

metric coordinates, the location in real space at which it was taken, in units of distance

(such as mm).
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2.4.1 Organization in Memory

Samples are taken in regular intervals so that the set forms a rectilinear array in two

or three dimensions. This array is typically organized in memory in the way which

streamlines reference to a particular sample u(i; j; k) by its indices (i; j; k) along the

array dimensions, which we'll refer to as the sample's data coordinates. A volumetric

dataset consisting of S slices of size R � C samples, would occupy block of memory

of size �(S � R � C) within which each of S contiguous blocks (each of size R � C)

represents a slice of the data. Within each slice are R blocks of size �(C) that each

represent a row of voxels in its respective slice. Within each of these rows are the C

sample values for that row, one for each volume column. By this organization, the

slice 1, θ(RC) slice 2, θ (RC)

row 1, θ (C) row R, θ (C) row 1, θ (C) row R, θ (C)

slice

row
column

Figure 2-4: Volumetric Data in Memory

sample with data coordinates (i; j; k) is indexed (k �R �C + j �C + i) in the volume's

block of memory, where i is the column index, j is the row index, and k is the slice

index.

2.4.2 Data Size Relative to Cache Sizes

In processing any data, it can be useful to consider the memory architecture in which

we perform that processing. Memory access overhead can be the most taxing com-

ponent of data processing if algorithms do not have data reference patterns which
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exhibit the kind of spatial and temporal locality that takes advantage of computer

caching schemes [2]. We give an overview of general memory achitectures and eÆcient

memory access patterns in Appendix A. Here we outline the data dimensions of typi-

cal medical images, along with the cache sizes of the UltraSPARC architecture[19], on

which all our implementations in this thesis were performed. Only slice sizes are given

Table 2.1: UltraSPARC memory cache sizes

Cache Size
L1 16K
L2 512K{4M

for volume data, because the number of slices may vary depending on the anatomy

imaged. A typical full head CT or MR might have 125 slices, whereas an aquistion

which only includes the brain might have less than 30 slices. Because projections

are only taken rougly parallel to slices, these are the only dimensions that are really

relevant. Contrast these slice sizes to the cache sizes on a typical workstation.

Table 2.2: 8-bit-pixel medical image sizes

Modality Number Pixels Storage Size

uoroscopy 1024� 1024 pixels 1M

MR 256� 256 pixels/slice 64K
CT 512� 512 pixels/slice 256K

2.4.3 Relation of Metric and Data Coordinates

With this medical data structure, samples may be mapped to their metric coordinates

by a transformation from their data coordinates, and vice versa. In general, the

transformation between a dataset's metric and data coordinates is aÆne, that is, one

allowing translation, rotation, and ansiotropic but uniform stretching. Between two

3d coordinate systems, an aÆne transformation Taffine may be parameterized by an
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invertible 3x3 matrix A and 3-vector b. The transformation is calculated:

y = Taffine(x) = A(x) + b (2.2)

2.4.4 Interpolation for Inter-Sample Values

When a dataset is referenced by particular metric coordinates x, those coordinates

will not generally transform to integral data coordinates that reference an actual

sample in the array of data. To account for this, some interpolation method must

be employed to determine the values which corresponds to points that fall between

actual samples (in the case where a point falls outside the bounds of the dataset

entirely, we set its values to zero). We'll consider two simple methods here, trilinear

interpolation and nearest-neighbor interpolation. Their small computational burden

make them well-suited for the kernel of an iterative procedure where higher-order

methods are not required.2 The more simple method, nearest-neighbor interpolation,

picks the value for a point v by rounding each real-valued coordinate.

vnn[i1; i2; : : : ] = v[round(i1); round(i2); : : : ] (2.3)

Trilinear interpolation, on the other hand, works by doing linear interpolation in

one coordinate direction among a point's eight nearest-neighbors, and then interpo-

lating those results in another coordinate direction, and so forth for all coordinate

directions. The trilinear-interpolated value v of a voxel v falling among voxels vijk

as depicted in Figure 2-5 is given by

v =
X

i;j;k2f0;1g

vijk�
(i)
x �(j)

y �(k)
z (2.4)

2Hill and Hawkes [6] show that artifacts produced by nearest neighbor and trilinear interpolation
cause artifacts which frustrate alignment by correlation in multi-modal contexts, due to correlation's
sensitivity to outliers.
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Figure 2-5: Framework for Trilinear Interpolation

where

�(i)
x =

8<
:

�x; i = 1

(1� �x); i = 0

9=
; (2.5)

where �x is the fractional distance from v to v0jk in the x-direction. �
(j)
y and �

(k)
z

are de�ned equivalently. This value is clearly linear in each of the eight contributing

nearest-neighbor values vijk, each of whose respective contribution falls o� (almost)

linearly with distance from v (although with a di�erent coeÆcient in di�erent direc-

tions and some small quadratic and cubic terms). Not only does trilinear interpolation

require more computation than nearest-neighbor, but it also requires accessing eight

dataset samples as opposed to nearest-neighbor's one.
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2.5 Summary

In this chapter, we have contrasted the process of image formation in MR and

Flouroscopy, which occur by very di�erent physical processes, to provide context

for the MR-
uoroscopy registration problem. We have also discussed the size and

representation of medical image data in computers, as this wil be important to our

development of the voxel-projection algorithm in Chapter 4.
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Chapter 3

Image Registration

In this chapter, we formalize the problem of image registration and outline the sev-

eral categories of regitration methodolgies which have been applied in the medical

context. This discussion complements that of Chapter 2 on the characteristics of MR

and 
uoroscopic data, in that they will together motivate the approach we take to

developing an algorithm for the registration of these data.

3.1 Problem De�nition

Registration is the process of aligning two images U and V rendered from the same

physical structures. A registration problem is solved by determining the best values

for the parameters that govern this alignment. These parameters may be ones of any

type of spatial transformation T between two coordinate systems.

What precisely constitutes \alignment" is not completely clear when the images

are formed by dissimilar processes which may introduce di�erent types and degrees of

distorion. However, when we are using one image to localize structures in the other,

as is typical for surgical guidance applications, we would expect that the optimal

transformation accurately aligns these structure in space.
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3.2 Transformation Parameters

The type of transformation T employed to register images must be chosen to match

image-speci�c characteristics. This choice is governed by the nature of imaging pro-

cess and any geometic distortions which have been introduced.

Rigid-body This allows only translation and rotation. It is appropriate when ren-

dered anatomies are inelastic (e.g. framed by bone) and when image distortions are

small or can be corrected by some means of preprocessing, so that the image's metric

coordinates accurately locate sample intensities. Such a transformation is applied

between the two images' metric coordinate frames. A 3D, rigid-body transformation

is governed by six parameters, three each for translation and rotation.

AÆne This allows translation, rotatation, skew, and scaling. It is appropriate when

one or both of the images are subject to some aÆne distortion.

Locally-varying These are appropriate when image geometries have geometries

which vary non-linearly over di�erent regions of the image space. This might be

characterisic of the registration of soft-tissue anatomy, which is likely to have deformed

non-rigidly between image acquisitions.

3.3 Medical Image Registration Methodologies

The manner in which medical images are registered may be divided into three cate-

gories which are described here.

3.3.1 Alignment of Fiducials

In this methodology, markers are �xed on the patient which can be con�dently imaged

by both involved modalites. Markers might be special beads adhered to surfaces of the

skin, or part of an apparatus rigidly �xed to bone or dental structures. This approach

has the advantage that registration is straightforward and accurate; however, it does
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require that �ducials be �xed during aquisition of both images. This may not be

possible, for instance when we want to bring to bear on a procedure, preoperative

data which was imaged without the procedure in mind.

3.3.2 Feature Alignment

In this registration methodology, anatomical features which can be con�dently identi-

�ed and segmented from the images are aligned. As with alignment by �ducials, this

registration is straightforward and fast, but only after features have been segment-

ed. Unfortunately, the nonlinearities and irregualrities inherent in medical images

make robust feature identication diÆcult to automate and slow. Therefore, this type

of approach may be impractical[9]. Furthermore, because segmentation techniques

must often be specialized to particular imaging modalities and anatomical regions, a

particular feature-alignment methodology may not be generally applicable.

3.3.3 Intensity-based Similarity Measure

This is the most generally-applicable of the registration methodologies mentioned

here. In this approach, the values of image samples are compared directly without

making any additional assumptions about the data. To match such an approach to a

speci�c problem, an appropriate function is chosen to assign a measure of similarity

SIM(U; V ) between two images U and V based only on the values of their respective

samples U(x) and V (T (x)) at all positions x and under the transformation T from

the coordinate frame of image U to that of V . We will refer to this function as an

objective function or similarity mesaure. Registration is then performed by means of

an optimization algorithm which maximizes the objective function over the domain

of possible transformations. The intensity-based approach has been successful in a

variety of multi-modal, medical image registration contexts, due to its very general

structure [22][9][1][20][11].
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3.4 Intensity-based Image Registration

As described above, these methods require the existence of an objective function which

takes on maximal value at ideal alignment, and which has characteristics such that it

can be eÆciently maximized by automatic optimization. Due to the large parameter

space in which even the most simple rigid-body transformations reside, computational

eÆciency is a signi�cant concern in intensity-based methodolgies. Without an appro-

priate pairing of objective function and optimization scheme, these methodologies

can be impractically slow. We will explore these design considerations in concert,

and mention optimization methods pertinent to the medical context. We will defer

discussion of speci�c similarity measures, and consider them later in terms of 3D-2D

image registration.

3.4.1 Matching Measure to Optimization Method

A variety of algorithms have been developed for the maximization of functions for

which no closed-form solution is available[15]. Certain function characteristics will

govern which of these methods is selected for optimization. Among these are the

function's convexity and the availability of an analytic expression for the function's

derivatives. Because iterative optimization algorithms typically use local information

in the function variation to direct a search of the function domain, access to derivative

information can be very useful. For the same reason, the success of an optimization

is dependant on whether that local information can eÆciently direct an algorithm to

a function's global maximum. Therefore the existence of local maxima and regions

of vanishing variation (i.e. the function is constant) can frustrate an optimization

scheme. The function geometry of a long, narrow peak is also particularly diÆcult for

optimization schemes to navigate (Numerical Recipies in C [15] has a good discussion

on this and other topics relating to function optimization).
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3.4.2 Optimization Schemes

In this section we'll mention a number of optimization strategies which have been

applied in the medical context.

Hierarchical Search In this strategy, the input images are successively smoothed

and downsampled to produce images of lower resolution. A search of the transforma-

tion space is performed using each pair of lower resolution images, and the optimum

transformation is used as a starting point for high resolution levels. Using a hierar-

chical or multi-resolution approach may be applicable in conjunction with almost any

optimization scheme. As long as optimization using lower resolution images provide

a good starting point for higher levels, any scheme may be sped up by working on

smaller images.

Gradient Descent The gradient descent uses the objective function's gradient to

direct its search of the transformation space. Conjugate Gradient Methods use the

gradient in conjunction with other considerations to improve on the search process

[15]. These strategies perform poorly on non-convex functions.

Non-Gradient-Based These methods optimize without access to gradient infor-

mation. The range of these strategies use local information in di�erent ways to direct

search towards a function maximum.

� Powell's Method is a direction-set scheme in which optimization is performed

by successive line minimizations in strategically choosen directions.

� Three-step Search [18] calculates �nite-di�erences on each parameter of the

function domain, and adjusts the parameters accordingly. The approach is

hierarchical in the sense that it uses a decreasing schedule of steps sizes for its

�nite-di�erence calcuations. A similar method has been used in CT-
uoroscopy

image registration [11].
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� Uphill-simplex also uses �nite-di�erences to direct its search of the parameter

space, but does it in such a way that its exploration is distributed over a region

of the function domain. This method is described in detail in Chapter 6.

3.5 Intensity-based, 3D-2D Image Registration

The problem of registering MR to biplanar 
uoroscopy is one of spatially aligning

the MR volumetric data with the real structures that the 
uoroscopic radiographs

render. More formally, it is the process of �nding the rigid coordinate transformation

T which places the MR volume V in this aligned position in the coordinate frames

of the 
uoroscopic images Ifl;1, Ifl;2. This process is depicted in Figure 3-1. Note

that the 
uoroscopic coordinate frames are related by a rotation � about an axis

parallel to one of each image's major axes (typically, � = �
2
radians). We'll call this

transformation Tfl;12 from the frame of Ifl;1 to Ifl;2. Heretofore, when we refer to the

transformation T which governs the volume's position, we will be refering speci�cally

to the transformation from the volume's frame to that of Ifl;1, with the relation

between the frames Tfl;12 �xed and implicit. The 3D-2D nature of registering volume

I fl, 1 I fl, 2

V

X-ray source X-ray source

Figure 3-1: Registering volumetric data with biplane 
uoroscopy

data to radiographs requires that the process of radiographic projection is somehow
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accounted for. For an intensity-based 3D-2D registration of this kind, the problem

is one of �nding a way to compare the intensities of radiograph and volume. In the

context of CT-
uoroscopy registration, Penney et al. [11] approached this problem by

simulating the radiographic projection of the volumetric, so that the resulting image

IDRR, called a Digitally Reconstructed Radiograph (DRR), can be compared to the

real radiograph by a similarity measure. The method by which DRRs are produced

are therefore an important step in the 3D-2D registration process, and the method

by which they are produced is signi�cant to its success and eÆciency.

Because we are considering biplane 
uoroscopy, the objective function will be

evaluated on the model radiographs Ifl;1, Ifl;2 and the DRRs IDRR;1, IDRR;2 produced

from the volume given transformation a T . I(x) will refer to the intensity value of

image I, when x is a sample location, either in the image's metric or data coordinates.

In the next section, we will discuss how DRRs are produced and how they compare

to real 
uoroscopic radiographs. In light of this discussion, we will describe a number

of similarity measures which might be applicable to the 3D-2D registration problem.

3.6 Reconstructing Radiographs

DRRs are typically produced by a method called ray-casting that closely parallels

the physical process of 
uoroscopic image formation. Recall from chapter 2, that real

radiographs are produced by a process which is e�ectively the perspective projection

of the attenuation coeÆcients of the imaged object. In that radiographic projection,

the attenuation coeÆcients are integrated along rays which extend from the x-ray

source to positions on the image intensi�er, which de�nes the plane of projection.

In ray-casting DRR production, a volumetric dataset's voxel intensities are summed

along rays connecting the x-ray source and each DRR pixel. An interpolation method

(e.g. nearest-neighbor, trilinear) must be employed for this summation to compute

intensity values for samples along each ray which fall in inter-voxel positions; this

interpolation method impacts the resolution and quality of the DRR.

Note that DRR pixels may be made to align precisely with those of the radio-
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graph, irrespective of the volume orientation under T . This gives the computational

advantage of being able to evaluate objective functions exactly at pixel locations for

both the 
uoroscopic images and the DRRs, without requiring interpolation.

The details of algorithms for DRR production by ray-casting are discussed in

Chapter 4, along with a presentation of computationally eÆcient means of simulating

ray-casting, called voxel-projection.

3.6.1 Comparing DRRs to Real Radiographs

The ray-casting process makes considerable sense when the volumetric data is CT,

whose intensities are proportional to the attenuation coeÆcients of imaged tissues

(at the x-ray energy used to form the CT), although di�erences in tissue attenuating

properties due to the di�ering x-ray energies used in CT and 
uoroscopy, may result

in CT-DRRs having less contrast between bone and soft tissue.

The validity of ray-casting is less clear when the volumetric data is MR, whose

intensity values are certainly not a function of tissue density. The most conspicuous

inconsistency in producing MR-DRRs is the fact that MR gives high-density hard

bone the same low intensity as air (and thus the same small attentuation coeÆcient),

so that bony structures are less pronouced in MR-DRRs.1 Notwithstanding, MR-

DRRs produced by ray-casting may still exhibit some gross structural features and

intensity correspondences of which an objective function can take advantage.

Of course, geometric distortions inherent in 
uroscopy (e.g. pincushion distor-

tion), are not modeled by the ray-casting process. These distortions should be cor-

rected before a 
uoroscopic image is compared to a DRR, rather than complicating

the process of DRR production by trying to model that warping.

Di�erences between DRRs and real radiographs do not end with di�erences in

the imaging process by which they are produced. For instance, they di�er notably in

resolution [11], both due to the fact that volumetric data from CT and MR is of lower

1While it is not possible to perfectly map MR intensities to values which are proportional to
attenuation coeÆcients[22], work which has been done to make CT intensities resemble those of MR
[20], might be applied here to adjust MR voxel values so that MR-DRRs more closely resemble true
radiographs. We'll discuss approaches to correct for this in Chapter 7
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resolution than is 
uoroscopy, but also due to the fact that a volume's voxel spacings

are e�ectively broadened by the divergent rays of projection. This e�ect will di�er

for di�erent implementations of DRR production (for instance, for di�erent choices

of an interpolation function), as described further in Chapter 4 where we discuss the

implementation details of DRR production algorithms.

Futhermore, because volumetric data subsumes only a limited volumetric region,

rays which pass through spaces where structures were truncated will produce erro-

neous pixel intensities where they terminate in the DRR. However, we can generally

characterize these rays as those which enter or exit the volume through the top or

bottom slice, so they can be automatically omitted on that basis.

3.6.2 Objective Functions

In this section, we present a number of objective function which have been used in

other multi-modal image registration approaches, and speci�cally for CT-
uoroscopy

registration. We will discuss them in terms of the kind of joint image behavior by

which they are maximized. In these descriptions, the functions Ifl(x) and IDRR(T (x))

give the intensity values of images Ifl and IDRR at location x (in the coordinate system

of image Ifl). T is the transform from image Ifl's coordinate frame to that of image

IDRR's. To apply the objective function SIM(Ifl,IDRR) (as all are de�ned below)

when there are two 
uoroscopic images taken from di�erent orientations, as in the

biplane scenario, we may simply sum the functions evaluated between corresponding

radiograph and DRR:

SIM(Ifl;1; IDRR;1; Ifl;2; IDRR;2) = SIM(Ifl;1; IDRR;1) + SIM(Ifl;2; IDRR;2) (3.1)

Let us preface this listing of functions with a note on their evaluation. The sum-

mations over x in the following formulas are limited to values within the extent of

the images. The fact that these are discrete summations suggests that they are tak-

en only at certain sample positions, such as the image pixel locations. Though this

39



cannot generally be done over both images2, because we can align the pixels of the

model radiographs and the DRRs irrespective of the volume position (as noted in the

previous section), the summations in the objective function de�nitions can be made

to always reference image pixels at integer data coordinates.

Alternatively, certain of these objective functions could very well be evaluated

over some sparce sampling of the image data, as has been explored in MR-CT regis-

tration [22]. The statistical and information-theoretic measurments (i.e. correlation

coeÆcient, correlation ratio, entropy of the di�erence image, mutual information,

model-based likelihood) are consistent with this kind of approach; whereas, those de-

�ned by the structure or variation in the image (i.e. pattern intensity), cannot. The

form of the functions speci�ed below does not change if a sampled approach is used.3.

Correlation CoeÆcient This measure is widely used in image registration as it is a

basic statisical measure. It best identi�es the alignment of datasets whose intensities

are related by a monotonic function [21], as it is a measure of linear dependance

between cooresponding pixel intensities [16].

CC =
E[IflIDRR]q

�2
Ifl
�2
Ifl

=

P
x(Ifl(x)� �Ifl)(IDRR(T (x))� �IDRR)pP

x(Ifl(x)� �Ifl)2
pP

x(IDRR(T (x))� �IDRR)2
(3.2)

where �I is the sample mean of I.

Entropy of the Di�erence Image This function operates on the intensity his-

togram of a single image Idiff formed by subtracting one image from a scaled version

of the other.

Idiff(x) = Ifl(x)� s � IDRR(T (x)) (3.3)

2Even if x falls at integer data coordinates in one image, the transformation T will generally
cause T (x) to correspond to some inter-pixel location in the other.

3However, the intensity histograms used for some measures (e.g. mutual information, model-
based likelihood) become estimates of the histogram, generated by a Sum-of-Gaussians [9] or the
Parzen Window method [22]
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The histogram gives the probability P (w) of selecting intensity w from the samples

of the di�erence image Idiff .

H(s) = �EIdiff [logP (w)] = �
X
w

P (w) logP (w) (3.4)

The scale factor s is set to the value which minimizes the H(s). Entropy roughly

measures the spread of a distribution [17], so it should be a successful objective

function when alignment minimizes variation in the di�erence image intensities. Due

to the fact that all samples are weighted equally in the histogram, this measure should

be robust to infrequent outliers in the di�erence image distribution [11].

Mutual Information Mutual Information (MI) has been used successfully in a

number of multi-modal image registration schemes, such as those registering C-

T to MR and MR to PET. MI operates on probabilities which can be approxi-

mated by the joint intensity histogram formed from image sample correspondences

Ifl(x); IDRR(T (x)) under T . In other words, the histogram gives the probability

PIfl;IDRR
(v; wjT ) of selecting the intensity pair (v; w) from spatially-aligned samples

of Ifl and IDRR given T . PIfl(v) and PIDRR
(w) are the marginal intensity distributions

for images.

MI = EIfl;IDRR

�
log

PIfl;IDRR
(v; wjT )

PIfl(v)PIDRR
(w)

�

=
X

v;w:PIfl(v)>0;PIDRR
(w)>0

PIfl;IDRR
(v; wjT ) log PIfl;IDRR

(v; wjT )
PIfl(v)PIDRR

(w)

(3.5)

The success of mutual information in image alignment does not depend on a func-

tional relationship between the intensities of the two images, but only on a statistical

one [22], such that MI is e�ective when registration aligns the pixels with the most

probable values.

Pattern Intensity Pattern Intensity has been applied in the registration of CT

and radiographic data [11]. The function operates on the di�erence image Idiff as
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de�ned in the section on \Entropy of the Di�erence Image" above. Pattern Intensity

is successful when there are a minimum number of structures in the di�erence image.

An image pixel located at x is part of a structure when its intensity Idiff (x) di�ers

drastically from the intensities of all pixels within the neighborhood of radius r.

PI(s; r; �) =
X
x

X
y:jy�xj�r

�2

�2 + (Idiff (x)� Idiff (y))2
(3.6)

The constant � is added so that small deviations in intensity do not shift the function

much from its maximum value. Pattern Intensity is robust to large di�erences in pixel

intensity � due to its 1=(1 + �2) form. Furthermore, di�erences between U and V

which occur on a scale larger than r, such as those due to soft tissue, have little e�ect

on the function.

In [11], the constants were set � = 10 and r = 3 for full-resolution images. For

coarse images, it was found that using r = 5 maintained the function's performance.

Correlation Ratio Correlation Ratio was presented by [16] for multi-modal volu-

metric data registration. This function measures the functional dependence between

the intensities of corresponding samples.

CR(IfljIDRR) =
Var(E[IfljIDRR])

Var(Ifl)
= 1� EIfl[Var(IfljIDRR = w)]

Var(Ifl)
(3.7)

The rightmost expression is more easily implemented in practice. This function is eval-

uated over the joint intensity histogram which gives the probability PIfl;IDRR
(v; wjT )

that a randomly-selected sample at position x will have intensities (Ifl(x); IDRR(T (x))) =

(v; w).

Note that the above expression is not symmetrical in Ifl,IDRR, so the behavior of

CR(IDRRjIfl) may be very di�erent from that of CR(IfljIDRR).

Model-based Likelihood [9] proposed a methodology by which data of di�erent

modalities are registered based on the a prior model for the joint intensity distribution

for aligned data of those modalities. The prior model M is simply a structure which
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gives the probability P (v; wjM) that corresponding samples from Ifl and IDRR have

intensities v = (Ifl(x)); w = IDRR(T (x))), when T aligns the images. Based on the

model, this objective function gives the log-likelihood of a sample of the intensity

correspondences between the images based on the model.

L(M) =
X
x

logP (Ifl(x); IDRR(T (x))jM) (3.8)

3.7 Summary

In this chapter, we have framed the MR-
uoroscopy registration problem in the broad-

er context of medical image registration problems. We have also disussed the appli-

cation of an intensity-based registration scheme to this problem which would involve

the selection of an appropriate objective function and optimization algorithm, as well

as a method for simulating the radiographic process on volumetric medical data. This

frames the remainder of the thesis, in which we investigate these three issues.
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Chapter 4

DRR-Production Algorithms

4.1 Introduction

Simulating x-ray images of the volumetric dataset is essential to our registration

method. It is an especially important topic in this 3D-2D registration context as it

is by far the most computationally-intensive part of every iteration of any intensity-

based, automated registration approach. Indeed, the production of DRRs is governed

by its own dimension n =
p
number DRR pixels and the dimension of the volume

from which it is produced m = 3
p
number volume voxels, so its computation can be

bounded above by �(n2m3), with terms that may be associated with large computa-

tional constants. On the other hand, evaluation of typical objective functions are �(n)

or �(n2) and associated with smaller constants (pattern intensity [11] and correlation

ratio [16] are some notable exceptions). Unfortunately, every time an automated

registration algorithm would like to measure the objective function on a new vol-

ume pose (position and rotational orientation), new DRRs of the volume must be

produced with the volume in its new orientation and position; this computational

burden is unlikely to be obviated by schemes of precomputation or use of previous

DRRs, both because the conical geometry of a radiographic projection is not aligned

with the rectilinear geometry of the volume data, and also because the volume's pose

may vary in increments unrelated the volume data geometry, and unknown at the

outset of registration (if we knew what poses an algorithm would test, then we would
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already know the pose of ideal alignment that it arrives at).

One way to improve the speed of projection is by reducing dataset size. For

instance, Penney et al. [11] described the automatic registration of CT and 
uo-

roscopy in the lumbar region of the spine, where projections were limited to the L3

vertebra alone. Of course, the serviceability of this approach is limited by the com-

pactness of bony structures (the most prominent features in x-ray images) in the

region where registration is being performed. We may not be able to take advantage

of this method in registering images of the head where the skull spans a large region.

Even if we were to limit our focus to the face, only sagittal (and transverse, which

are nonsensical here) DRRs are free of in
uence from the rest of the skull.1 Another

way to improve projection speed is to reduce the resolution (i.e. downsample) of

the volume and/or radiograph; this leads to multi-resolution or hierarchical registra-

tion approaches explored in many registration contexts. Yet another way to improve

projection speed, and the topic of this section, is by choice of the digital-projection

algorithm. We'll describe two methods for producing DRRs: ray-casting, and one

that we'll term voxel-projection, the latter of which has a signi�cant speed advantage

over the former. Before we get started, however, we'll preface our discussion with a

note on coordinate systems which will have bearing throughout the chapter.

4.1.1 An EÆcient Coordinate Transform

For the projection algorithms which follow, because we ultimately need to use da-

ta coordinates to reference our volume and projection datasets, we should convert

from metric coordinates at the outset of our iterative algorithms to avoid conversion

overhead in its inner loop. Furthermore, because the main loops of our algorithms

reference corresponding points in both the volume and the DRR, it is advantageous

to collapse the conversion between their data coordinates through the intermediate

rigid transformation T between metric coordinates, into a single aÆne transforma-

1X-rays forming a coronal image pass through the back of the skull and the face, and along the
skull's side. Though we have not explored the e�ect of omitting the e�ect of skull's back and side in
registrations, it is likely that ignoring the sides, where x-rays running roughly parallel to them are
highly attenuated, would make the biggest di�erence.
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tion Taffine as shown in Figure 4-1. Note that although the radiographic data exists

Projection d.c Projection m.c. Volume d.c.Volume m.c.
Trigid

Taffine

Figure 4-1: An aÆne data coordinate transform

only in two dimensions, its data coordinates may be de�ned by adding an orthogonal,

out-of-plane dimension of arbitrary metric scaling. It is in this dimension that the

x-ray source resides.

We will �nd that this characterization will provide computational advantages that

are especially important to the voxel-casting approach.

4.2 Ray-casting

The ray-casting algorithm models ideal radiographic image formation by simulating

the attenuation that x-rays experience as they pass through a dense object. It does

so by taking the digital volume intensities as representative of local x-ray attenuation

coeÆcients, and performs a Reimann sum of those values along each ray (approxi-

mating an integration). To the result � we may then apply the function which yields

radiographic intensity noted in Section 2.1:

I(x; y) / exp(��) (4.1)

This makes the most sense when volume intensities correspond to the density of the

actual structures it depicts. This is the case for CT, and less so for MR, but as noted

in Section 3.6.1, the ray-casting algorithm produces images from MR whose structure

is similar to that of a true x-ray image of the object the MR depicts.
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4.2.1 Ray-casting Parameters

The ray-casting algorithm is governed by a number of the parameters depicited in

Figure 4-2. Those that are speci�c to the x-ray device which is being modeled include

focal length and image pixel resolution. Ray-casting is also governed by parameter-

s speci�c to the volumetric data being projected: volume voxel resolution and the

projective sum's spatial sampling period. The volume's resolution (in the direction

parallel to the projective plane) and the 
uoroscope's resolution both bear on the

DRR's resolution. The latter (
uoroscope resolution) is typically larger than the for-

mer, and thus provides an upper bound on the DRR's resolution in practice; however,

one might reasonably reduce the DRR resolution to the level of the volume's, as the

volume from which the DRR is produced can probably provide no precision beyond

that. The sampling period used to sum along each ray �ray is reasonably set to the

voxel resolution in the direction of each projective ray (which is roughly the same for

all rays in a single projection when the object is suÆciently far from the x-ray source)

so that each voxel's intensity contributes roughly once to each projective summation.

X-ray source (x  )s

sample (r  )i

∆ ray

focal length (f)

DRR

DRR
pixel
size

Figure 4-2: Ray-casting DRR Production
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4.2.2 The Ray-casting Algorithm

This algorithm goes through the pixels of the DRR exhaustively, and determines

each pixel's value by summing volume intensities VOLUME(x) along the ray r that

connects it to the x-ray source.

1. Crop the volume to exclude blank space (below some threshold in-
tensity) which may surround the imaged object.

2. Set xs as the x-ray source according to the focal length f .

3. For each DRR pixel xp:

(a) Initialize DRR(xp) = 0.

(b) Find the ray r = (xp�xs) connecting the target DRR pixel and
the x-ray source.

(c) Clip the ray r with the volumetric dataset at r0 and rm to avoid
summing blank voxels.

(d) Find DRR(xp) =
Pm

i=0VOLUME(ri) where ri = r0 + i ��ray �
r

jjrjj
, i = 0; : : : ; m, are samples spaced by �ray along the ray r

clipped by the volume. For each sample an interpolation method
must be used to �nd the intensity for each non-integral ray sam-
ple.

4. Fix the intensity DRR(xp) / exp(�DRR(xp)).

Note that step 3(d) comprises most of the burden for calculating each DRR pixel.

In implementation, there are a number of ways to speed this algorithm's operation,

some of which are stated explictly in the above outline.

1. Clip each projective ray with the extent of the solid-rectangular volume cropped

to exclude any surrounding low-intensity regions.

2. Because a large number of volume samples are referenced in the loop which

calculates the projective sum for each DRR pixel, the geometric calculations

ought to all be done in the volume's data coordinates. In the later section on

the voxel-projection algorithm, we will discuss a way to eÆciently extrapolate

the volume coordinates for all DRR pixels from those of a single pixel, by taking

advantage of the linearity of the aÆne transformation relating the image and

volume data coordinates. The resulting reduction in operations has less e�ect on
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running time in this ray-casting context where the time savings are eclipsed by

the overhead of non-sequential data access (which we discuss in Section 4.2.5).

3. Using nearest-neighbor interpolation instead of trilinear reduces running time

by about 50 percent (See Section 4.4). This is likely due to the reduction in

the number of volume voxels referenced more than the reduction in operations.

The resulting DRRs are more \blocky," as we would expect.

4. Going through the DRR along its columns (in data order) is most straight-

forward; however some speed gains can come from covering the DRR in small

blocks and summing the rays of those blocks in parallel (i.e. for all rays ter-

minating in each block, start at roughly the same distance from the source,

and increment all of their sums before referencing the next samples). Because

samples from nearby rays come from the same regions in the volume, we would

hope that summing rays in parallel will yield more cache hits. Unfortunately,

in practice, this only works for block sizes which are too small to yield time-

savings large enough to signi�cantly overwhelm the additional computational

overhead that comes from going through the DRR in blocks, rather than in

data order. While we have not explored the possibility, were we to represent

compact regions of the volume as contiguous blocks in memory, this approach

may become serviceable.

4.2.3 Resolution of Ray-cast DRRs

The resolution of the DRRs produced by ray-casting is on the order of the smaller

of the DRR pixel resolution and the resolution of the volume from which it was

produced. The DRR samples do not su�er from any smoothing e�ects beyond the

interpolation that occurs at ray samples within the volume, as rays are cast directly

to projection data coordinates. The e�ect of the interpolation method is less clear

and relies somewhat on the smoothness of the original volume data. If we assume

that trilinear interpolation accurately describes what would have been the intensity

of a sample at non-integral data coordinates (which is probably a good assumption),
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then it is clearly superior to nearest-neighbor interpolation in respect to resolution.

4.2.4 Complexity of Ray-casting

The computational complexity of ray-casting is given by �(n2m
k
), where

n =
p
DRR pixels

m = voxels along projective ray ' 3
p
volume voxels

k = spatial sampling period along projective ray

But note that, in fact, the image size is a function of the volume size (and their

relative resolutions) because the image size is only as big as the volume can project

into. Thus, the image size n2 is roughly proportional tom2, the extent of the volume's

projective image, and the complexity here is really �(m3). This asymptotic expression

has a large constant coeÆcient associated with it due to cache misses from non-

sequential volume data access as decribed in the next section.

4.2.5 Memory Access Patterns of Ray-casting

The speed of ray-casting methods is negatively e�ected by their accessing of the �(m3)

volumetric data in a manner that does not display locality in relation to the organiza-

tion of the data in the computer's memory. Given the typical organization of medical

data described in Section 2.4.1, and due to the fact that radiographs are generated

by divergent (non-parallel) rays, ray-casting algorithms will never sequentially access

volumetric data organized this way. Indeed, even if the focal length of the projection

and the volume position were such that the rays passing through the extent of the

volume were roughly parallel, a registration algorithm would very rarely encounter

poses in which the projective rays align with any of the volume's data axes, and even

more rarely encounter poses in which the projective summations access the volume in

data order for even short intervals. In practice, the rays will almost always traverse

the 3d matrix cutting accross slices and rows, and thereby cause little locality of

reference. Furthermore, without changing the represenation of the volume, summing

nearby rays in parallel (as described in Section 4.2.2) apparently does not produce
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enough overlap in reference to yeild an appreciable proportion of cache hits. This is

especially true as we sample nearby rays at greater distances from the source, where

coherence in reference breaks down as rays diverge. Changing the volume's represen-

tation in memory to one which stores compact regions in contiguous memory blocks

would likely improve cache performance; however, the access patterns would still not

be sequential.

4.3 Voxel-projection

The motivation for the voxel-projection method of DRR production came from the

need to speed the process of generating DRRs, to facilitate our objective function

probing experiments, and to make our automated registration algorithm serviceably

fast. When the best of such algorithms require hundreds of iterations to derive the

best alignment, the full-resolution ray-casting's typical running time of 1+ minutes

(even with nearest-neighbor interpolation) leads to tremendously slow registrations.

The voxel projection algorithm reduces this running time by more than an order of

magnitude by using the volume data to structure the projection process rather than

the DRR data. Recall that the ray-casting algorithm �rst calculates the ray that

terminates at each DRR pixel and then accesses the volume in a way inconsistent

with the volume's structure in memory. The voxel-projection method instead projects

each volume voxel onto the DRR, so that volume data access �(m3) is sequential in

memory, and then does minimal processing (sometimes in data order) on the much

smaller �(n2) DRR, which can �t entirely in the L2 cache (see Section 2.4.1). The

optimized algorithm relies on the linearity of the ray-casting process, �rst to estimate

and apply the contribution that each voxel makes to the DRR without actually casting

rays through the volume; and second, to separate processing of the volume data

and of the DRR data into two distinct stages, thus reducing the overall number of

calculations and the amount of data accessed during each stage.
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4.3.1 Development of the Method

Access the Volume in Data Order The voxel-projection method is probably

best described as modeling the ray-casting method. As rays are cast through the

volume, the amount of intensity that is contributed to each ray from a single voxel

varies inversely with the distance between ray and voxel (irrespective of the interpola-

tion method used). So, were we to render the amount of intensity that a single voxel

contributes to each of the DRR pixels, the resulting image would contain a parallel-

ogram or irregular hexagon with bowed sides (the projection of a rectangular solid),

whose intensity is greatest at its center and falls of to zero at its boundaries (precise-

ly how it falls o� is determined by the speci�c interpolation method). Because each

voxel

X-ray source

DRR

Figure 4-3: A Voxel's Projective Image (Nearest-Neighbor Interpolation)

projective ray is just the sum of scaled intensities from every voxel, this contribution

to the DRR from each voxel could be sequentially added to the DRR pixels, with-

out a�ecting the resulting projection. By the way in which each voxel's projective

footprint's intensity falls o� from its center, the intensities of adjacent volume voxels

would be e�ectively interpolated. Furthermore, if we assume that a linear method
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of interpolation accurately gives inter-voxel intensity values, the contribution of each

voxel could be considered independently of the surrounding voxels (nearest-neighbor

and trilinear interpolation are both linear in the voxel intensities).

Therefore, if we could easily compute each voxel's projective footprint (or voxel

projection as we will refer to it), we could go through the voxels in data order and

project these footprints to the image in sequence. Unfortunately, this is not practical,

for calculating the particular contribution of every voxel would require as much work

as is done in ray-casting directly. To solve this problem, we can assume that all voxels

have a projective footprint K of the same shape and extent, but with amplitudes that

are scaled according to the intensity of each voxel. We will discuss the validity of this

simpli�cation, and where it breaks down, in section 4.3.2 but it can be generally

justi�ed by the fact that the focal length is long relative to volume dimensions, so

that rays pass though all voxels in the roughly the same direction, and roughly diverge

the same amount after passing through each voxel. Notwithstanding this justi�cation,

by assuming the propriety of this generic projective footprint K (or kernel as we will

now refer to it), we may now strucutre the rendering of a DRR by the following

algorithm:

Starting with a blank DRR image (all zeros), for each volume voxel:

1. Find the DRR pixel to which the ray passing directly through the
voxel center projects.

2. Use this pixel to position the generic projective kernel K which has
been scaled in intensity according the intensity of the voxel.

3. Add the scaled intensities of the kernel K to spatially-corresponding
DRR pixels.

Separating Volume Processing from DRR Processing Note that the above

algorithm interleaves the processing of volume and DRR data, in that each voxel

access is separated from the next by a signi�cant amount of calculation on the DRR

data. This may defeat some of the speed advantages derived from accessing the

volume in data order. However, the above process is suggestively identical to that

of applying a 2D linear, spatially-invariant �lter K to an input comprising a 2D
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�eld of impulses (each of which is the sum of voxel intensities placed at the location

of their respective voxel's center projection). In fact, due to the linearity of the

projective process, the above procedure can be performed as follows, so that the

primary processing on the DRR data occurs after volume access is complete.

1. Starting with a blank DRR image (all zeros), for each volume voxel:

(a) Find the DRR pixel to which the ray passing directly through
the voxel center projects.

(b) Add the voxel's intensity to that pixel.

2. Filter the DRR image with generic projective kernel K.

Note that two voxels may project to the same pixel, but due to the linearity

of process, the result of �ltering is still valid. Also note that a voxel-center will

rarely project to a DRR pixel location, but to some inter-pixel location. Due to the

smoothing e�ect that we will later in this section, we can simply add the voxel-center

projection to the nearest neighboring DRR pixel. Figures 4-4 and 4-5 depict the

stages of DRR production by this method of voxel projection.

Figure 4-4: This image is the result of the �rst stage of the voxel-projection algorithm
in which the intensities of voxel-centers are projected into the DRR. Here the CT
volume shown in cross-section in Figure 2-3 is being projected.

Rejecting Large Kernels We might look to the method of ray-casting to help

de�ne the shape of the generic kernel K which has been left loosely speci�ed up to

this point. Indeed given the orientation of the volume and the manner of interpola-

tion used, we can determine what region of in
uence an individual voxel has on the
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Figure 4-5: This �gure shows the resulting DRR after the COT kernel is applied to
the image shown in Figure 4-4

DRR. If we restrict our focus to linear methods of interpolation, we can do this by

casting rays though a volume in which one voxel has unit intensity, while all others

have zero. Because nearest neighbor interpolation simply assigns the voxel's inten-

sity to the point of any ray passing within the rectilinear extent of the voxel, the

region of in
uence rendered by this method using nearest-neighbor interpolation, is

loosely bounded by the projections of the centers of the six adjacent voxels. Trilinear

interpolation would gives a voxel a broader area of in
uence on the DRR because

each voxel's intensity is mixed with the intensities of the twenty-six surrounding vox-

els. Both these regions of in
uence are depicited in Figure 4-6. While using such

kernels would probably render images which look very similar to DRRs produced by

ray-casting under these interpolation methods2, the application of 2D kernels of these

sizes was found to be impractically slow in light of this algorithm's potential place in

the inner loop of an iterative registration procedure. This long running time is due

both to the number of convolution multiplications and additions required, and to the

fact that such �ltering cannot be done in-place by direct convolution.3

2We did not attempt to do this.
3We did not explore in-place �ltering in the Fourier domain, as it would probably take a consid-

erable amount of time.

56



voxel center
neighboring center

trilinear

nearest neighbor

Figure 4-6: A Voxel's Span of In
uence on the DRR

Fast Kernels In light of the slow performance of 2D kernels, we explored the appli-

cation of a kernel which has the e�ect of interpolation which we'd expect by analogies

we have drawn to ray-casting methods, but which also has the special property that

it can be generated by the 2D convolution of two 1D, orthogonal functions h1, h2.

Then, we can rely on the associativity of the convolution operation to turn the �lter-

ing of image I by a large 2D kernel K, into a sequence of convolutions by two small

1D kernels.

K � I = (h2 � h1) � I = h2 � (h1 � I) (4.2)

This allows us to do the �ltering in-place with a small bu�er (of size equal to half

the length of the 1D kernels) to hold the original image values for pixels which are

modi�ed by the application of each 1D kernel to nearby pixels. Two kernels which

met these criteria were the 2D, rectangular pulse, and one formed from the 2D-

convolution of orthogonal, 1D triangles (COT) as shown in Figure 4-8. Both these

kernels have the additional advantage that they may be applied using only additions,

with no convolutional multiplications. We will defer to Section 4.3.4, discussion on
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the implementation details of �ltering with these kernels, as well as on the theoretical

e�ect that they have. We now note some performance results which will be detailed

later. The COT pulse was found to produce a very reasonable approximation to a

true ray-cast DRR. For reasons we will also discuss in Section 4.3.4, the kernel must

in general be oversized, which slightly blurs the resulting DRR, which appears to fall

somewhere in between a ray-casted DRR produced using trilinear interpolation, and

one produced using nearest-neighbor interpolation.

4.3.2 Variations Among Voxels' Projective Images

In our discussion above we mentioned the assumption that all voxels have similar

enough shape and extent that we can use the same projective image for each in our

projection. Here we will discuss that assumption and its limitations.

As the extent of imaged structures is generally small compared to the focal length

of typical 
uoroscopic apparatus (consider the cross-sectional extent of a body relative

to a focal length of 1.5 meters), variations in the shape and extent of voxel projections

due to the divergence of projective rays is not very pronouced.

More pronounced variation in the size of a volume's voxel projections are are a

product of the the fact that voxels which are closer to the x-ray source will generally

have a larger projective footprint than will voxels that are closer to the plane, as

the rays which pass through them will subsume a larger conical angle and have a

longer travel distance over which to diverge (see Figure 4-7). This e�ect is more

pronounced for larger voxel spacing, shorter focal length, and greater volume extent

in the direction of the projection. We found that the projection of a volumetric

dataset's central voxel (i.e. with data coordinates ( columns
2

; rows
2
; slices

2
) serves as a

good model for all voxels in the set, as it it's extent is roughly midway in between the

extent of extremal voxels. This result was derived with experiment on head images

(small spatial extent) with large slice spacing (4mm), so we anticipate that it will be

a generally-applicable one.4

4We have not explored the projection of data of so large an extent and slice spacing that this
is not a good approximation. It might involve a simple extension of the algorithm described here,
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X-ray source

voxel

DRR

Figure 4-7: Variation in the extent of voxel projections.

4.3.3 2D Rectangular Pulse

At the outset of the chapter, we mentioned two 2D kernels which have the property

that they can be produced by the 2D convolution of two 1D kernels. One of these

kernels was the 2D rectangular, constant pulse. It is rectangular in two orthogonal

directions, and when properly-sized, seems to approximate the projective kernel due

to ray-casting with nearest-neighbor interpolation. Its unscaled amplitude is unity,

so that it contributes to the DRR exactly the intensity of the voxel with which

it is associated. This quality a�ords the additional computational advantage that

convolving with it does not require any multiplication.

In practice this kernel does not produce suitable approximations to a ray-casted

DRR. This failure is apparently due to the fact that our �ltering approach implicity

uses the extent of a single voxel's projective image for all the voxels. If a voxel with

a large projective image is used as the model voxel, then the DRR su�ers from high-

intensity banding due to excessive kernel overlap among voxels whose projective image

is smaller. If a voxel with a small projective image is used as the model voxel, then

the DRR su�er from low-intensity banding due to insuÆcent kernel overlap among

voxels whose projective image is larger. Unfortunately, there does not appear a broad

enough middle ground that a model voxel may be selected which will work over all

whereby multiple passes are made over the volume, and initial projections are made to more than
one DRR data set. While performance would be compromised due to the additional range checking
operations required, we could probably minimize processing time at the image level by interleaving
the pixels of the DRRs in memory (dividing each block of memory into segments that hold the
intensity of corresponding pixels of di�erent images).

59



volume orientations. Smoothing the edges of the rectangular kernel did not seem to

solve this problem, although perhaps there is room for further investigation.

4.3.4 2D Convolution of Orthogonal 1D Triangles (COT)

Performance Overview As introduced in Section 4.3.1, another kernel that sat-

is�es the requirement of being composed of two 1D orthogonal kernels is one that is

composed by the convolution of two orthogonal triangular kernels. The COT ker-

nel is shown from a number of viewpoints in Figure 4-8. When properly-sized, this
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Figure 4-8: The COT kernel. This plot was produced by the outer product A0A,
where A = (0; 1; :::; 9; 10; 9; ::1; 0)

kernel performs a linear interpolation which is similar to that performed by a prop-

er trilinear-interpolation kernel, although in general it is very crude approximation.

Nevertheless, it has proved to produce a very reasonable approximation to a true

ray-casted DRR over all volume orientations, when we used the projective image of

the volume's central voxel as a model for all voxels'. For reasons that we will discuss

shortly, its extent must generally be overestimated, which slighly blurs the DRR.

The result is a DRR which appears to fall somewhere in-between a ray-casted DR-

R produced using trilinear interpolation, and one produced using nearest-neighbor

interpolation. While these COT-kernel DRRs have slight high-intensity banding in

certain orientations due to the same kernel-extent overestimation which foiled the
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2d rectangular kernel, the blurring e�ect of the pyramid kernel seems to minimize

sensitivity to di�erences in the extent of voxels' projective footprints.

The COT has the same additional computational advantage as the 2D rectangular

pulse kernel in that �ltering with it does not require any multiplications. This is due

to the fact that each of the 1D triangular, orthogonal kernels from which the pyramid

is produced, can themselves be produced by the convolution of two 1D, rectangular

pulses. Therefore, the COT can be applied by sequentially applying two passes of unit

amplitude, 1D, rectangular pulses in each orthogonal direction. 5 We'll discuss the

details of this application in a later section, but we'll �nd that we can double-sweep

each orthogonal 1D rectangular pulse with a single pass over the DRR (one of which

occurs in data order).

Relation to Trilinear Interpolation In particular volume orientations, like those

depicted in Figure 4-9, the action of the COT is most similar to that of trilinear

interpolation in ray-casting, when the kernel's extent is determined by the projected

distance between adjacent voxels. In that �gure, each application of the COT kernel to

the voxel-center projections (as part of the convolutional �ltering process) is depicted

as hovering with its associated voxel. The voxel-projection algorithm models the

projection process as casting each of these kernels down onto the projective plane.

We can also model the process occurring by ray-casting, where each ray picks up units

of intensity equal to the amplitude of the part of each hovering kernel through which

it passes (as if samples we taken at exactly these points). With the volumes oriented

as they are in the �gures, each ray receives an intensity contribution equivalent to that

of one voxel (in fractions of intensities of multiple voxels) over each step of pixel size

in its direction. This is exactly like ray-casting with trilinear-interpolation, where the

fraction of a voxel's intensity contributed to a sample taken in the same data plane

(i.e. trilinear interpolation reduces to bilinear interpolation) is given by the product of

two terms which are functions of its linear distance from the sample in two orthogonal

5Note that this results in a scaling of the central amplitude of each triangle of roughly half the
triangle width (see Figure 4-8). The scaling is uniform, so this does not present a problem.
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Figure 4-9: A volume orientations where smoothing by the COT kernel is similar to
ray-casting using trilinear interpolation.

directions (see Equation 2.4). The COT kernel has the same form, which is suggested

by the fact that it is triangular (linear) in two orthogonal directions. Indeed, the

convolution by which the COT kernel can be produced is also the outer product of a

vector with itself whose terms give the amplitudes of a triangle (this is exactly how

the rendering in Figure 4-8 was produced).

However, the analogy soon breaks down when we consider more skewed volume

orientations (see Figure 4-10).

Sizing the COT Kernel Instead trying to tie the action of the COT kernel to

that of trilinear interpolation, we allow that it is performing a di�erent kind of in-

terpolation, one which is also reasonable and empirically e�ective. This action can

be most accurately described as smoothing among the intensities of adjacent volume

voxels (in the 6-connected sense). This kind of smoothing is motivated not only by

its functional similarity to trilinear and nearest-neighbor interpolation kernels, but

also out of a need to regularize the resulting DRR. We can see this as follows. For

a typical volume orientation, the projective image of the centers of voxels adjacent
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Figure 4-10: The proper COT width is not clear in this orientation.

to a central voxel are depicted in Figure 4-11. We can imagine how such a structure

DRR
data
axes

the extent of
a possible
minimal
COT kernel

voxel
its neighbors

Figure 4-11: Oversizing the COT Kernel

might generate the image in Figure 4-4 by imagining this structure being duplicat-

ed along the projections of volume data axes. We also notice that if the extent of

the COT �lter does not encompass the longest of these projected inter-voxel lengths,

then the kernel will not properly interpolate the central voxel's value with all of its

six nearest neighbors, and the low intensity rows characteristic of the image in Figure

4-4 will not be fully closed. Therefore, it seems that the smoothing kernel must at

least interpolate among adjacent voxels, lest an irregular DRR result.

With this in mind, we could take the COT to have minimal extent while still

encompassing the projection of each of the central voxel's six neighbors, were it not for

the fact that the volume's data axes (and thus the projection of these volume centers)
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will not generally be aligned with the data axes of the DRR and of the kernel which

will be used to smooth the DRR (see Figure 4-11). To derive the computational

advantage that motivated this choice of kernel, the axes of the pyramid must be

aligned with those of the DRR. It turns out that we can solve this problem simply by

oversizing the kernel to be isotropic with sides equal to the length of the maximum

projected inter-voxel spacing. While this generally results in oversmoothing of voxel

intensities (and more so in certain directions than in others), the resulting DRR is

regardless a good approximation of one produced by ray-casting.

4.3.5 Voxel-projection Parameters

The voxel-projection algorithm is governed by all the same parameters that govern

ray-casting projections except the projective-sum step size. The relative resolutions

of the volume and DRR, the orientation of the volume, and the volume position along

the focal length, all in
uence the extent of a derived parameter: the extent of the

square COT kernel applied in the second stage of the voxel-projection process.

4.3.6 The Voxel-projection Algorithm

This section presents a detailed outline of the voxel-projection algorithm. It is fol-

lowed by implementation details by which the method is optimized for speed.

1. Crop the volume to exclude blank space (below some threshold in-
tensity) which may surround the object imaged.

2. Set xs as the x-ray source according to the focal length f .

3. Initialize all DRR pixels to zero intensity.

4. For each volume voxel xv:

(a) Find the DRR pixel xp with integer coordinates, nearest to the
point where the ray r = (xv�xs) intersects the projective plane.

(b) Increment pixel xp with the volume intensity at voxel xv, VOLUME(xv).

5. Find the DRR data coordinates of the projections of the volume's
central voxel (i.e. with volume data coordinates ( columns

2
; rows

2
; slices

2
))

and three adjacent voxels, each of whose data coordinates di�er from
the central voxels by unity in a di�erent dimension. Find the max-
imum distance dmax in DRR pixels between the central voxel's pro-
jection and one of its adjacent voxel's projection.
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6. Set (2ddmaxe+1) as the length and width of the rectangular-pyramidal
projective kernel K. This guarantees the kernel will always have a
center point with unit amplitude to which the full intensity of the
associated voxel can be applied.

7. Smooth the DRR with the kernel K.

Step 4 In this step, the volume voxels are actually projected to the DRR. This

interaction between plane and volume requires application of the aÆne transform

between the volume and DRR data coordinates. Naturally, we'll index the loop in

volume data coordinates, for it rasters through all the volume's voxels; however, at

some point in each loop iteration, a conversion must be made to DRR data coordinates

so that the DRR pixel to which the current voxel projects, can be incremented. We

can drastically reduce the number of operations in each loop iteration by making this

conversion at the outset of each iteration.

First, this allows us to do all the projection calculations in DRR data coordinates,

which have a simpli�ed form due to the plane of projection being de�ned by two of

the coordinate system's basis vectors. For a general coordinate system, the projection

is calculated:

xv = voxel coordinates

xs = x-ray source coordinates

xp = projection point coordinates

np = projection plane unit normal

x0 = plane o�set

xp = xs + (xv � xs)
nTp (x0 � xs)

nTp (xv � xs)
(4.3)

But, in projection data coordinates, where the plane resides in the coordinate system's

xy-plane, we get a simpli�ed expression:
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np = (0; 0; 1)

x0 = (center-col; center-row; 0)

xs = x0 + fnp

xp = xs + (xv � xs)
z(x0 � xs)

z(xv � xs)
= xs + (xv � xs)

�f
z(xv � xs)

(4.4)

where z(x) is the z-coordinate of x. This simpli�cation obviates two inner products

and saves 6 multiplications and 4 additions.

Second, we can take advantage of the linearity of the aÆne coordinate transform,

and the sequence of voxel coordinates on which we are applying it, to extrapolate the

DRR data coordinates of every volume voxel by applying the full aÆne transformation

only once. Note that the loop rasters through the volume voxel in data order, so that

when on the previous iteration it accessed the voxel with volume data coordinates

xi�1, on the current iteration it accesses the voxel with volume data coordinates

xi = xi�1 + ei, where ei is one of the basis vectors of the volume data coordinate

system, f(1; 0; 0); (0; 1; 0); (0; 0; 1)g. This leads to the following simpli�cation:

Taffine(xi) = A(xi) + b = A(xi�1 + ei) + b = (A(xi�1) + b) + A(ei)

= Taffine(xi�1) + (column i of A) (4.5)

Therefore, we can transform each voxel's volume data coordinates to its DRR data

coordinates simply by adding the appropriate column of the coordinate transform

matrix (3 additions) to the preceeding voxel's DRR data coordinates; instead of

applying the full aÆne coordinate transformation (9 multiplies, 9 additions). This

requires very little additional bookkeeping to transition between the rows and slices

of the volume dataset (assuming that the rows of the volume data are organized in

contiguous blocks of memory). The resulting loop requires only two additional vectors

to hold the beginning of the current volume slice and row, and is outlined as follows.
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xs = volume data coordinates of the beginning of the current slice

xr = volume data coordinates beginning of the current row within the current slice

xc = volume data coordinates the current voxel (column, row, slice)

Taffine = A(x) + b = transform from volume to DRR data coordinates

A = [ec; er; es]; so that ei are the columns of A

Initialize xc = xr = xs = (0; 0; 0) (the �rst voxel).

For all volume slices f
For all volume rows f

For all volume columns f
Project voxel xc.
Update xc = xc + ec. g

Update xc = xr = xr + er. g
Update xc = xr = xs = xs + es. g

The time overhead required for data access in this loop is relatively small because

volume intensities are referenced sequentially, and because DRR access most likely

exhibits some locality of reference, and probably �ts entirely in the L2 cache. As a

result, these reductions in the number of operations per iteration yield sizable time

savings.

Step 7 In this step, the rectangular pyramidal kernel is applied to voxel-center

projections currently occupying the DRR. As mentioned before, this kernel can be

applied (almost) in-place and using only additions. To do it (almost) in-place, the

smoothing is implemented using the fact that the rectangular pyramidal kernel is

the 2d convolution of two orthogonal, 1d triangular kernels. By the nature of the

convolution operation, when the kernel is applied to each DRR pixel, it is scaled by

that pixel's value, and the values of surrounding pixels are accordingly incremented.

This operation cannot be done in-place directly: The kernel must be applied to

each pixel's original value, but applying the kernel to one pixel requires a number of

surrounding pixel values to be modi�ed. For an arbitrary 2d kernel of area p2, the

original values of about (np2

2
) of image pixels, where n is the image width, would have

to be saved at any one time. To see this, imagine a 2d kernel applied to an image
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by sweeping it along the rows (Figure 4-12). For typical, full-resolution DRR widths

of n = 250, this can be a rather large bu�er. However, because the pyramidal kernel

can be applied by independent, sequential application of 1d kernels, the number of

original image values to save can be much smaller, about p

2
, where p is the number

of kernel samples. Such a kernel would be applied by sweeping it along the rows

(or columns) of the image, so only a small bu�er would be required to hold the

original values of the DRR pixels that lie half-a-kernel-radius ahead of the kernel's

movement (Figure 4-13). To apply each of these 1d trianglar kernels without using
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Figure 4-12: Direct convolution by a 2D kernel cannot be done in-place.

any multiplications, we use the fact that a triangular kernel is the convolution of

two constant pulses (Figure 4-14). Note that one of these rectangles trails the input

impulse to which it is applied, and one extends to indices greater than the central

index. We can use this fact, along with the fact that we would apply these 1d pulses

by sweeping along DRR rows (columns), to apply the two rectangular kernels in a

single pass. If the rectangular kernel which extends to positive indices is applied to

the DRR �rst, then as soon as it has been applied to a pixel, that pixel has its �nal

value and is ready to have the trailing pulse applied to it. But note that because we

are applying these kernel by sweeping in order of increasing index, and because the

trailing kernel extend to indices with values less than the pixel to which it is being

applied, we need no bu�er to hold any original pixel values when applying this kernel.

Therefore, the trailing pulse can be swept along directly behind the �rst pulse, and an

original-value bu�er is only required over the extent of the �rst pulse (Figure 4-15).
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Figure 4-13: Applying a Triangular Kernel.

When the 1d triangle is being applied along the DRR axis which parallels the DRR's

data order, this double-rectangle sweeping results in nearly-sequential memory access

(and exhibits some locality of reference in general). We can use this technique to

apply the kernel only to the projections of voxel centers (non-zero DRR pixels) which

are sparce in the image at this stage (refer back to Figure 4-4). Due to the linearity

of the convolution operation, ignoring input pixels with zero intensity has no e�ect

on the resulting image, but speeds things up considerably. Indeed, not only do voxel-

center projections tend to produce an image with many blank regions, there is often

a signi�cant amount of blank space surrounding the projected extent of the object

rendered in the volumetric data. This is especially true for head data, and volume

orientations in which the volume's data axes are highly skewed relative to the plane

of projection.
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Figure 4-14: A triangle is the convolution of two square pulses.

����
����
����
����

����
����
����
����

i

h2

h 1

buffer

DRR row/column

Figure 4-15: Double-sweeping a rectangle to produce a trilangle

4.3.7 Voxel-projection Complexity

The computational complexity of voxel-projection is given by

�(m3 + n2 � s2) (4.6)

where

n =
p
DRR pixels

m =
3
p
volume voxels

s =
p
kernel pixels

Again, the image size n2 is roughly proportional to m2, the extent of the volume's

projective image. The relationship between s and m is related by the relative reso-

lutions of the volume and DRR. It certainly varies in proportion to the image size

(assuming we're increasing resolution for a �xed metric dimension), in which case the

term �(n2 � s2) = �(m4). On the other hand, if the relative resolutions of the volume
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and DRR are held constant, the overall complexity is �(m3), just like that of ray-

casting. Of course, the constant coeÆcients implicit in these asymptotic expressions

are small due to voxel-projection's eÆcient memory access patterns.

4.3.8 Voxel-projection Resolution

The resolution of a voxel-projected DRR is limited by the extent of the projective

(smoothing) kernel applied to the DRR. Because this kernel has roughly the dimension

of the maximum projected inter-voxel spacing, we can estimate a voxel-projected

DRR to have that resolution (assuming the DRR's pixel resolution is not the limiting

factor). Because of the divergence in projective rays, the resolution of voxel-projected

DRRs is smaller than that of ray-casted DRRs produced using trilinear interpolation

(where the resolution is governed by the unprojected inter-voxel spacing, assuming

suÆciently small DRR pixel size). The e�ects on DRR resolution due to nearest-

neighbor interpolation are less transparent, although an argument could be made

that ray-casted DRRs produced with nearest-neighbor have an ansiotropic resolution

equivalent to the projected inter-voxel spacings.

The disparity in resolution between the two projection methods begs investiga-

tion the relative running-times of these projective methods when the resulting DRR

resolutions are roughly matched (especially because we claim that voxel-projection

is so much faster). Instead of trying to normalize for resolution between these two

methods which incorporate information into a DRR in di�erent ways, we direct our

attention to the running time comparisons of each method (Section 4.4), where we

can clearly see that the voxel projection method a�ords signi�cant improvements in

speed over ray-casting over all typical pixel resolutions.

4.4 Running-time Comparisons

In the following �gures, we compare the running-times of voxel-projection and ray-

casting algorithms. These experiments are geared to show variation with DRR size

and volume size. The graphs plot running times against DRR pixel width, which
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varies as the square root of the DRR size. We varied the DRR pixel width in a

schedule (0.5, 1, 2, 4, 8), each step quartering the DRR size. Voxel-projection is

considerably faster than either ray-casting formulation for full and half resolution

DRRs; however, although the computational burden of ray-casting declines as fewer

rays are cast to a smaller DRR, the computational burden of the voxel-projection

alogrithm is always limited by the fact that it covers the entire volume, irrespective

of the DRR resolution, even when the width of its smoothing kernel goes to 1.

These experiments were performed on a single CT head image of size 512�512�29,
with 8-bit pixels. In the �rst set of experiments (on the left in Figure 4-16), this

image was cropped tight to the head, yielding an image size of 317� 390� 29. In the

second set of experiments, the original CT was downsampled by a factor of 2 to size

256� 256� 29, and then cropped around the head to size 154� 191� 29, roughly a

quarter of the original image's cropped size.
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Figure 4-16: Running time comparision of voxel-projection and ray-casting over a
series of DRR and volume sizes.

4.5 Summary

In this chapter we have presented the voxel-projection method of DRR production

which is signi�cantly faster than the more straightforward ray-casting method. We
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Figure 4-17: Voxel-projection running times across DRR and volume sizes.

have also discussed the limitation of the method in terms of the resolution of resulting

DRRs and in terms of the similifying assumptions made in its development.
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Chapter 5

Probing Objective Functions

5.1 Overview

In this thesis, we are interested in the intensity-based, rigid registration of volumetric

MR to biplanar 
uoroscopy. As we discussed in Chapter 3, intensity-based methods

require an appropriate objective function and manner of evaluating it, as well as

an optimization scheme which can eÆciently optimize that objective function. For

this reason, we performed a series of experiments to evaluate qualities of the objective

functions described in Section 3.6.2, that are relevant to their utility in such a scenario.

In these experiments, objective functions were evaluated on DRRs from CT and

MR images of the same anatomical region (the head). Biplanar CT-DRRs were

produced as models for true radiographs. Relative to these models, the MR volume

was stepped over a range of misregistrations, and at each misregistration, an MR-

DRR was produced on which our series of objective functions was evaluated. By

this manner of probing, we could discern and visualize the behavior of the objective

functions.

The approach of using a CT-DRR as a model for a 
uoroscopic radiograph has

the advantage that \ground truth" is known for the registrations, because the CT

and MR can be registered by existing, validated methods for 3D-3D registration [22].

Furthermore, using CT-DRRs allowed us to avoid the calibration and dewarping issues

involved in using 
uoroscopic data, that would have complicated our investigation.
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We reason that the performance of objective functions in registering CT-DRR to MR

is indicative of their performance in registering radiographs to MR, due to the great

similarity of CT-DRRs and true radiographs as described in Chapter 3.6.1.

In this chapter, we will describe the data on which our experiments were per-

formed, the manner in which we evaluated the objective functions, the qualities of

the functions we considered, and the type of misregistrations we considered. We'll

conclude with the results of these investigations and discussion of how these results

lead to the choice of optimization algorithm.

5.2 Input Data

For our investigations we used CT and MR head data from the Vanderbilt Retrospec-

tive Registration Evaluation Project [3]. These data include CT and Proton Density

MR, which were imaged with �ducials adhered. The �ducials were subsequently

erased from the images, and versions of the MR images were made available to which

geometric-distortion correction techniques had been applied.

The images that we used are cropped around the brain, as is depicted in Figures 2-

3 and 2-2. The CT data contain 512�512�29 8-bit voxels of dimension 0:65�0:65�4

mm3. The MR data contain 256�256�24 8-bit, Protein Density voxels of dimenstion

1:25� 1:25� 4 mm3.

5.3 Objective Function Evaluation

We �xed the MR-DRR dimension of the model CT-DRR so that their pixels were

perfectly aligned. We then evaluateed the objective functions over all pixels of both

images, each intensity of which was given by an 8-bit integer.

We initially investigated the sampled evaluation of mutual information and cor-

relation coeÆcient, whereby pixels (50-200 count) were chosen at uniformly random

positions in the model radiograph. For mutual information, a histogram was estimat-

ed using Parzen Windows, and evaluation was performed in the manner described in
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[22]. We found that these functions had shallow peaks often of amplitude on the same

order as the very high-frequency 
uctuations due to randomization. Furthermore, in

evaluating rotational purturbations, we found that some of the objective functions

investigated here (speci�cally mutual information and correlation coeÆcient, which

were the only measure investigated at that time) did not have their global maximum

at perfect alignment.

With these results, we decided on evaluation over the full images. While this is

less computationally eÆcient, the performance of an objective function evaluated over

the entire images is likely indicative of its performance over all evaluation schemes,

and therefore, appropriate for our investigations in this thesis.

5.4 DRR production

The biplanar, CT-DRR models were produced by the casting rays through the CT

data set, as decribed in Chapter 4. Trilinear interpolation was used to calculate inter-

voxel intensities in this process, as it is relatively eÆcient compared to higher-order

interpolation methods, and at the same time, produces DRRs of good quality.

Figure 5-1: Sagittal CT-DRR produced by ray-casting with trilinear interpolation
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Figure 5-2: Coronal CT-DRR produced by ray-casting with trilinear interpolation

5.5 Pertinent Objective Function Qualities

Given the long processing times (1+ minutes) required for even streamlined version

of ray-casting DRR-production algorithms, it was impractical to produce the MR-

DRRs by this method for our probing experiments, when large numbers of these

DRRs needed to be produced with the MR volume in di�erent orienations. Therefore,

we used the much faster voxel-projection algorithm to produce all MR-DRRs in our

probing experiments. The details of the algorithm are also given in Chapter 4.

Figure 5-3: Sagittal MR-DRR produced by voxel-projection
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Figure 5-4: Coronal MR-DRR produced by voxel-projection

5.6 Pertinent Objective Function Qualities

5.6.1 Shape

As we discussed in Chapter 3, a successful objective function is one which takes on

maximal value at ideal alignment, and which has characteristics such that it can be

eÆciently maximized by automatic optimization. These characteristic include having

few local maxima and exhibiting local variation which is indicative of position of the

global maximum.

5.6.2 Behavior at Di�erent Resolutions

The shape and location of the global maximum of an objective function may change

when the function is evaluated over a lower resolution version of the same dataset.

When registration algorithms often use multi-resolution approaches to speed regis-

tration time and to overcome local extrema, it is important that objective functions

are well-behaved at di�erent resolutions, that is, new local maxima do not appear

and the global maximum does not shift very much from its full-resolution position.
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5.7 Transformation Parameterization

Without going into too much detail here about the formal parameterization of the

transformation T relating the metric coordinate frames of the MR volume and the

model radiographs (as we do in Chapter 6), we will give a qualitative depiction of the

manner in which we adjusted the MR volume's postion in the course of our probing

experiments. Refer back to Figure 3-1 where the volumetric data is positioned above

the plane. In our experiments, we moved the MR volume over the projective plane

by simple translations of its position, and by rotations about its central voxel.

Given this formulation, there are a set of types of misalignment over which we

can probe, that well characterize an objective function's general behavior. The pro-

jective context and the fact that it only a�ords a two-dimensional view of variations

in the projected volume's orientation, naturally divides translational and rotational

misalignments into two categories: in-plane and out-of-plane. These two categories

relate directly to how pronounced in the projective plane, a type of variation in the

volume's orientation is. For translational displacements, it is easy to see that volume

movement parallel to the projective plane will be most pronounced. Movement in the

direction perpendicular to the plane (i.e. in the direction of the projection) will be

less pronounced and limited to an expansion/contraction of the projective image due

to the divergence of the projective rays. Note that there would be no such variation if

these rays were parallel. For rotation, the in-plane mode comes from rotation around

the axis perpendicular to the projective plane, and causes a pronounced spinning of

the projective image in the projective plane. Rotations around axes parallel to the

plane of projection might be considered out-of-plane modes as they cause variations

in the projection that occur in the dimension perpendicular to the plane; these are

rotations that cause di�erent parts of the volume to overlap each other in the direc-

tion of the projection, so while their e�ect may be very clear, its mechanism are not

so transparent from observing variation in the projection alone.
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5.8 Range of Probing

Doing a �ne probing of any appreciable volume of the six-dimension domain of the

objective function takes an overwhelming amount of time due the number of samples

being taken and the amount of time it takes to generate a function value for each

of those samples. Furthermore, because we are limited to e�ective visualization of

function of no more than two variables, probing over a six-dimensional space is also

not of great utility. Therefore, we limited our probing to one or two parameters over

ranges near perfect alignment, to get a sense for the function shape for independent

modes of displacement and for modes in unison. We probed over broad ranges with

low sampling resolution, and near the maximum of functions with higher resolution.

5.9 Results and Discussion

Before we present the results, we will �rst note some important bounds on our inves-

tigations and the conclusions that we can draw from them.

Due to limitations in the availability of data, our probing experiments were per-

formed on single pair of cooresponding CT and MR head images from the Vanderbilt

datasets described in Section 5.2. Besides this representing only a single data point

of, the nature of these data restricts our study in a number of ways. First, these data

are cropped around the brain cavity (tighter in the MR then in the CT, as can be

seen in Figures 2-2 and 2-3. It is common that medical data is aquired in this way, as

imaging is usually limited to the anatomical region of focus in a procedure. However,

this presents a complication in this radiographic context, as any signi�cant degree

of out-of-plane rotation will cause a signi�cant number of the simulated rays to pass

through regions where material has been truncated from the image, and therefore the

DRR pixels at the ends of these rays will not accurately re
ect the attentuation that

would have been shown has the cropped material been there (Section 3.6.1).

This severely limits our ability to explore out-of-plane rotations, which is the type

of motion which most distiguishes this 3D-2D problem from a 2D-2D problem.
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Nevertheless, we will o�er a qualitative review of a variety of the objective func-

tions noted in Chapter 3 as a starting point for further investigations.

5.9.1 Directions of Misregistration

We performed our probing experiments with a biplane model in which the planes

of projection are orthogonal (as is common in biplane 
uoroscopy apparatuses) and

produce sagittal and coronal DRR images. We probed over misregistrations which

center on the \ideal" alignment calculated by 3D-3D registration of the CT and MR

volumetric data. The direction of probing were de�ned by the major axes of the

sagittal plane, and involved translations in these directions, and rotations around

them. The coordinate system is depicted in Figure 5-5

x

y

roll

pitch

sagittal

x

z

roll

coronal

yaw

Figure 5-5: Probing Directions De�ned

5.9.2 Objective Functions

In our probing experiments, we investigated six objective functions: mutual informa-

tion, pattern intensity, entropy of the di�erence image, correlation coeÆcent, corre-

lation ratio CR(ICT�DRRjMR), and correlation ratio CR(IMRjCT-DRR). The last,

CR(IMRjCT-DRR), performed very badly in all tests, and has therefore been omitted
from the graphs which follow.

5.9.3 1D Probing at Full-Resolution

The following graphs are characteristic of objective function evaluations over misreg-

istrations in a variety of directions individually, with other directions held at their

82



\ideal" values. Note that the peaks in these functions do not represent a maximum

of the function (global or local), as the derivative in the directions held constant is

not zero. The DRR resolution for these probings was set to 1 mm2.

� Figure 5-6. Translational misregistrations over the range [-10cm,10cm] with
step size 2mm.

� Figure 5-7. Detail of function peaks for z-axis misalignments.

� Figure 5-8. Fine probing of y-axes misalignments highlighting small 
uctuations
in the functions.

� Figure 5-9. Probing over rotations about the x-axis (out-of-plane in both im-
ages).

� Figure 5-10. Probing over rotations about the y-axis.
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Figure 5-6: Probing a wide range of x and z-axis misalignments

5.9.4 1D Probing at Lower Resolution

The following graphs depicit probings of the objective functions where the model

CT-DRR resolution has been set to 2mm2 and 4mm2. Contrast these to the graphs

over 1mm2 pixel DRRs. The structure is not considerably changed.

� Figure 5-11. Z-axis misregistrations over the range [-10cm,10cm] with step size
2mm for downsampled models. Compare to Figure 5-6.
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Figure 5-7: Details of peak over z-axis misalignments
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Figure 5-8: Detail of objective function 
uctuations
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Figure 5-9: Probing over rotations about the x-axis (roll)
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Figure 5-10: Probing over rotations about the y-axis (pitch)

� Figure 5-12. Detail of function peaks for z-axis misalignments and downsampled
models. Compare to Figure 5-7.

� Figure 5-13. Probing over rotational misregistrations about the y-axis (pitch).
Compare to Figure 5-10.
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Figure 5-11: Probing a wide range of z-axis misalignments for low resolution CT-DRR
models

5.9.5 2D Probing at Full-Resolution

In the course of our experiments, we found that Pattern Intensity performed best

in the sense that its peak corresponds to a transformation which is close to that
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Figure 5-12: Probing a narrow range of z-axis misalignments for low resolution CT-
DRR models
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Figure 5-13: Probing over rotational misregistrations about the y-axis (pitch) for low
resolution CT-DRR models
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which produces the best alignment of the CT and MR volume, and in the sense that

it has few local maxima. Therefore, we present some graphs which depicit Pattern

Intensity's behavior over two directions of misregistration.

� Figures 5-14. Y and Z-axis misregistrations.

� Figures 5-15. Y-axis and roll angle misregistraions.

� Figures 5-16. pitch and yaw angle misregistraions.
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Figure 5-14: Probing of Pattern Intensity in both the y and z-axis directions.
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Figure 5-15: Probing of Pattern Intensity in both the y-axis and roll-angle directions.
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Figure 5-16: Probing of Pattern Intensity over misalignments in volume pitch and
yaw.

5.9.6 Discussion

From these explorations, we make the following observations:

� The objective functions are not smooth. In Figure 5-8, where probing was

performed with a small step size, we can see that there are �ne 
uctuations in

all the objective functions. Furthermore, we see in a number of these functions

there are multiple maxima. This is true of all the functions, as can be visualized

by higher dimensional probing (3D) which we performed, but which could not

be well-presented in this document.

� Lower resolution impacts behavior minimally. Comparision of our full-

resolution and half-resolution probings suggests that the behavior of these ob-

jective functions does not change very much with a limited degree of down-

sampling. Although greater degrees will e�ect function behavior in irregular

ways.

� Capture radius is limited for rotational o�sets. The capture radius in

translational directions is apparently very large (Figure 5-6), but this is not the

case for rotational o�sets. We should expect this, however, given the nature

of the data as decribed at the outset of this results section: every rotational

88



direction will be out-of-plane with respect to one of the planes. Therefore, there

are few valid rays available to the objective functions in the plane where the out-

of-plane rotation is large. Experiments with more complete head images will be

required to better characterize objective function behavior in these rotational

directions.

� Pattern Instensity Performs Best. As was found in CT-
uroscopy registra-

tion [11], pattern intensity apparently has the best performance of the objective

functions explored, as its peaks are consistently close to the \ideal" values. N-

evertheless, any conclusion of this nature must be veri�ed on a larger set of

data and under more realisitic interventional conditions (such as, having inter-

ventional instruments in 
uoroscopic image which are not present in the MR).
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Chapter 6

Uphill-Simplex Registration

Algorithm

6.1 Overview

In order to use an objective function to register an MR volume to a set of biplanar


uroscopic images, we need a way to automatically optimize the function's value over

the domain of rigid transformations relating the datasets' respective metric coordi-

nate systems. Because most of the objective functions we have explored exhibit some

degree of non-convexity and are poorly behaved for large misregistrations, a success-

ful optimization method for this 3D-2D multimodal image registration problem will

likely have to be robust to these function qualities; that is, one which is able to over-

come local maxima and subsets of the transformation range in which the DRR and

model radiograph do not overlap (where objective function values are correspond-

ingly constant). One such algorithm which can be robust to these non-idealities is

the uphill-simplex method [15]. In this chapter, we will discuss how this optimiza-

tion scheme can be adapted to this problem, as a way of suggesting its utlimate

application.
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6.2 Uphill-Simplex Function Optimizaiton

The uphill-simplex algorithm optimizes a function over an n-dimensional domain by

maintaining n+1 points (referred to as a simplex) and adjusting the positions of these

points by re
ections and contractions, based on their relative function values. In its

main mode of operation, the least-valued point of the simplex is re
ected across its

opposing face (an n-plane determined by the other n points), essentially stepping that

worst point in the estimated direction of the function ascent. When no progress can

be made by this process, the simplex is contracted toward its greatest-valued point.

By these contractions, if the simplex reaches the base of a peak in the function,

it e�ectively adjusts its step size to match the peak's sharpness. These re
ections

and contractions are made by linear extrapolation and interpolation between simplex

points; therefore, the n-space over which the simplex method maximizes a function

should be Euclidian [5], so that linear combinations of points has the proper e�ect of

bringing points closer together, or extrapolating a point the proper distance.1

The simplex method's distributed exploration of a function's domain is what helps

it avoid getting stuck at local maxima. Because a number of points are always main-

tained in di�erent regions of the function's domain, the simplex maintains information

over an area of the domain, allowing its focus to shift from a region that initially seem-

s promising, to a region which later proves better. Clearly, the span of the simplex

(distance between its component points) mediates how local or global its information

about the function's domain is. If the simplex points are very close together, the

simplex maintains only local information, and will adjust its con�guration in step

sizes of that order. If the simplex points are more spaced, although the simplex does-

n't necessarily maintain information about the entire area it subsumes (only about

neighborhoods of n + 1 points in it), it will be able to explore that area by making

adjustments matched to the area's scale. This characteristic is very suggestive of the

method by which we should initialize the points of the simplex at the outset of an

1Becuase rotations are non-Euclidian, we will �nd that this is an important consideration in
choosing a parameterization for the rotational component of the transformation over which our
simplex-based registration algorithm optimizes an objective function.
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optimization: we should pick our simplex points to span an area in the n-dimensional

domain over which we expect to �nd the global maximum. Of course, the simplex

algorithm is not guaranteed to �nd the global maximum in the area de�ned at the

outset. Indeed, it is possible for a simplex to contract around a non-global maximum,

and thus reduce its span so much that it would no longer be able to detect or step to

the global maximum. Restarting the simplex algorithm can be e�ective in such cases,

for the precisely the same reason that we reasoned would help the simplex method

to overcome local maxima in the �rst place. The simplex may be restarted so that

one of its points rests of the apparent maximum, with the others distributed around

that point so that they span an area in which we might �nd true global optimum.

We don't lose very much in the way of time if the previous iteration had found the

actual global maximum, because in that case, the simplex is likely to converge back

to its best point relatively quickly [15].

6.3 Transformation Parameterization

To use the Uphill-Simplex algorithm in our registration scheme, we must chose a

parameterization for the six-dimensional, rigid-transformation space over which the

simplex will optimize an objective function. We have two restrictions under which

we make this choice. First, we should choose a parameterization which allows our

function optimization scheme to explore eÆciently the range of misregistrations we

expect to see in this problem. Second, as we alluded in the previous section, the

domain ought to be parameterized so that it is Euclidean and, thus, consistent with

the linear interpolations and extrapolations on which the simplex method relies for

proper operation.2

2Keep in mind, throughout the discussion of this section, that the parameterization we are
describing does not necessarily have anything to do with how the transformation is actually applied
between the radiograph and volume coordinate frames. It has only to do with the parameters that the
simplex optimization scheme works with. A conversion from these parameters to the computational
object by which transformation they specify is actually applied, may very well be required.
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6.3.1 A Well-formed Transformation Space

We'll explore the �rst restriction �rst. As we discussed earlier in this chapter, au-

tomatic optimization schemes operate best when a function's variation is slow and

free of sharp peaks. An especially pathological function geometry is the long, narrow

peak. This geometry is diÆcult for optimization algorithms to navigate in general

[15], and is probably disruptive to the uphill-simplex algorithm because such a peak

varies on two very di�erent scales: in one direction its variation is slow, and in the

other, fast. Intuitively, we can see that a poor choice of coordinate system might

accentuate or create such a geometry, for instance by stretching the scale in one di-

rection, and compressing it in the other, so that a peak becomes very anisotropic.

In the case of the parameterization of the transformation between the frames of ra-

diograph and volume, there are certainly formulations that create this problematic

geometry, as we can see by the following example:

Let us pick the following formulation of the transformation from the metric co-

ordinates of radiograph to that of the volume, Trigid(x) = R(x + t), where R is a

rotation and t is a translation.3 Also, say that ta, the translational component of the

ideal transformation, had magnitude jtaj large compared to the translational scale �

over which the optimization algorithm could be expected to operate.4 Now consider

what would happen in a typical situation where the volume is centered on its proper

position in the radiograph's coordinate frame, but it's orientation is skewed by angle

�. In this situation, t has ideal magnitude jtaj, but its direction and the rotation R

are non-ideal. Bringing the rotational component to its optimal value, will require a

change in the translational component jta�tj on the order of the arc length jtj� >> � .

For values of j�j other than those very small, this will be very large compared to the

scale � on which we expect the optimization algorithm to operate. Furthermore, small

variations in the rotation R will lead to drastic shifts in the volume's position with

respect to the plane, as well as the value of the objective function (especially if the

3The translation is applied �rst, and the rotation follows.
4We might encounter this situation if t moved the volume from the center of the projective plane

to its position above. Then, jtaj would be roughly half the focal length of the projection f ' 1:5m,
dwar�ng the scale � of even a large misregistration, less than ten centimeters.

94



variation in rotation shifts the volume's projection outside the radiograph's bounds).

This parameterization is clearly unwieldy and accordingly unsuccessful in prac-

tice; however, its failures are suggestive of a formulation for the transformation which

a�ords an appropriate degree of \independence" between its translational and rota-

tional components. We parameterize the transformation T from the metric frame

of the volume to that of the radiograph, with a translational component t and a

rotational component R, where t determines the position of the volume's center (i.e.

center of mass, the central voxel, or whatever makes sense) in the radiograph's metric

coordinate frame, and R determines the orientation of the volume about that center.

We can formalize this as follows, where x is given in the coordinate frame with origin

at the volume's center:

T (x) = R(x) + t (6.1)

This formulation seems very natural as it is de�ned relative to the volume in a way

that re
ects what we would do if we were able to manually register the volume by

physically positioning it in space: we would be able change its rotational orientation

with respect to the plane without a�ecting its position, and vice versa. For this same

reason, it is also more successful in the context of our registration algorithm, as it

allows our optimization algorithm to eÆciently explore the full range of rotational

misalignments.

6.3.2 A Euclidean Rotation Space

Now that we have appropriately formulated the transformation between the volume

and radiograph metric frames, we must consider the second restriction that we men-

tioned at the outset of this chapter, and parameterize the transformation such that

it de�nes a Euclidean domain on which the objective function can be maximized.

For the translational part, this is easy, as we can simply pick a Cartesian coordinate

system, which has this property automatically. The rotational parameterization does

not follow so easily, as rotations in three dimensions (which we're considering here)
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are non-Euclidean so that many parameterizations have singularities and geometries

under which linear interpolation and extrapolation do not behave regularly. One s-

tandard formulation for rotations which su�ers from this problem [5] is that of Euler

Angles, by which rotations are characterized by an angle of rotation about each of

the coordinate system's basis vectors. On the other hand, another standard param-

eterization for rotations, the Quaternion, has been used in di�erential control and

computer graphics systems because it has the property that interpolations behave

regularly over a series of rotational orientations. The Reparameterized Quaternion

(RQ) parameterization, discussed by Grassia [5] for these applications, is also appro-

priate in the medical image registration setting, as we will see.

Quaternions are 4d quantities that characterize rotations as an angle of rotation

� about a unit axis n̂ in a three dimensional coordinate system. A quaternion can be

formalized as

q = [s;v] (6.2)

where s = cos( �
2
) is a scalar and v = sin( �

2
)n̂.[7] Quaternions have some special

properites that make them a generally useful representation of rotations. Rotations

r = p Æ q may be composed by quaternion multiplication, de�ned as follows.

r = pq = [spsq � vp � vq; spvq + sqvp + vq � vp] (6.3)

where p = [sp;vp] and q = [sq;vq] are quaternions. Furthermore, a vector x may

be rotated by quaternion r by forming the quaternion qx = [0;x] and applying the

following multiplication.

rqxr
� (6.4)

where r� is the conjugate of quaternion r, de�ned as r� = [sr;�vr].

The fact that the vector component v of the quaternion is de�ned in a 3d Eu-

clidean space, suggests that we might use this quantity alone for our purposes as a
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parameterization of a rotation in a 3d space. In such a space, rotations with the same

angle � are found on the same origin-centered sphere with radius sin( �
2
). The space

is bounded by the unit sphere (max jsin(�)j = 1), and is periodic in the sense that if

we travel along a given axis of rotation n̂0 in the direction of increasing �, when we

reach the unit sphere and virtually travel beyond it to � = 2� + �, we will loop to

the opposite side of the sphere to position v = � sin(2���
2
)n̂0. For the purposes of

a simplex-based optimization scheme, especially for volume-radiograph registration,

this formulation presents a number of problems when the optimization is focused near

the unit sphere. First, near the unit sphere, angles of rotation are not well di�er-

entiated due to the compression of vector magnitudes in that region ( @
@�
sin( �

2
) small

for j�j near 2�). Second, the periodicity would cause improper behavior for certain

simplex re
ections: were a simplex point to be re
ected (virtually) beyond the unit

sphere, the resulting quaternion would be ill-de�ned, having magnitude greater than

unity. Simply re
ecting such a point to its proper position at the other side of the

sphere would drastically change the area of the domain subsumed by the simplex in a

way not intended by the re
ection operation. This behavior is not desirable in general

and can result in pathological behavior if the objective function is not well-de�ned

over the entire rotational domain.

We can salvage this approach, however, by using the RQ parameterization for our

rotations. This simply involves changing the scaling of the quaternion vector, so that

magnitude in 3d vector space corresponds to angle of rotation � directly, rather than

to sin( �
2
). Therefore, the RQ vector for a rotation vr is de�ned with respect to its

quaternion vector-component v by the relation

vr =
�

sin( �
2
)
v = �v̂ (6.5)

The rotation's vector space is now very similar to what it was before, where rotations

of the same magnitude reside on the same origin-centered sphere, but the space

is no longer bounded by the unit sphere and the angular scale is uniform along

radii of these spheres. Furthermore, by using RQ, we have a parameterization for
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the transformation in which both its translational and rotational components reside

in a Euclidean space and are thereby consistent with the linear interpolations and

extrapolation of simplex points by which our objective function optimization scheme

operates.

6.4 Multi-resolution Schedule

With the parameterization we've discussed, we can now use the uphill-simplex algo-

rithm to �nd the maximum value of an objective function over the space of possible

transformations between radiograph and volume. As we discussed in describing the

simplex optimization algorithm in general, such a registration would be started by

initializing a simplex to subsume the range in which we expect to �nd the proper

alignment, and perhaps restarted a small number of times once the algorithm con-

verged, to reduce the chances of getting stuck in a local maximum. We also have

the option of using a multi-resolution scheme for the purpose of reducing the overall

running time.

Multi-resolution schemes have been used in a number of medical image registration

algorithms for the purpose of increasing the capture radius5 of the scheme and decreas-

ing the running time. In these schemes, the datasets are smoothed and decimated in

a schedule of decreasing degree of downsampling. At each level of the schedule, the

images are registered and the resulting pose is used as a starting point for the next

level. To increase the capture radius, these schemes rely on the fact that smooth-

ing and decimating the datasets may lead to objective function behavior which is

smooth over a broader region surrounding its maximum. A multi-resolution scheme

may speed registration because part of the schedule involves processing of smaller

datasets. However, Pluim et al. found that this was not the case for their approach

to the registration of multimodal volumetric data [13]. Indeed, in our preliminary

investigations, the four-level schedules corresponding to downsampling factors of (4,

5Capture radius may be de�ned as the approximate maximum degree of initial misalignment
under which a registration scheme can operate successfully.
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3, 2, 1) proved to slow down volume-radiograph registration by the approach we're

employing here. This seemed to be due to the fact that registration at the level

of lowest resolution (highest downsampling factor) came close enough to the full-

resolution registration, for a full-resolution to work sucessfully. In any case, we also

found that large downsampling factors introduced new extrema into the objective

function's range. Therefore, by these prelimiary investigations, a multi-resolution

schedule which begins with one or two cycles at the lowest resolution, followed by

one or two cycles at the highest resolution seems to make sense for simplex-based,

volume-radiograph registrations. Note that at each of these levels, the span of the

simplex should re
ect the magnitude of the misregistration we expect at that level.

Because with each level of registration, we expect that the algorithm is getting closer

to the ideal transformation, the area subsumed by the simplex should be accordingly

reduced. This schedule generally improved the registration running time from that

of a purely full-resolution schedules.

6.5 Summary

In this chapter we have outlined a manner by which we can apply the uphill-simplex

function optimization scheme to the intensity-based registration of volumes and ra-

diographs, assuming that we have an appropriate objective function. We suggested a

parameterization for the transformation from the coordinate frame of the radiograph

to that of the volume, which is consistent with the mechanisms of the uphill-simplex

optimization algorithm and which should allow this algorithm to explore the trans-

formation space eÆciently. Finally, we suggested a two-level multi-resolution scheme

which has proved to improve the running time of the registration process in our

prelimiary experiments.

99



100



Chapter 7

Conclusion

The voxel-projection algorithm for the production of DRRs has been developed, which

provides drastic speed improvements over ray-casting methods serving the same func-

tion. This method has proved to be a useful tool for the investigation of objective

functions used in the registration of volumetric MR images to radiographs. Voxel-

projection may also prove to be a useful method for making 3D-2D intensity-based

registration practically fast.

A variety of objective functions were studied to determine their utility in the

context of an MR-
uoroscopy, intensity-based, rigid registration scheme. Applications

were developed to evaluate these functions over a range of misregistrations between

an MR volume and biplane DRRs formed from a corresponding CT volume. The CT

and MR were �rst registered by proven 3D-3D methods, so that the ideal alignment

of MR and radiographs was known and could be used to evaluate the performance

of the objective functions in identifying that alignment. These functions were also

evaluated over di�erent levels of model smoothing and downsampling, in anticipation

of their potential application in a multi-resolution scheme. It was found that their

behavior did not change drastically when the model was downsampled by a factor of

2 or 4.

Based on the non-convexity of the objective functions evaluated, the uphill-simplex

method was adapted as a multi-resolution optimization scheme for MR-
uoroscopy,

intensity-based registration.
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7.1 Related and Future Work

7.1.1 Voxel-projection

The voxel-projection algorithm has the nice property that it is very easily paralleliz-

able: multiple DRRs may be produced from volume data with a single pass over the

volumes voxels in data order. In fact, we implemented such scheme for the production

of biplane DRR (or any number of DRRs from di�erent angles) simultaneously on

a single-processor system. While performance did not improve using only a single

processor, were multiple processors employed to handle each projection, an arbitary

number of projections could be produced from a single volume in memory in the same

time it would take to make one individually. A three-step search (Section 3.4.2, [18])

modi�cation like that used in [11] would be drastically speeded by such parallelization,

as each iteration of that registration algorithm requires objective function evaluation

on twelve newly-produced DRRs per plane (i.e. a biplane setup would require twenty-

four new DRRs on every iteration). Furthermore, this parallelization might be very

useful in registering volumetric data to 
uoroscopic \C-arm" radiographs taken from

many viewpoints.

7.1.2 Objective Function Evaluation

E�ective evaluation of objective functions for MR-
uoroscopy registration will require

a broader library of test data than was employed for this thesis. An essential compo-

nent of such a library is a set of MR data which has been aquired over a broad enough

region to allow for a suÆcient degree of out-of-plane rotation. One objective function

(see Chapter 3) which measures the model-based likelihood [9] of an alignment could

be explored if a suÆcently broad set of test data were available to construct a model

for the joint distribution of aligned MR-DRRs with real radiographs.
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7.1.3 MR Intensity Modi�cation

The modi�cation of MR intensities to better re
ect the x-ray attenuation coeÆcients

of the tissues from which they were produced, may have a very large impact on the

success of an intensity-based MR-
uoroscopy registration scheme. One scheme which

we have begun to investigate involves segmenting the skull from MR head images and

then adjusting its intensity to resemble that of bone in CT. Hard bone has the same

low intensity of air in MR (see Chapter 2) and is thus easily distinguishable from

surrounding tissue by thresholding. Bone and air were distiguished in head images

by using connected components analysis to pick out the air which surrounds the

head and which is in the sinuses (by their size), and morphological tools (structuring

elements) [10] to break any erroneous connections from the skull to the sinuses.

DRRs resulting from this operation did have more pronouced bony structure than

those from MR which has not been modi�ed, but so far, this has had little apparent

impact on the behavior of investigated objective functions. However, work by Petra

van den Elsen in CT-MR registration might be applied here, in which she modi�ed CT

intensties so that bone was given low-intensity [20], or in which she used morphological

tools to pick out head skin edges [10].
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Appendix A

Memory Hierarchy and Data

Caching

Any discussion of algorithmic performance is well-served by considering the e�ects of

computer memory architectures, especially now when computation speeds so greatly

outstrip those for memory access. In this appendix we'll give an overview of the

cache e�ects that bear on our discussion from Chapter 4 comparing the ray-casting

and voxel-projection methods of DRR production.

Modern computer architectures typically have �ve levels of memory which vary

in size and access time. In order from slowest to fastest, and largest to smallest,

the hierarchy is shown in Table A.1. The access latencies for each level (by current

standards) are also given there. Caching systems (L1 and L2 in Table A.1) are

Table A.1: Memory Latencies

Element Latency
Disk 10ms
Main Memory 50ns
Level 2 (L2) o�-chip cache 4-8ns
Level 1 (L1) on-chip cache 2ns
Registers 2ns

designed to provide performance improvement to programs whose memory access
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pattern exhibit qualities of locality in time and space. In other words, caching system

speed programs which (repeatedly) access data that is proximate in memory, without

many intervening references to data stored in remote memory locations.

They do this in two ways. First, they store recently-accessed data in a location

from which it may be accessed again with little latency, so that programs which re-

peatedly access the same locations will su�er less from data access overhead. Second,

when an element of memory is referenced and pulled into the cache, along with it is

pulled the block of memory, called a cache line, in which that element is contained.

Cache lines are typically 32 bytes in size, aligned along 32-byte boundaries in mem-

ory1. This scheme anticipates that when a program references one memory location,

it may soon access some nearby one. Therefore, even routines that do not repeatedly

reference the same data, will bene�t from data caching. Furthermore, routines take

maximal advantage of this caching scheme when they access every element of a cache

line once it has been pulled, for each of these accesses will be subject only to the

latency of the cache, not that of some slower storage device, higher up in the memory

hierarchy. An access pattern that guarantees this behavior is that of referencing data

in the order of their memory locations. This type of pattern also has the advantage

of requiring a minimal amount of computational architecture to support it (requiring

only an incrementing of the memory location).

1The L1 cache of the UltraSPARC architecture used in this thesis has 16-byte cache lines.
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