
Slice-wise, Non-rigid Volumetric Image

Registration by Dynamic Programming

Eric R. Cosman

6.866 Final Project

We present a fast method for calculating a special class of non-rigid deforma-
tion between two volumetric images of similar physical structures. The method
aligns volumes on a slice-wise basis by optimization of a measure of total slice-
wise similarity. For a particular selection of slice directions in the volumes to
be registered, arbitrary intra-slice deformation and slice thickness scaling are
allowed. We use dynamic programming to �nd a globally optimal matching of
slices, such that slice ordering is preserved.

This method is proposed as one for generating an initial transformation to
initialize more general non-rigid volume matching algorithms. It has the ad-
vantage of being fast, able to capture large deformations, and always returns a
transform with a Jacobian matrix everywhere positive de�nite (di�eomorphism).
It is limited in that it relies on proper choice of the slice direction of each vol-
ume, and can only well-characterize a limited class for deformations, namely
those in which slices move together. That is, where (x; y; z) parameterize one
volume and (u; v; w) parameterized the other, and z and w are their respective
slice directions:

0
@ u

v

w

1
A =

0
@u(x; y; z)
v(x; y; z)
w(z)

1
A (1)

1 Context

Volumetric imaging techniques, which can provide a 3d sampling of in vivo tissue
properties, are widely used in medicine for the purpose of diagnosis and surgi-
cal guidance. Often doctors and medical researchers would like to use images
of the same physical structures in unision. For instance, in many circumstances,
multiple images of an patient are taken at di�erent times and with di�erent imag-
ing modalities (such as CT, MR, and PET) so that doctors may bene�t from
the complementary structural or functional information di�erent images might
provide. Furthermore, for the purposes of cross-sectional studies and building
anatomical atlases, we want to combine images of the same anatomical region
in di�erent subjects. As a result, the problem of image alignment/registration
is central to medical image analysis. The registration of images taken with dif-
ferent aparatuses, with patients in di�erent positions, or of di�erent subjects
altogether, is complicated by the fact that the transformation between corre-
sponding structures in these very di�erent images is typically non-rigid.



Methods for �nding such non-rigid deformations between volumetric im-
ages is an area of current medical vision research1. Typical methods combine
some discretation of space (voxels, tetrahedra, surface elements), a smoothing
term/physical model (elasticity, viscosity), and an image matching term (corre-
lation, mutual information, etc.) to drive an iterative optimization whose end-
point is hopefully a good alignment. Running time and accuracy are sensitive
to the deformation from which the iteration is initialized. Typical methods are
computationally intensive, requiring 30 minutes to an hour to converge on high-
performance workstations or computing clusters. Moreover, many techniques fail
when deformations are large due to local minima in their optimization function.
Even when multi-resolution approaches are used, some of these approaches fail
because they do not produce valid deformations at low resolution.

2 Overview of Method

The motivation for the method presented here is to help overcome the limita-
tions of current non-rigid alignment algorithms by �nding large deformations
that could initialize more re�ned alignment algorithms. Therefore, we'd like our
method to operate eÆciently on high resolution data while avoiding local min-
ima in our matching function. To this end, we settle for alignment of 3d data

Fig. 1. Slice matching between two volumes. To model slice compression and expansion
the matching function is multivalued in both directions. It may be that some slices in
one volume will not map to any slices in the other.

on a slice-wise basis. That is, we cut each data cube into slices (resampling if
necessary) and then match slices between volumes such that the slice order is
preserved and some measure of similarity between the volumes is maximized.

1 The following observations are from a conversation with Samson Timoner, who is
currently doing research in this area at the AI lab and Brigham and Women's Hos-
pital.



Furthermore, we allow the matching between slices to be multivalued in both di-
rections to allow for slice compression and expansion. This process is illustrated
in Figure 1.

We chose to do alignment by slice matching, because the 1d ordering of slices
allows us to use dynamic programming[1] to eÆciently search over all possible
matchings that preserve slice ordering. As long as we formulate our objective
function to treat slice pairings independently, the matching problem will have
the optimal substructure required for use of dynamic programming. Since the
resulting sequence alignment will be globally optimal (in some sense), we hope
that would be able to recover large deformations even when working on high
resolution images.

Fig. 2. Intra-slice deformation varies on a slice-wise basis. In this work we restrict
the intra-slice deformation to alignment of second moments, i.e. 5 DOF, aÆne with
rotation and stretching in the direction of each principle axis)

This framework does not constrain the manner in which we evaluate slice
pairings. In fact, we could allow for an arbitary deformation to take place in
considering pairs of slices, and this deformation can vary across slice pairings.
Since we're only concerned with getting a rough estimate of the deformation and
would like to do so quickly, we restrict the intra-slice deformation to alignment of
second moments (aÆne) and use a sampled, intensity-based measure of similarity
(such as the sample correlation or mutual information of corresponding pixel
intensities). Figure 2 illustrates how the intra-slice deformation might vary across
slices (without scaling slice thicknesses). To align the colored data slices to the
data in the outlined volume, the colored sliced might be shifted, rotated and
scaled independently2.

Once an optimal matching between volumes has been evaluated, we have a
mapping between the volumes' data coordinate, and we'd like to use it to initial-
ize a non-rigid registration method. Say we want to warp a tetrahedral mesh on

2 This independence could be viewed as a disadvantage if it lead to grossly di�erent
intra-slice transforms in adjacent slice pairing. If necessary, by a slight modi�cation of
the dynamic programming framework, we could basis our algorithm toward similarity
between the intra-slice transforms of adjacent slice pairing in the matching.



one volume to another. It's clear how to use the in-slice aÆne deformationAz; tz
to adjust the verticies of the mesh: given the data slice index z0 = round(z) in
which a vertex at (x; y; z) resides, set it's intra-slice coordinates (u; v; w) in the
target volume as

�
u

v

�
= Az0

�
x

y

�
+ tz0 (2)

However, there is some ambiguity as to how to transform the slice coordinates
when a slice maps to more than one slice in the other volume (e.g. the pink
slice in Figure 2), and when a slice is not the sole target of a slice in the other
volume (e.g the yellow and orange slices). For the former case, the simple solution
which scales tetrahedra properly (positive Jacobian determinant) even when its
verticies happen to fall within the same slice, is to scale the slice thickness by
the multiplicity of its image under the matching, about the mean slice index of
its image under the matching. That is to say, when slice z0 = round(z) maps to
slices w1; : : : wn, transform vertices with slice coordinate z to the following slice
coordinate w in the other volume:

w = n(z � round(z)) +
1

n

nX
i=1

wi (3)

An analogous approach can be taken for the latter case of slice compression.

3 Dynamic Programming

Dynamic Programming has been used in a variety of contexts for the purpose of
sequence alignment. For instance, in computational biology, it is used to align
DNA and protein sequences [4]. It has also been used in computer vision for
object recognition and special cases of pose estimation. Chapter 5 of Aparna
Ratan's Ph.D. Thesis [3] contains an survey of these applications, and presents
a method for detecting a 2d template in an image, allowing for column-wise
warpings of the template in a manner analogous to the technique presented
here.

3.1 Optimal Substructure

Say we have two sets of volume slices, U i
1
indexed from 1 to i, and V

j
1
indexed

from 1 to j, that we would like to match in the manner described above. That is,
we would like to allow for stretching and compression of slices under the match-
ing, while preserving slice ordering. We can write down the optimal alignment



recursively:

�
U i
1

V
j
1

�
=

�
Ui

Vj

�
Æ best of

8>>>>>><
>>>>>>:

� Ui
1

V
j�1
1

�
; expansion of Ui

�Ui�1
1

V
j�1
1

�
; no expansion/compression

�Ui�1
1

V
j
1

�
; expansion of Vj

(4)

where
�Ui

1

V
j
1

�
denotes the optimal alignment of subsequences U i

1
and V m

1
, and

where Æ denotes the concatenation of two subsequence alignments. Also note
that

�
Ui

Vj

�
simply means that these slices are aligned. Now, we pick a metric

F (U i
1
; V

j
1
;M) to evaluate a matching M of the argument subsequences, such

that it treats each matching of slices independently (say by summing their pair-
wise similarities). Therefore can also write down the optimization of this metric
recursively:

max
M

F (U i
1; V

j
1
;M) = f(Ui; Vj) + max

8>>>>>><
>>>>>>:

maxM F (U i
1; V

j�1
1

;M) + g(expansion of Ui)

maxM F (U i�1
1

; V
j�1
1

;M) + g(no expansion/compression)

maxM F (U i�1
1

; V
j
1
;M) + g(expansion of Vj)

(5)

where f(Ui; Vj) measures the value of matching slices Ui and Vj , i.e. some
measure of their similarity. The function g() is an additional term which may
be used to disadvantage or encourage slice compression or expansion of di�erent
kinds. Since we would like slices to vary freely in this respect, we set g() = 0.

With this recursive expression for evaluating the value of an alignment, we
can use Dynamic Programming in the usual manner to �nd the best matching
between two sets of volume slices UN

1
and V M

1
. By the structure of the above

recursion, we �ll in an N �M matrix with entries at (i; j): maxM F (U i
1; V

j
1
;M)

and pointer in the direction of the pre�x sequence matching which produce this
optimal value.

In practice, null slices may be appended to the beginning and end of both
slice sequences, to account for the case where either or both volumes image
structures beyond the range of the other. In this work, we set a constant value
for matches to the null slice, which e�ectively serves as a threshold for starting
to align real slices with one another.

3.2 Multiresolution Optimization

Even when the method for calculating the similarity of a matching of two slices
is fast, �lling the N �M Dynamic Programming matrix may take a lot of time.
Since typical high resolution, anatomical MR or CT images may have hundreds



of data slices, an �(NM) running time becomes restrictive. To reduce the bruden
of this computation, we note that the solution to the our optimization does not
rely on �lling in every entry of the Dynamic Programming matrix. We do this
only because we don't know where the solution path through this matrix (which
is e�ectively the graph of the optimal matching) resides. If we had information
about this, then we would only calculate those matrix entries near the solution
path, setting the rest of the matrix entries to �1.

It happens that the alignment of downsampled version of volumes may pro-
duce good estimates of the alignment at higher resolution. This is illustrated in
Figure 3 which shows the results of running our algorithm on a volume and a
warped version of itself, both downsampled by factors of 2,4, and 8. The running
time of the algorithm is much less for lower resolution volumes, not only because
the total number of slices is less, but also because the slices themselves are
smaller, so that it takes less time to evaluate their pairwise similarity. Therefore,

Alignment of MR with a warped/truncated version of itself after downsampling (factor 8 )

Slice index of warped MR

S
lic

e 
in

de
x 

of
 o

rig
in

al
 M

R

5 10 15 20 25

5

10

15

20

25

30

Alignment of MR with a warped/truncated version of itself after downsampling (factor 4 )

Slice index of warped MR

S
lic

e 
in

de
x 

of
 o

rig
in

al
 M

R

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

Alignment of MR with a warped/truncated version of itself after downsampling (factor 2 )

Slice index of warped MR

S
lic

e 
in

de
x 

of
 o

rig
in

al
 M

R

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

(a) factor 8 (b) factor 4 (c) factor 2

Fig. 3. At each level of isotropic downsampling, the maroon line plots the actual defor-
mation between two MRI head volumes (approx. 256x256x128 voxels in original size)
and the orange line plots the match calculated by dynamic programming. The other
colors represent the \arrow" direction of each cell of the dynamic programming matrix.
Slices of the original MRI are indexed along the vertical axis, and slices of the warped
MRI, along the the horizontal (see Section 6)

we may use a multiresolution approach to solving this problem at high volume
resolution. At the lowest level of image resolution, we calculate the full dynamic
programming matrix. Then we use the derived matching to limit the region of
interest (ROI) in the matrix at the next higher level of resolution. This is easy
to do when levels of the pyramid di�er by an integer factor, as illustrated in
Figure 4. For each slice pairing (i; j) at low resolution, we add the correspond-
ing slice pairs at higher resolution to the region of interest. Then, to account
for the fact that the solution at low resolution may not be ideal, we dilate the
region of interest in the dynamic programming matrix for the higher resolution
alignment. Outside the region of interest, we set the matrix entries to �1, and
run the dynamic programming optimization as usual.



Fig. 4. The process of de�ning a region of interest for the dynamic programming matrix
based on the solution of the lower resolution alignment.

We can continue this approach all the way up to the highest level of volume
resolution, where the time savings will be most substantial. Since the number
of slice pairs along a solution path is of order �(N +M), the region of interest
will be of order �(k2(N +M)), much smaller than �(NM) for a large number
of slices. Naturally, there is some risk in doing this. If the optimal solution falls
outside the speci�ed region of interest, then it will not be discovered. Nor is it
clear, in general, how omitting an important part of the search space will purturb
the rest of the solution. Therefore, we ought to be liberal in setting the dilation
diameter k.

4 Intra-slice Registration

4.1 Similarity Measures

As described in Section 3.1, to use dynamic programming we must have some
way of measuring the value/similarity of pairs of slices. Furthermore, since we
would like our algorithm to run fast, we'd like to �nd some quick way of making
this assessment.

For this purpose, we chose to use an intensity-based measure of similarity,
such as correlation, local correlation, or mutual information. These measures are
statistics on the joint intensity distribution of two images, for a given alignment
of those images, and are each applicable in di�erent contexts. For instance, corre-
lation is an appropriate metric when we expect a linear (or at least a monotonic)
relationship between voxel intensities, such as when we're registering volumes of
the same imaging modality. When registering volumes of di�erent modalities,
such as CT and MR, we might choose Mutual Information which measures a
statistical relationship between intensities, or Local Correlation3 which is large
when local intensity relationships are linear[2]. In accordance with the statistical
interpretation of these similarity measures, we can estimate the their value on
two images by means of a random sample of intensity pairs, rather than over all
of them, to speed the calculation.

3 That is, the average squared correlation coeÆcient over small patches of the image.



4.2 Alignment by Moments

Of course, before we can evaluate these measures, we must have registered the
slices in some way. For this purpose, we propose using the centroid and the prin-
ciple second moments of a rough binary segmentation of relevant structures. This
approach has the advantage of being very fast relative to iterative approaches to
this problem. In fact, the centroid and principle axes of a binary segmentation
can also be estimated from a sample of the segmented points, rather than com-
puting the complete sums.4 Furthermore, these only need to be computed once
per slice at the outset of registration, not every time a slice is compared to one
of the other volume. For completeness, we point out that the approach is clearly
a suboptimal method for image registration. In fact, it cannot fully capture a
generic aÆne transform, which may have some degree of skew.

For each slice, we calculate the centroid and three 2nd central moments of
binary segmentation of relevant structures, normalizing by the area of the binary
segmentation. Then we use eigendecomposition to get the principle axes and
the area-normalized 2nd central moments in those directions. We denote the
centroid as �, the matrix of eigenvectors V (with columns ordered such that the
determinant is positive) and the diagonal matrix of corresponding eigenmoments
D. Then, to register two slices, we �nd the aÆne transformation which

1. Maps one centroid to the other.

2. Rotates and scales one set of principle axes to match the other such that
some measure of similarity is maximized.

Note that we do not simply align the major axes with each other, since this
method might produce poor alignments in the case that the principle axes are of
roughly the same size, or in the case that the true mapping from one slice to other
maps the major axis to the minor, and vice versa. Furthermore, second moments
alone do not indicate in which direction the moments should be aligned, so that
blindly aligning two principle directions might yield an alignment which is 180
degrees misaligned.5

Instead, we compute an intensity-based measure of similarity for each of the
four possible rotations of the principle axes onto the other, and pick the align-
ment which maximizes this value. Note that this is the similarity measure which
is �nally used in the Dynamic Programming framework. Speci�cally, for every
permutation of the columns of the eigenvector matricies (adjusting signs so that
the eigenvector matricies stay positive de�nite), we �nd the mapping A12 from
one pair of eigenvectors (scaled by the root of their respective eigenmoments) to

4 though we didn't do it in this work.
5 One possible way to disambiguate this alignment that is in keeping with the approach
of alignment by moments, would be to calculate the third central moment in each of
the principle directions, and then align axes based on skew. However, this is probably
less robust and less computationally attractive than using gray level information.



the other

D
1

2

2
V2 = A12D

1

2

1
V1 (6)

A12 =D
1

2

2
V2V1

TD
�

1

2

1
(7)

and choose the resulting alignment which maximizes some similarity measure.
For each slice pairing, we save the intraslice transformation for use in creating the
complete deformation �eld after the Dynamic Programming step. This positive
de�nite, aÆne transform is

x2 � �2 = A12(x1 � �1) (8)

x2 = A12x1 + �2 �A12�1| {z }
t12

(9)

(10)

4.3 Application to MRI Head Images

We will illustrate this approach by registering two corresponding slices of MRI
head volumes. The code which produced these results can be found in mo-
ments.m, momentreg.m, momentcorr2.m, momentdisp.m, segMRhead.m, and
imtrans.m. The �rst step in the process is to segment the head. This is rela-
tively easy to do since the head is surrounded by air, which has uniformly low
intensity in MRI images. We can segment the air by intensity thresholding; how-
ever, this does not properly segment the head6 due to the fact that anhydrous
regions inside the head (such as bone and air in the nasal cavities) also have
low intensity in MRI, as shown in Figure 5. We can distinguish the air around

MR head segmentation before filling holes

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 5. Head segmentation by thresholding followed by morphological operations.

the head by performing connected components analysis on the initial air seg-
mentation, and picking the largest connected component as the air surrounding
the head. Alternatively, we could use grass�re or region growing methods with

6 Though, in truth, it may be suÆcient to properly calculate moments.



seed points outside the head.7 Before we can do this, however, we need to block
connections between air inside and outside the head. To do this, we run a slice-
wise morphological closing operation on the initial head segmentation to seal
the ear canals and nose. Finally, we clean up some isolated \head" voxels out-
side the head with an opening operation. These steps are coded in the script
segMRhead.m.

Once the segmentation is complete, we calculate the moments of the two head
slices, shown superimposed over the images in Figure 6 (a,b). The result of the
alignment by moments is shown in Figure 6 (c). Note that we used correlation
coeÆcient to evaluate the four possible alignments.

50 100 150 200

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

(a) (b) (c)

Fig. 6. Registration by moments of corresponding T1-weighted head slices of di�er-
ent subjects, taken in di�erent scanners. The transformation of image (a) into the
coordinates of image (b) is shown in image (c). The cyan tint shows the binary head
segmentation with which the superimposed principle axes were calculated.

5 Algorithm

The following ourlines the steps of our algorithm. The details of each step can
be found in previous sections.

1. Segment the structures to be aligned in each volume.
2. Select a slice direction for each volume, resampling to align it with a data

axis.
3. Calculate the centroid and principle axes of each slice of each volume.
4. Create a multiresolution pyramid of images, downsampling along each data

axis by a factor of 2 at each level.

7 Actually, we used a built-in MATLAB function for hole �lling because it was faster.



5. For each level of downsampling, starting with the lowest resolution and con-
sidering all slice pairs:
(a) For each slice pair (i; j) under consideration:

i. Align by centroid and principle axes.
ii. Evaluate Similarity (e.g. by sample correlation)

(b) Find the optimal slice sequence matching by Dynamic Programming.
(c) Repeat for the next higher resolution level, considering only those slice

pairs (i; j) consistent with the matching found at the current resolution.

6 Experiments

We tested our method on partially synthetic data so that we would have some
ground truth to reference to the registration results. We took a T1-weighted
MRI head volume of size 256x256x128 and warped its slices normal to its second
index direction (axial slices) into a volume of size 256x205x128. A slice normal
to the third index direction are shown for each volume in Figure 7. The warp was
limited to expansion and compression in a single direction, and the volume was
truncated so that not all structures appeared in the warped volume. As is clear
from the �gure, the warp was a rather large one. To simplify our analysis of the
results, we chose not to introduce any in-slice distortion or any misalignment of
the slice directions.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(a) (b)

Fig. 7.

For our �rst experiments, we did not use a multiresolution approach for
these experiments, but rather calculated the full dynamic programming matrix
for isotropic downsampling factors of 2, 4, and 8. The actual warp and the
calculated warp are shown superimposed on the dynamic programming matrix
for each level of downsampling in Figure 3. The calculated warps at each level are
not inconsistent with the actual warp, and the calculated warp at downsample
factor 2 is very good. Especially at the lower levels of resolution, the algorithm
had trouble at the ends of the alignment, where the warped volume had no slices



corresponding to those in the original volume. These locations also correspond
to regions at the top of the head and neck where structures have similar appear
from axial slice to slice (except for scaling). The running times in MATLAB
on a Pentium III, 500 MHz, dual processor system, are shown for each level of
downsampling in the table below. Note that the running time for an alignment
at full resolution without the use a our hierarchical approach was too long to
fully test. We would expect these run times to improve substantially were the
code complied and not just interpreted by MATLAB.

Factor Original Size Warped Size Run Time

8 32 x 32 x 24 32 x 26 x 24 18 sec

4 64 x 64 x 48 64 x 52 x 48 2.5 min

2 128 x 128 x 96 128 x 103 x 96 30 min

Next we applied the multiresolution approach to the same data, arbitrarily
choosing the factor by which lower resolution solutions are dilated to determine
the region of interest (ROI) in the Dynamic Programming Matrix at higher
resolution. We used a pyramid fo downsample factors (8,4,2,2,1), reducing the
dilation factor toward the top. This was motivated by our previous observation
that the level 2 registration produced good results. The results are displayed in
Figure 6. It's clear that bad behavior at lower resolutions (in the lower right
hand corner of Figure 6 (a,b)) created localized problems for the alignment at
higher resolutions. This particular situation suggests that there may be more
intelligent ways to dilate low-resolution solutions, for instance by dilating asy-
metrically, locally biasing toward the direction that the solution curve moved in
the previous two levels of the hierarchy. More importantly, it seems that using
the full resolution image doesn't improve the solution very much. It does, how-
ever, add substantially to the overall running time of the algorithm. In this case,
we might have been better o� just computing the level 2 solution, starting with
a broader ROI.



Factor size ROI Dilation Diam. Run Time

8 32 x 26 N/A 18 sec

4 1552 15 1.3 min

2 3269 15 8.5 min

2 1459 7 3.8 min

1 3303 5 14.5 min

7 Potential Applications

In this section, we'll discuss a few speci�c application domains in more detail
than we have up to this point.

The slicewise registration has the potential for application in intrasubject
image registration due to the fact that the same physical structures are present,
and are possibly present in corresponding slices of the data. The distortion that
we're trying to recover may be due to actually physical distortion, or to distor-
tions due to the imaging modality or the particulars of the imaging apparatus.

An example of the latter type of distortion can be encountered in registering
fMRI and anatomical MRI of the same head. Due to large slice thickness and
the fast changing �elds involved in functional MRI (EPI) acquisitions, nonlinear
distortions may appear in fMRI images that are not present in high-resolution
anatomical images. One example of this is a signal drop and apparent slice
compression in areas around the nasal cavity, and other regions of susceptibil-
ity variabiliy through the slice. Rigid registration techniques, such as those by
Mutual Information, often fail as a result. Since the data axes of head images
often align well with \anatomical axes" due to the way subjects are positioned
in scanners, a slicewise registration approach might be applicable here.

Such as system might also be useful in registering images of elastic organs
in which compression occurs primarily in one direction. Because such images
would be of the same physical structure, it is likely data slices orthogonal to
this direction would contain roughly the same structures warped by some aÆne
transform (probably also primarily scaling). Therefore, if such data volumes were
resampled so that one data axis is aligned with this direction, and we might use
this dynamic programming approach to estimate the deformation.

For instance, in the case of prostate imaging for the diagnosis and localization
of tumors, it is often useful to align a 3d image taken with a typical MR body
scanner, and those taken using a transrectal RF coil. Registering such images is



5 10 15 20 25

5

10

15

20

25

30

10 20 30 40 50

10

20

30

40

50

60

20 40 60 80 100

20

40

60

80

100

120

Downsampled by 8 Downsampled by 4 Downsampled by 2

20 40 60 80 100

20

40

60

80

100

120

50 100 150 200

50

100

150

200

250

Downsampled by 2 Full Resolution

Fig. 8. A multiresolution registration. The maroon curve plots the actual deformation
in slice thickness, whereas the orange or red curves plot the computed deformation at
each level of downsampling. Dark blue denote the regions of the dynamic programming
matrix whose values were set to �1.



an area of current research because the coil placement causes a drastic compres-
sion of the prostate, which can frustrate current non-rigid alignment techniques.
If the compression is roughly unidirectional and nonuniform, then this approach
might �nd an application.

Recovering deformations of the liver are another possible application area.
Liver deformation is very large due to movement of the diaphragm during breath-
ing. The primarily unidirectional motion of the diapragm suggests the possible
utility of this approach.

References

1. T. H. Cormen, C. E. Leisterson, and R. L. Rivest. Introduction to Algorithms.
McGraw-Hill, New York, 1998.

2. T. Netsch, P. Rosch, A. van Muiswinkel, and J. Weese. Toward real-time multi-
modal 3-d medical image registration. ICCV, 2001.

3. A. L. Ratan. Learning visual concepts ofr image classi�cation. Ph.D. Thesis, A.I.

Lab, MIT, 1999.
4. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS

Publishing Co., New York, 1997.


