
Hardware-accelerated Rendering of Antialiased Shadows with Shadow Maps

Stefan Brabec and Hans-Peter Seidel

Computer Graphics Group
Max-Planck-Institut für Infomatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
Phone +49 681 9325-428 Fax +49 681 9325-499

E-mail: {brabec,hpseidel}@mpi-sb.mpg.de

Abstract

We present a hardware-accelerated method for render-
ing high quality, antialiased shadows using the shadow map
approach. Instead of relying on dedicated hardware sup-
port for shadow map filtering, we propose a general render-
ing algorithm that can be used on most graphics worksta-
tions. The filtering method softens shadow boundaries by
using a technique called percentage closer filtering which
is commonly used in software renderers, e.g ray tracing. In
this paper we describe how the software algorithm can be
efficiently mapped to hardware. In order to achieve real-
time or at least interactive frame rates we also propose a
slightly modified shadow filtering method that saves valu-
able hardware resources while still achieving good image
quality.

Keywords: Shadow Algorithms, Graphics Hardware,
Frame Buffer Tricks, Image Processing, Rendering.

1 Introduction and Background

Recent developments in graphics hardware have led to
systems which provide very high polygon throughput com-
bined with sophisticated lighting and shading models. How-
ever, improvements in image quality are still focusing on lo-
cal properties, e.g. using per fragment phong lighting. For
realistic images, which should provide accurate impressions
of the world in 3D, one must also consider the computa-
tion of global effects. One of the most important effects in
this category are of course good-looking shadows. In the
field of real-time and interactive rendering, there are only
a few widely used algorithms. Casting shadows onto large
receiver polygons is mostly done using projected geometry
[1], whereas more complex receivers can only be handled
using the shadow volume approach [2]. These two meth-
ods have in common that they still require CPU resources

to compute geometry and may generate a large amount of
additional polygons that have to be pushed down the graph-
ics pipeline. The main benefit of these algorithms is that all
computations are done in object space which usually results
in highly accurate shadows.

Another class of algorithms is based on the shadow map
or depth map algorithm [10]. These methods operate in im-
age space which means that they rely on a sampling scheme
to process the scene geometry. The shadow map algo-
rithm can be used to compute shadows for arbitrary receiver
and occluder geometry. Since sampling is the fundamen-
tal principal of all rasterization-based graphics architectures
shadow mapping is the first choice for real-time rendering.
SGI’s Onyx Reality series of graphic workstations [5] were
the first systems with direct shadow map support and re-
cently ATI presented the first PC graphics card [6] with a
similar feature based on the so called priority buffer.

However, sampling methods all suffer from undersam-
pling artifacts when it comes to higher frequency parts and
the same is true for the shadow map algorithm. As dis-
cussed by Reeves et al. [7], sampling problems occur during
the generation phase as well as when performing the actual
shadow test. The first can be solved by increasing the im-
age resolution and by using stochastic sampling instead of
sampling at regular grid points. In order to resolve sampling
artifacts during the shadow test, Reeves proposes a filtering
method called percentage closer filtering (PCF) which will
be described later in more detail.

In this paper we describe several ways for mapping this
filtering technique to hardware. First, we will briefly ex-
plain the shadow map algorithm and its hardware imple-
mentation. Second, we will take a closer look at Reeves’
filtering technique and propose a hardware-only way to fil-
ter shadow maps. Third, we will present a modified PCF al-
gorithm that can be used to render high-quality, antialiased
shadows at interactive or even real-time frame rates. Fi-
nally we compare the different approaches in terms of im-
age quality and rendering time.

Figure 1. Mapping z values to color values
using texture mapping.

2 Shadow Mapping

As presented by [10], the shadow map algorithm consists
of two major steps. First, the scene is rendered as seen by
the light source and the z values of the nearest pixels are
stored away in the so called shadow map for later use. In
the final step, the scene is rendered again, this time from the
camera’s point of view. During this pass, surface points are
transformed to the light source coordinate system and com-
pared to the corresponding z values stored in the shadow
map which results in a binary value indicating whether the
point is in shadow or lit.

The hardware implementation we use is based on the al-
gorithm proposed by [4]. Instead of relying on dedicated
shadow mapping capabilities, e.g. as done by [9], this
method can be implemented on any graphics system which
supports a rendering pipeline similar to the OpenGL graph-
ics API [8].

The main idea of the algorithm is the mapping of z val-
ues to color values as depicted in Figure 1. Using automatic
texture coordinate generation it is possible to use eye or
world space coordinates (x, y, z, w) as texture coordinates
(s, t, r, q). Combined with a one dimensional texture map
defining a linear ramp between 0 and 1 a mapping from r to
any of the red, green, blue, or alpha channels can be done.
The resulting image is stored away in a 2D texture map for
later use.

In the next step the scene is rendered once again, this
time from the camera’s point of view. Again a linear ramp
1D texture is used to map z values to color values, but this
time an additional 4×4 texture matrix is specified which
transforms points from camera to light source space.

In the third and final pass the scene is rendered from the
camera’s position with the precomputed shadow map ap-
plied as a projective texture and the blending unit setup to

subtract the values from this pass from the values of the
previous one. The result of this is a shadow mask in the
specified color channel that contains values of 0 for lit and
values > 0 for shadowed pixels1.

This method can be implemented on any graphics sys-
tem supporting OpenGL. However, some of the passes can
be collapsed if multi texturing is supported. In the next sec-
tions we will focus on those machines that have support
for the OpenGL Imaging Subset [11], a class of methods
for real-time 2D image processing that are useful for many
kinds of applications.

3 Hardware-based Percentage Closer Filter-
ing

In this section we describe how Reeves percentage closer
filtering technique can be used for hardware rendering by
extending the shadow mapping technique explained in the
previous section.

Basically, PCF works by reversing the order of filtering
and comparing. Instead of first filtering the texture image
over some specific region and using the resulting value for
further processing, PCF performs the comparison step first.
Figure 2 illustrates the scheme in the case of a 3×3 region

Figure 2. Percentage closer filtering.

in the shadow map. Nine z values are compared against a
given surface z value which results in a 3×3 binary mask
from which the percentage shadowing can be calculated by
simple bit counting. The region that is sampled can be de-
termined by projecting the pixel boundary rectangle onto
the shadow map, an operation which is easy to implement
in a software renderer but impossible for hardware render-
ing without a dedicated PCF filtering method.

However, it is possible to use PCF if we assume a con-
stant filter region, e.g. a 2×2 footprint, which is the small-
est, symmetric filter size. For this we have to compare each
pixel’s z against four z values stored in the shadow map.
For a constant footprint we are able to generate a shadow
map where each entry consists of n components and where
n is the number of samples per footprint. Given a 2×2 foot-
print the four components can simply be stored using the
red, green, blue, and alpha channel of the texture image.
For the generation of the shadow map this means that we

1An additional frame buffer copy may be needed to bring values > 0

to 1 or any other value.

Red Green

Blue

Alpha

Figure 3. Stratified sampling and pixel pack-
ing.

have to render the scene four times where in each pass only
one color channel is enabled for writing and the image plane
is jittered as depicted in Figure 3. This stratified sampling
scheme increases the effective resolution by a factor of two
in each dimension, so instead of a 1024×1024 one com-
ponent shadow map we have now generated a 1024×1024
shadow map with four depth values per texel.

Given such a packed shadow map it is relatively easy to
adapt the shadow test proposed in Section 2 since we only
have to extend the one component scheme to four compo-
nents.

During the shadow test passes we first render the scene as
seen by the camera but since we want to compare the surface
point’s depth against every component in the shadow map
we replicate the z values over all four color channels. Next,
the projection of the shadow map is done as before. This
corresponds to Reeves’ comparison step, resulting in a four
component shadow mask.

In order to compute one scalar value per pixel which
should represent the percentage shadowing, we have to
count the non zero values in the shadow mask and divide
this sum by the number of samples taken per pixel. All
this can be performed within a single frame buffer to frame
buffer copy. Assuming a color depth of 8 bits per compo-

R

G

B

A

0 64 64 64 64

0 64 64 64 64

0 64 64 64 64

0 63 63 63 63

RGBA Color Table Color Matrix

R = unused

G = unused

B = unused

A = R+G+B+A

Percentage
Shadow in
Alpha !

Figure 4. Computing the percentage of shad-
owing.

nent, we setup the OpenGL imaging pipeline as depicted in
Figure 4. At first, incoming values are transformed using
a RGBA color table. This clamps values to either 0 (com-
pletely lit) or 64, which represents 25% shadow in total2.
Second, a simple 4×4 color matrix is used to sum up the

2Using a value of 63 in one of the color channels ensures that the value
for completely shadowed pixels sums up to 255.

contributions of all color channels and to pass out the re-
sult as the new alpha value. After this, five different levels
of shadowing per pixel are stored in the alpha channel of
the frame buffer: 0% shadowed (lit), 25%, 50%, and 75%
for partially shadowed pixels and 100% for pixels that are
completely shadowed.

This algorithm works very well for footprints of size
2×2 since all components can be processed simultaneously
using the four color channels. If it comes to larger filter
sizes, e.g. 3×3 or 4×4, the algorithm needs to be split up
into parts of a maximum of four components per texel. The
resulting contributions can then be summed up using the
accumulation buffer [3].

Although theoretically possible, filter sizes greater than
2×2 are no longer practical for interactive or real-time ap-
plications. Considering a filter region of 4×4, the genera-
tion of the shadow map would require 16 rendering passes
and four RGBA texture maps to store the results. During
the shadow test, another eight passes are necessary to per-
form the subtraction plus up to four frame buffer copies and
accumulation buffer operations.

4 Fast PCF for Real-Time Applications

In Section 3 a hardware-based algorithm for percent-
age closer filtering using Reeves’ original method was pro-
posed. However, for real-time applications this method re-
quires way too much hardware resources, especially when
it comes to larger filter sizes. In this section we present a
slightly modified version of Reeves’ PCF that overcomes
these limitations.

Considering the generation of the shadow map, a foot-
print of n×n reduces the effective resolution by a factor of
n in each dimension. For hardware graphics this means that
we either have to use a very large shadow map or need to
render the scene several times to different color channels.
Since the number of rendering passes and the image reso-
lution are critical for real time frame rates, real PCF is not
well suited for very complex and dynamic scenes or ma-
chines with limited hardware resources.

A faster way of performing percentage closer filtering
can be achieved if we try to retain the effective resolution
of the shadow map and use a filtering scheme that soft-
ens shadow boundaries by just looking at adjacent texels
to compute the shadow mask.

To do this, we render the shadow map as explained in
Section 2 but instead of using only one color channel we
store the encoded depth values in all four channels. Next,
we want to generate a packed shadow map where each texel
consists of four adjacent pixels as shown in Figure 5. Col-
lecting neighboring pixels in that manner is not a trivial task
since most rasterization hardware does not provide efficient

Red Green

Blue Alpha

Figure 5. Fast PCF filtering and pixel packing.

methods for changing the position of pixels3. One exception
to this is the OpenGL Imaging Subset, which does provide
a method for performing convolutions on image data in ei-
ther one or two dimensions. In the case of a 3×3 RGBA
convolution the new color of a pixel P ′ is computed as

P ′

ij =

2
∑

m=0

2
∑

n=0

CmnPm+1,n+j , (1)

where C is the 3×3 RGBA convolution filter and P a spe-
cific pixel in the input image. This weighted sum can be
adapted to perform the pixel packing as depicted in Figure
5 if we setup the filter kernel to collect only one color com-
ponent for each color channel. Using

C =

[0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0]
[0, 0, 1, 0] [0, 0, 0, 1] [0, 0, 0, 0]
[1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 0, 0]

the resulting pixel value P ′ consists of the red channel taken
from the lower left, the green channel from the lower mid
pixel and so on. Although one column and one row of the
filter kernel is not used at all, we prefer filter sizes with
odd widths and heights, e.g. 3×3 or 5×5, since graphics
hardware is normally optimized for this kind of filter sizes4.

After this convolution, which is applied when we copy
the frame buffer contents to the RGBA shadow map, we
have packed four depth samples into a single texel. This
differs from the pixel packing scheme presented in Section
3 since the resolution remains constant (using only one ren-
dering pass for the shadow map).

Performing the shadow test and computing the percent-
age shadowing term is very similar to the hardware-based
PCF algorithm in Section 3, except that the texture coordi-
nates need to be slightly offset by (ds

2
, dt

2
) (see Figure 6)

to account for the new center pixel (since the convolution
filter packs the lower left part as the new center pixel, as
illustrated in Figure 5).

Having only one rendering pass for the shadow map gen-
eration, it becomes affordable to use larger filter sizes. In

3Apart from some global methods, e.g. for scaling image data.
4This is due to the fact that most image processing convolutions, e.g.

Gaussian blur, are symmetric and pixel centered.

ds

d
t

Figure 6. Texture coordinate offset.

the case of a 4×4 footprint we can split up the computation
into four shadow mapping phases and use the accumulation
buffer to sum up the results. For each pass we use a 3×3
convolution that samples either the upper left, upper right,
lower left, or lower right 2×2 region as explained before.
With this multipass method, 4 ∗ 5 = 20 shadowing levels
can be generated.

5 Results

We have implemented the described methods on Sili-
con Graphics Octane VPro/8 and O2 workstations using
OpenGL as an underlying graphics SDK. Since the ex-
ecution time of the algorithms depends on high polygon
throughput (rendering the scene several times from different
points of view) and high fill rates (frame buffer and texture
map copies) this kind of machines, which are optimized for
both classes of applications, are ideal platforms. Further-
more, a hardware-accelerated OpenGL imaging pipeline,
needed for the fast PCF algorithm presented in Section 4
is only supported on mid- and high-level graphics worksta-
tions.

A comparison of the different variants of shadow filter-
ing techniques is depicted in Figure 7. In order to make
differences more noticeable, a small part (red rectangle) of
each image is magnified (Figure 7e — 7h). The scene con-
sists of about 7000 polygons and was rendered using an
image resolution of 800×600 pixels with normal OpenGL
lighting and one light source enabled.

Starting from left to right, the first image shows the re-
sult of the shadow mapping approach presented in Section
2. Using a shadow map resolution of 512×512 pixels, un-
dersampling artifacts at shadow boundaries are quite notice-
able (blocky edges). On an SGI Octane VPro/8, this scene
can be rendered at about 25− 30 frames per second5.

The second column shows the same scene but this time
with percentage closer filtering applied as described in Sec-
tion 3. With only three more grey levels, the shadows look
much more realistic. The shadow map still has a resolu-
tion of 512×512, but since we used a 2×2 filter, which re-

5All times presented here include the generation of the shadow map (as
in fully dynamic scenes).

quires four rendering passes during the shadow map genera-
tion phase, we virtually increased the resolution by packing
four depth values into a single texel. Frame rates using this
method drop down to about 10 fps, which is due to the three
additional rendering passes needed for shadow map gener-
ation.

With fast percentage closer filtering enabled (Section
4), we can achieve nearly real-time frame rates of about
15 − 20 fps. Using a 2×2 footprint combined with the
modified pixel packing method, shadow boundaries are well
smoothed (Figure 7c and 7g) resulting in an image quality
comparable to the normal PCF method.

The last column shows the result of fast percentage
closer filtering using a 4×4 footprint. Having about 20 dif-
ferent levels of shadowing, blockiness is reduced to a mini-
mum. As described in Section 4, filters of sizes larger than
2×2 need to be implemented using multipass rendering and
an accumulation buffer to sum up the results. Due to this,
a frame rate of only 5 fps can be achieved. If we restrict
ourselves to stationary lighting, the shadow map generation
becomes a precomputing step which makes PCF with filter
sizes larger than 2×2 affordable.

Figure 8 shows another example scene. On the left side
the scene was rendered without filtering. Although the
shadow map resolution was increased to 1024×1024 pix-
els, the shadow boundaries are still very blocky. Using fast
PCF with a filter size of 2×2, shadow boundaries appear
well smoothed (right). The rendering times are about 15
versus 10 frames per second.

6 Conclusion and Future Work

In this paper we showed how Reeves’ percentage closer
filtering can be applied for hardware-based shadow map
rendering. With this approach, shadows of high quality can
be rendered at interactive or real-time frame rates. As the
algorithm makes intensive use of the OpenGL imaging ex-
tensions, a hardware-only implementation is currently only
possible for certain graphics workstations. For consumer-
class PC graphic cards additional memory transfers from
frame buffer to host (and back) are necessary to emulate
imaging operations in software. So hopefully we will see
accelerated 2D imaging operations even on consumer-class
graphics in the near future making the algorithm suitable for
games and other interactive applications.

When discussing the algorithm we did not address sam-
pling artifacts due to the limited depth resolution. When
encoding depth values as color values we loose a lot of pre-
cision because of the (normal) 8 bits per color channel. A
solution to this is already possible since some architectures,
e.g. SGI’s Octane VPro or InfiniteReality, support color
depths of 12 bits per channel, a trend that will probably be
picked up for future consumer-class graphics cards.

Up to now we have restricted ourselves to constant filter
regions for computing the shadow map. However, better im-
age quality could be achieved with a mipmap-like method
for choosing a suitable filter size depending on the size of
the projected pixel boundaries. But since this would require
additional texture memory, which still is a very valuable re-
source, we consider the algorithm to be more practical and
efficient in its current state.

References

[1] J. F. Blinn. Jim Blinn’s corner: Me and my (fake) shadow.
IEEE Computer Graphics and Applications, 8(1):82–86,
Jan. 1988.

[2] F. C. Crow. Shadow algorithms for computer graphics. In
Computer Graphics (SIGGRAPH ’77 Proceedings), pages
242–248, July 1977.

[3] P. E. Haeberli and K. Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In Computer
Graphics (SIGGRAPH ’90 Proceedings), pages 309–318,
Aug. 1990.

[4] W. Heidrich. High-quality Shading and Lighting for
Hardware-accelerated Rendering. PhD thesis, University
of Erlangen, Computer Graphics Group, 1999.

[5] M. J. Kilgard. Realizing opengl: Two implementations of
one architecture. 1997 SIGGRAPH / Eurographics Work-
shop on Graphics Hardware, pages 45–56, August 1997.

[6] ATI Technologies Inc. Radeon charisma engine and pixel
tapestry architecture. White Paper, 2000. Available from
http://www.ati.com.

[7] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. In Computer Graphics
(SIGGRAPH ’87 Proceedings), pages 283–291, July 1987.

[8] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification (Version 1.2), 1998.

[9] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and
P. Haeberli. Fast shadow and lighting effects using texture
mapping. In Computer Graphics (SIGGRAPH ’92 Proceed-
ings), pages 249–252, July 1992.

[10] L. Williams. Casting curved shadows on curved surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceedings), pages
270–274, Aug. 1978.

[11] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide, Third Edition. Addison-Wesley, 1999.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Comparison of shadow filtering techniques. (a,e): without filtering. (b,f): normal PCF, 2×2
filter. (c,g): fast PCF, 2×2 filter. (d,h): fast PCF, 4×4 filter, multipass.

(a) (b)

Figure 8. Test scene. (a): without filtering. (b): fast PCF, 2×2 filter.

