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Abstract

Existing techniques for traversing a polygon generate frag-
ments one (or more) rows or columns at a time.  (A fragment is all
the information needed to paint one pixel of the polygon.)  This
order is non-optimal for many operations.  For example, most
frame buffers are tiled into rectangular pages, and there is a cost
associated with accessing a different page.  Pixel processing is
more efficient if all fragments of a polygon on one page are gen-
erated before any fragments on a different page.  Similarly, tex-
ture caches have reduced miss rates if fragments are generated in
tiles (and even tiles of tiles) whose size depends upon the cache
organization.

We describe a polygon traversal algorithm that generates
fragments in a tiled fashion.  That is, it generates all fragments of
a polygon within a rectangle (tile) before generating any frag-
ments in another rectangle.  For a single level of tiling, our algo-
rithm requires one additional saved context (the values of all in-
terpolator accumulators, such as Z depth, Red, Green, Blue, etc.)
over a traditional traversal algorithm based upon half-plane edge
functions.  An additional level of tiling requires another saved
context for the special case of rectangle copies, or three more for
the general case.  We describe how to use this algorithm to gener-
ate fragments in an optimal order for several common scenarios.
CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture – Graphics processors; I.3.3
[Computer Graphics]: Picture/Image Generation – Line and curve
generation

Additional Keywords:  rasterization, tiling, graphics accel-
erators

1. INTRODUCTION

In the rasterization stage of a graphics pipeline, a fragment
must be generated for each pixel position within a polygonal ob-
ject.  A fragment contains all the information required to paint the
surface at the pixel position, such as color, Z depth, texture coor-

dinates, etc.  Existing object traversal algorithms fall mainly into
two categories: scanline based, and half-plane function based.

Scanline traversal is intuitively obvious.  In its simplest
form: (1) start at the top scanline contained within the polygon,
(2) visit each pixel position on the scanline within the polygon
from left to right, (3) repeat from top to bottom for each scanline
in the polygon.  But scanline traversal has several problems.
First, the inverse slope of each polygon edge must be computed,
requiring a divide operation per edge.  Second, it is hard to gener-
ate several fragments in parallel with any degree of efficiency.
Finally, it is hard to generate fragments that are sampled at several
points for supersampled antialiased rendering.

Consequently, many graphics accelerators [1][7][8][10]
rasterize polygons using half-plane edge functions [3][7][11].
Each (directed) edge of the polygon is described by a function
which separates the (x, y) screen space plane into points to the
left, on, or to the right of the edge.  A point is within the polygon
if it is on the same side of each directed edge.  Starting near one
vertex of the polygon, edge information from several points near
the current position are combined to determine the next position
to visit.

Such rasterizers address many of the problems of scanline
generators.  Setup of the edge functions requires no divides.
Fragment generation is easily parallelized by using a 2w x 2h pixel
fragment “stamp,” and simultaneously evaluating the edge func-
tions and the color, Z depth, etc. interpolators at each pixel posi-
tion within the stamp.  Supersample antialiasing is accommodated
by evaluating the edge functions at each of the many sample
points belonging to each pixel position’s filter.

However, published algorithms traverse objects in an order
similar to scanline algorithms.  This is non-optimal for fragment
processing operations further down the pipeline.  Several studies
of texture caches [4][5][6] show the benefits of using a tiled
rasterization order, in which the screen is tiled into rectangles that
are related to the size of the texture cache.  All fragments within
one tile are generated before any fragments within another tile.
Similarly, most frame buffers physically tile the screen into rec-
tangular pages, and tiled rasterization that respects these page
boundaries allows for fewer page crossings that are more effi-
ciently prefetched [8].

In this paper, we first review half-plane edge functions and
existing traversal algorithms based upon them.  We then show
how a different algorithm appears to have similar characteristics,
but which enables tiled rasterization at little extra cost.  Such til-
ing requires one new saved context and minimal changes to the
logic that decides where to move next.  We show how this tiling
algorithm can be extended for other scenarios, such as copying
data, where both the source and destination have tiling boundaries
that might be respected for optimum performance.

2. HALF-PLANE EDGE FUNCTIONS

The three directed edges of a triangle, or the four edges of a
line, can be represented by planar (affine) functions.  Each edge
function is negative for points to the left of the edge, positive for
points to the right, and zero for points on the edge.  A fragment is
inside an object if all edges in a clockwise series are non-negative,
or if all edges in a counterclockwise series are negative.  (We
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slightly adjust an edge function’s initial value in order to assign
points along a shared edge or vertex to exactly one object.)

Figure 1 shows a triangle described by three clockwise
edges, which are shown with bold arrows.  The half-plane where
each edge function is positive is shown by several thin lines
parallel to the edge.  The shaded portion shows the area where all
edge functions are non-negative.

An edge function is simple to set up.  The edge from (x0, y0)
to (x1, y1) is described by the edge function E:

∆x = (x1 – x0)
∆y = (y1 – y0)
E(x, y) = (x–x0) ∆y – (y–y0) ∆x

The Pixel-Planes system [3] computes this function in paral-
lel for all pixels in the frame buffer.  Pineda [11] observed that an
edge function is easy to incrementally update.  For example, here
are the four Manhattan neighbors:

E(x+1, y) = E(x, y) + ∆y
E(x–1, y) = E(x, y) – ∆y
E(x, y+1) = E(x, y) – ∆x
E(x, y–1) = E(x, y) + ∆x

This property is well suited for a more conventional raster-
izer, which steps through a polygon, generating one or a group of
fragments at each step.

3. WHAT POSITIONS INTERSECT THE
OBJECT?

Before constructing algorithms that traverse a convex po-
lygonal object, we must determine what moves from a given po-
sition are possible.  That is, given a fragment stamp that is 2w

pixels wide, and 2h pixels high, at a position that intersects an
object, what nearby positions also intersect the object?

We limit ourselves to Manhattan moves—positions 2h pixels
up or down, or 2w pixels left or right, from the current position.
This limitation means that we may move to non-productive posi-
tions that are known to generate no fragments, especially when
traversing thin diagonal objects.  We could reduce the frequency
of non-productive moves by allowing moves to diagonally adja-
cent positions, or even to non-adjacent positions.  However, such
algorithms involve substantially more complex decision-making
logic, speculative computations, and multiplexing.  Our experi-
ence with the Neon graphics accelerator [8], which uses a single
sample point per pixel, convinced us that the increased cycle time
outweighed any advantages.  The possible advantages are even
smaller if supersample antialiasing is used, as such non-
productive moves become extremely rare.  Almost any stamp
position that intersects the object also has at least one supersample
point inside the object.

Figure 2 shows a fragment stamp that is 4 pixels wide by 2
pixels high.  The thin lines are a grid of pixels.  The stamp
boundaries are shown with thick solid lines.  The object’s edge
functions are evaluated at eleven points.  The circled stamp origin
is both a sample point to determine if the upper left pixel is in the
object, and a probe point to assist stamp movement.  The other
seven sample points, shown with an ×, determine if the associated
pixels are in the object.

Three additional probe points, enclosed in diamonds, assist
stamp movement.  These probes are labeled RT (right top), RB
(right bottom), and LB (left bottom).  The stamp edge segments
are defined as (ORIGIN, RT), (RT, RB), (RB, LB), and
(LB, ORIGIN).

The sample and probe points are located on the corner of the
pixels to simplify their computation: OpenGL semantics are ac-
commodated by using a constant half-pixel x and y offset on all
object vertex coordinates, which effectively puts the sample
points at pixel centers.

The movement algorithm tests each edge segment of the
stamp to see if it intersects the object, that is, if any point along
the stamp edge is inside the object.

Figure 1: A triangle described by three edge functions.
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Figure 2: A 4 x 2 fragment stamp with three probe points (dia-
monds), seven sample points (×’s), and an origin (circle).
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Figure 3: A triangle intersects the stamp’s top, left, and bottom
edge segments, while a shadow intersects the right edge segment.
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Computing the intersection of a stamp edge segment with the
object requires two tests.  The first test computes if, for each of
the half-plane functions surrounding the object, one or both of the
probes at the ends of the stamp edge segment are on the inside of
the half-plane equation.  Note that this does not require that the
same probe be inside each half-plane equation.  Figure 3 shows
the 4 x 2 stamp with a lightly shaded lavender triangle that inter-
sects all but the right stamp edge segment.  For example, the tri-
angle intersects the top stamp edge (ORIGIN, RT) because
ORIGIN and RT are inside E0 and E1, and ORIGIN is inside E2.
It is easy to see that this test will be true if the stamp edge inter-
sects the object.

However, this doesn’t quite implement the desired intersec-
tion semantics, as this test is also true if a stamp edge segment has
both probes outside one of the object’s shadows, but the segment
spans the shadow.  The shadows are areas that are outside two
edges, but inside the remaining edge(s).  The darker rose portions
of Figure 3 show the three shadows of the triangle.  Note how the
right edge segment (RT, RB) satisfies the first intersection test: RT
is inside E0, both RT and RB are inside E1, and RB is inside E2.
However, the right edge does not truly intersect the triangle.

Thus, we add a second test that ensures that the stamp edge
segment is inside the minimal rectangular bounding box of the
object, where the bounding box’s edges are horizontal and verti-
cal.  If both these tests are true, then the stamp edge segment
probably intersects the object.  Vertices that do not lie on the
bounding box can still cast a deceitful shadow.  This does not
cause any correctness problems, but only efficiency problems.
And these efficiency problems are small: such a vertex must be at
an obtuse angle, and so the shadow grows quickly beyond the
vertex.  Within one or two stamp positions outside the object, the
shadow is so large that one or both ends of the stamp edge seg-
ment fall into the shadow, and the intersection test is no longer
fooled.

A stamp position that meets both intersection tests is called a
valid position.  The position left is valid if the left edge segment
(LB, ORIGIN) intersects the object, etc.

This simple scheme for determining valid positions includes
many positions that might be rejected easily, as these positions
obviously contain no sample points within the object.  We have
versions of all the traversal algorithms described below that avoid
moving to such “sliver” positions.  However, we do not describe
these algorithms due to space constraints, as avoiding slivers in-
volves some subtle special cases.  And this complexity is only
worth implementing when there is a single sample point per pixel;
sliver avoidance confers an almost negligible performance ad-
vantage to supersampled antialiasing.  For more details, please see
[9].

4. THE CENTERLINE TRAVERSAL
ALGORITHM

We now describe a variant of the PixelVision [7] “center-
line” traversal algorithm.  This algorithm always starts with the
top-most vertex, sweeping out an entire horizontal ”stampline”
before moving down to the next stampline.  (A stampline here
refers to a row of pixels the height of the stamp; in general, it may
also refer to a column of pixels the width of the stamp.)  It sweeps
out each stampline by first noting if the right position is valid.  If
so, it saves the values of all of the edge functions and all other
interpolated values, evaluated at point RT, into the context right-
Save.  It then traverses left across the stampline, until the left po-
sition is no longer valid.  To visit the remainder of the stampline
(if any), it examines the rightSave context to see if it is valid.  If
so, it restores the context rightSave (restoring a context also in-

validates it), and traverses right across the stampline until the
right position is no longer valid.

As it sweeps left, then right, across the stampline, the algo-
rithm also looks for valid down positions.  The first such position
found on the stampline is saved into the downSave context.  When
the current stampline is complete, the algorithm moves down to
the next stampline by restoring the downSave context.  If down-
Save is invalid, rasterization of the object is complete.  For most
triangles, the algorithm steps down the first few stamplines in a
vertical line, hence the name “centerline.”  When it hits the bot-
tom edge of the triangle, it veers off this centerline in order to step
down to the left-most or right-most position in each stampline.

Figure 4 shows this algorithm traversing a triangle.  The oc-
tagon positions are stored in downSave; the circle positions are
stored in rightSave.  In this and all algorithms described below,
saved contexts are bypassed appropriately.  If left is not valid
from the first position on a stampline, for example, the stamp
immediately moves right, rather than taking one cycle to store the
right position into rightSave, and another cycle to restore right-
Save.  And if both left and right are not valid, the stamp immedi-
ately moves down.  When a position bypasses the corresponding
saved context, the context indicator (octagon or circle here) is
shown using dashed lines.

This algorithm requires two saved contexts, in addition to the
current context.  A context includes not only the values of the
edge functions, but also all of the current color, Z, and texture
coefficient values being interpolated from values provided at the
vertices.  (A context saves only the accumulator values for each
type of data being interpolated, not the corresponding values used
to increment or decrement the accumulators, as these are constant
across the object.)  A context involves a large amount of data, so
we wish to minimize the number of saved contexts.

To allow the stamp to immediately move to the next position
without stalling, the edge functions must be evaluated each cycle
at the origin of the three possible next adjacent positions—left,
right, and down.  They are already evaluated at the origin of the
right position (via probe RT) and the down position (via probe
LB), and so must also be evaluated for the left position.  This
speculative evaluation applies only to the edge functions, as the
other interpolated values like color, Z, and texture coordinates can
lag the stamp by one cycle.  This allows us to compute exactly
one set of new interpolated values—the ones we actually end up
using—each cycle.  This is a bit tricky when saved contexts are
involved—how can we evaluate a single set of interpolated values
at the first position on a stampline, in which both right and down
are valid and must be saved?  We address this problem by storing
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Figure 4: PixelVision’s “centerline” algorithm.  Octagons
are downSave positions, circles are rightSave positions

and dashed circles are bypassed right positions.
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the current interpolator values, and defer computing the values we
really want until the saved values are restored.  For example,
when the right position is stored into rightSave, the current value
of the colors, etc., is stored into rightSave.  When rightSave is
restored, the saved values are added to the x increments that move
the interpolated values one stamp position to the right.

The original PixelVision algorithm actually starts at the first
vertex provided, at the cost of three saved contexts.  Since the
bounding box must be computed anyway, it is a small matter to
select the top-most vertex and start there, eliminating the need for
one of PixelVision’s saved contexts.  We observe in passing that
the rightSave state can also be eliminated by starting at a vertex
that is on a corner of the bounding box, and allowing the algo-
rithm to traverse the triangle either top to bottom or bottom to top.
However, this optimization does not work for antialiased lines, in
which none of the four vertices is at a corner of the bounding box.

The choice of starting at the top-most vertex is arbitrary.  In
fact, the Neon graphics accelerator [8] starts at any vertex on the
bounding box, and can traverse an object in stamplines that are
either rows or columns.  This allows it to paint OpenGL wide
dashed lines, which require column stamplines for x-major lines,
row stamplines for y-major lines, and traversal from the first ver-
tex toward the second vertex.  We have implemented all traversal
algorithms with this generality, but we describe them in terms of a
particular starting vertex for simplicity and clarity.  For the same
reason, we have also omitted descriptions of serpentine versions,
which sweep back and forth across stamplines (or tilelines, in the
tiled versions).

Neon extended the centerline algorithm for tiled traversal.
Neon’s implementation uses three additional contexts, at ap-
proximately 600 bits per context, and rather complex next-move
decision making logic.  We later discovered that two of the con-
texts were mutually exclusive, and so tiling could have been im-
plemented with two additional physical contexts.  But we omit a
description of these algorithms in favor of an even better one.

5. AN ALTERNATE TRAVERSAL
ALGORITHM

We now present an alternate way to traverse the triangle.
Expressed as a non-tiling algorithm, this alternative appears to
have no advantage over the centerline algorithm.  However, the
extension to tiling can be made with a single additional saved
context, as described below in Section 6.

This algorithm starts at the left-most vertex.  It sweeps the
first stampline from left to right.  It records the first valid up posi-

tion in upSave, and the first valid down position in downSave.
When it finishes the first stampline, it moves to the position in
upSave, and sweeps right across that stampline, again recording
the first valid up position in upSave.  When it finishes the top
stampline, it finds that it cannot load a valid context from upSave.
It instead loads the position in downSave, and proceeds to sweep
all the stamplines from there down, saving the first valid down
position it finds in each stampline.  When it finishes the bottom
stampline, it can’t load a valid position from downSave, and so is
finished with the object.

Figure 5 illustrates this algorithm in action.  Here, the octa-
gons indicate positions stored in downSave, and diamonds indi-
cate positions stored in upSave.

6. A TILING TRAVERSAL ALGORITHM

We can now describe an efficient tiling traversal algorithm.
We add one more context, rightTileSave, to the previous algo-
rithm.  We also need to know for the up, down, and right positions
if they are in the current tile or a different tile.  If the tile and
stamp height and width are restricted to powers of two, this is
accomplished by logically ANDing or ORing the current stamp x
and y coordinates with a precomputed mask or its complement,
then testing the results for all 1’s or all 0’s.

While traversal of stamplines is horizontal (rows of stamps),
traversal of tilelines is vertical (columns of tiles).  In each tileline,
the algorithm operates in three phases.  In phase 0, the stamp vis-
its all stamplines in the object including and below the starting
position that are also inside the first tile of the tileline.  In phase 1,
it visits all stamplines in the object above the starting position that
are in the tileline.  In phase 2, it returns and finishes visiting all
positions in the object in the tiles below the starting tile.  The
algorithm then repeats this process for the next vertical tileline to
the right.

In phase 0, the algorithm proceeds along a row stampline
from left to right, stopping as soon as it reaches the rightmost
position in the tile or the object.  It also saves the first valid up
and down positions in upSave and downSave, regardless of tile
boundaries.  When it reaches the tile’s right edge, if right is valid,
it stores the right position (which is in the next tile) in rightTile-
Save.  It then loads the downSave context, and visits from left to
right all positions on that stampline that are within both the tile
and object.  Again, it saves the first valid down position it sees
into downSave.  It continues visiting new stamplines by restoring
downSave until downSave is in a new tile or no longer valid.  It
then restores the upSave position, and enters phase 1.

In phase 1, it sweeps stamplines from left to right, stopping
at the object’s or tile’s right edge, and saving the first valid up
position in each stampline.  It moves from stampline to stampline
by restoring the upSave context at the end of each stampline.  It
traces out the rest of the object above the starting position and
within the tileline, without regard to tile boundaries in the up di-
rection.  (It still respects the tile boundary in the right direction.)
When it reaches the top of the object, and cannot restore from
upSave, it instead restores downSave and enters phase 2.

In phase 2, it traces out the rest of the tileline, that is, the
portion of the object below the starting tile, by moving from
stampline to stampline in the down direction.  Like phase 1, it
only respects the tile boundary in the right direction.  When it
reaches the bottom of the object, and cannot restore from the
downSave context, it restores from rightTileSave and enters phase
0 again.  If rightTileSave is empty, the object has been traversed.

Figure 6 shows this algorithm traversing a larger triangle.
The thick grid lines represent tile boundaries, which here are 4
pixels wide by 4 pixels high.  Octagons are downSave positions,
diamonds are upSave positions, and triangles are rightTileSave
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Figure 5: An alternate traversal algorithm.  Octagons
are downSave positions, diamonds are upSave positions.
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positions.  White positions represent phase 0, dark rose phase 1,
and light lavender phase 2.  In this example, no positions are vis-
ited in phase 2 in the left-most tileline, and no positions are visited
in phase 1 in the right-most tileline.  Just as bypassing saved con-
texts avoids wasting cycles, phases in which there is no work
should also be bypassed.

7. USES AND VARIANTS OF TILING

Two uses of tiling have been mentioned previously: tiling
with respect to DRAM page boundaries, and tiling with respect to
a texture cache size.

7.1. Tiling to Frame Buffer Pages

Respecting DRAM page boundaries affords two benefits [8].
First, tiling reduces the number of same-bank page transitions, for
which the second page cannot be prefetched.  When using any
type of DRAM for a frame buffer, such transitions require all
accesses to the first page to complete, and then an expensive
precharge/row activate command sequence to load the second
page into the bank.  This takes several cycles longer than access-
ing data on an already open page.  Since tiling produces fewer
transitions between pages, it also produces fewer transitions from
one page to another in the same bank.

Second, tiling increases the effectiveness of prefetching
pages.  Multibank DRAM (e.g. synchronous DRAM or RAMBUS
Direct RAM) allows accessing a page in one bank while pre-
fetching (issuing a precharge/row activate sequence for) a page
into another bank.  By grouping all accesses for an object on a
page, tiling spaces transitions from one page to another further
apart in time.  This allows more time to prefetch the new page, so

that the precharge and row activate cycles can be hidden by data
accesses to different banks.

When multibank DRAM is used, the tiling traversal algo-
rithm can be modified to further decrease, on average, the number
of nonprefetchable transitions from a page in one bank to another
page in the same bank.  For example, a graphics accelerator that
uses 2-bank DRAM might checkerboard the two banks across the
screen, as shown in Figure 7.  Moving to a horizontally or verti-
cally adjacent tile moves to a page in a different bank, while
moving to a diagonally adjacent tile moves to a page in the same
bank.  In the basic tiling algorithm illustrated in Figure 6, the
jump from position 31 to position 32 moves from one page in one
bank to another page in the same bank.

When painting objects that span many tiles, the basic tiling
algorithm may jump a large distance when it restores rightTile-
Save to move from one tileline to another.  The new tile has good
chance of being in the same bank.  We can modify the algorithm
to instead move to a horizontally adjacent tile, which is in a dif-
ferent bank, whenever possible.  This modified algorithm visits
tiles in a serpentine fashion.  It tries to visit tiles in one tileline
from top to bottom, then from bottom to top in the next tileline,
and again from top to bottom in the next tileline, etc.  This tile
traversal order increases the frequency of transitions from one
bank to another when moving from one tileline to another.

Serpentine tile traversal is accomplished by saving the last
(rather than first) valid right position in the next tileline into
rightTileSave, and swapping the roles of up and down in alternate
tilelines.  The serpentine algorithm moves from position 31 to
position 35 in the tile immediately to the right, and thus to a page
in a different bank.

Slightly better performance can be obtained by using another
saved context, and replacing rightTileSave with rightTile-
SaveEven and rightTileSaveOdd.  A valid right position in an
even bank page in the next tileline (bank A in the 2-bank example
above) is stored into rightTileSaveEven, while a valid right posi-
tions in an odd bank page (bank B) is stored into rightTile-
SaveOdd.  If both of these contexts contain a valid position, then
the transition from one tileline to another restores whichever is in
a different bank from the current position.  In Figure 6, for exam-
ple, position 32 might be saved in rightTileSaveEven, and position
34 in rightTileSaveOdd.  At position 31, when the current tileline
has been completely visited, the algorithm restores position 34
from rightTileSaveOdd, and then invalidates both the rightTile-
SaveEven and rightTileSaveOdd contexts.  Note, however, that as
DRAM pages grow larger, and more banks are provided, this
optimization becomes less significant.

7.2. Tiling for Texture Cache Performance

Rather than matching the tile dimensions to the frame buffer
page dimensions, we can instead make the tile size a function of
the size and organization of the first level of the texture cache.
This improves the texture cache hit rate [4][5][8].

Many of the four or eight texels required to bilinearly or
trilinearly texture a fragment will also be used to texture nearby
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fragments in the object.  If a long stampline causes texels fetched
for the left-most fragments on the stampline to be ejected from the
texture cache, the shared texels must be refetched from memory in
order to texture the left-most fragments on the next stampline.

Tiling forces the fragment generator to move to the next
stampline before these texels are ejected from the cache.  Hakura
& Gupta [4] found that for scenes with large triangles, tiling re-
duces the miss rate by a factor of three for fully associative tex-
ture caches between 2 kbytes and 8 kbytes in size.  Tiling also
reduces the conflict misses in less associative caches: a 2-way set
associative cache with tiling and the proper texture memory or-
ganization performs nearly as well as their fully associative cache.

Tiling means that the texels used to texture fragments at the
right-hand side of the tile will probably be ejected from the cache
before visiting the left-hand side of the tile to the right, which is in
a different tileline.  These texels must be refetched when the next
tileline is visited.  If the texture cache is small, special care should
be taken to minimize this effect.  For example, the Neon graphics
accelerator [8] has 8 tiny fully associative 32-byte texture caches,
each with a line size of one 4-byte texel, for a total of 256 bytes of
texture cache.  Neon uses a tile that is 16 pixels wide by 1 pixel
high when texture mapping is enabled.  These dimensions maxi-
mize the shared tile perimeter between vertically adjacent tiles in
a tileline, which are generated closely in time, while minimizing
the shared perimeter between horizontally adjacent tiles in differ-
ent tilelines, which are generated much farther apart in time.

Serpentine tiling further increases sharing of cache data be-
tween tiles when moving from one tileline to another.  Many po-
sitions within a tile near the top or bottom of a tileline will not be
within the object, and so will not require texel data.  But the tile
size is usually chosen for the worst-case situation, when all frag-
ments within the tile need texture data.  Thus, the cache may
contain texels used by several tiles at the end of a tileline.  By
making the transition from one tileline to another with as small a
jump as possible, serpentine tiling increases the odds that this
texel data will still be there when nearby tiles in the next tileline
are visited.

Finally, note that tiling can be made object-relative, rather
than screen-relative, by using the starting position of the stamp as
an offset to the stamp’s (x, y) position before testing for a tile
boundary.  This has the effect of aligning tiles to the starting ver-
tex of the object, which may slightly increase cache performance
for large triangles.

8. METATILING

Multiple levels of tiling (metatiling) may be desirable in sev-
eral circumstances described in the following subsections.  Meta-
tiling may be inclusive, where each tile belongs to exactly one
metatile, or noninclusive, where a tile may belong to two or more
metatiles.  Fortunately, the same stamp movement rules can cover
both cases.  Traversal with metatiling generates all fragments
within a metatile before moving to another metatile.  The method
further generates all fragments on the portion of a tile that is
within the current metatile before moving to a position in a differ-
ent tile.  If metatiling is inclusive, this means that all fragments in
a tile will be generated before any fragments in a different tile.

Metatiling is a straightforward (though nontrivial) extension
to tiling, in which the relationship between a tile and a metatile is
almost like the relationship between a stamp position and a tile.
Each of the metaphases 0, 1, and 2 contain a version of the basic
tiling algorithm’s phases 0, 1, and 2 that consider a metatile
boundary the end of the world.  For example, the embedded tile
phase 1 does not visit all positions in the object and the current
tileline that are below the starting position, but rather stops at a
metatile boundary.  Unfortunately, given a starting vertex on an

edge of the bounding box, we have been unable to construct a
metatiling algorithm with fewer than three additional saved con-
texts: upMetatileSave, downMetatileSave, and rightMetatileSave.
This results in seven contexts.

Alternatively, metatiling can be implemented with five con-
texts by always starting at a vertex on the corner of the bounding
box.  As previously noted, antialiased lines do not have such a
vertex.  But they can be rendered as a quadrilateral and a triangle,
which share a horizontal or vertical edge and  have the same ver-
tex at the corner of the two subbounding boxes.  In fact, the Neon
accelerator uses a similar technique for antialiased and X11 wide
lines, in order to avoid computing a starting position at a vertex.
Instead, it starts at one of the provided endpoints that are interior
to the wider desired line, which it then effectively renders as a
pentagon and a triangle.  Such a scheme can be further optimized
to avoid visiting many of the same stamp locations that are bi-
sected by the two subpolygons.  Note, however, that this five-
context algorithm cannot be extended to support serpentine tiling.

8.1. Inclusive Metatiling

With a single level of tiling, it is impossible to simultane-
ously tile to frame buffer page boundaries, and to optimize the hit
rate of the texture cache.  A tile size chosen for minimizing page
crossings may not be optimal for reducing cache misses, and vice-
versa.  If this problem is severe, metatiling may be warranted.

Alternatively, metatiling might be used to further improve
only texture cache performance or only frame buffer access effi-
ciency.  For example, if the first level texture cache is very small,
another level of tiling can improve second level texture cache
efficiency.  Similarly, if DRAM with multiple cache levels is
used, like FBRAM [2], another level of tiling can improve effi-
ciency of frame buffer memory accesses.

8.2. Noninclusive Metatiling

Noninclusive metatiling can efficiently group memory ac-
cesses when a source rectangle is copied to a destination rectan-
gle.  Without metatiling, if the destination position (xd, yd) deter-
mines tile boundaries we indiscriminately cross source page
boundaries; if the source position (xs, ys) determines tile bounda-
ries we indiscriminately cross destination page boundaries.  And
if the copy involves off-screen data, the source and destination
pages may not even be the same height and width, or contain the
same number of pixels.

With noninclusive metatiling, the destination page dimen-
sions determine the metatile dimensions, while the source page
dimensions determine the tile dimensions (or vice-versa). The
destination position (xd, yd) is tested against metatile boundaries,
while the source position (xs, ys) is tested against tile boundaries.
In general, source tile boundaries are not aligned with the destina-
tion metatile boundaries.  Tiles are no longer subsets of metatiles,
but the traversal order rules remain the same.  The copy rectangle
is visited in an order that traces out all positions within a destina-
tion metatile before moving to another destination metatile.  And
all positions within both the current source tile and the current
metatile are visited before moving to another source tile.

Since copies involve rectangles rather than arbitrary poly-
gons, we always start at a vertex on the edge of the bounding box,
and thus can use the 5-context metatiling algorithm.  Assume that
we wish to copy starting at the top left corner, from left to right,
then top to bottom.  (The other three vertices are similar.)  For this
case we label the five physical contexts current, downSave,
downMetatileSave, rightTileSave, and rightMetatileSave.  The
downSave context records the first valid down position in the
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same metatile.  The downMetatileSave context records the first
valid down position in the next metatile.  The rightTileSave rec-
ords the first valid right position in the next tile and the same
metatile, while rightMetatileSave records the first valid right po-
sition in the next metatile.

Figure 8 shows an example of this algorithm in operation.
The thick solid grid lines are again tile boundaries, while the thick
dashed grid lines are metatile boundaries.  (In this example, the
four saved contexts mentioned are never simultaneously needed,
but would be if there were more tiles within the metatiles.)

9. CONCLUSIONS

The efficiency of both frame buffer and texture memory ac-
cesses can benefit from tiled rasterization of polygonal objects,
yet we know of no published hardware algorithms for tiling.  We
have presented a simple algorithm that tiles the traversal of poly-
gons.  The algorithm is simpler than our previous, more expensive
algorithm, which was nonetheless worth the implementation cost.
The algorithm is easily extensible to serpentine traversal, which
further improves frame buffer and texture cache efficiency.  The
algorithm is also easily extensible to metatiles, though at a cost
that probably warrants its use only when both tiles and metatiles
are fairly small, and thus the benefits are large.  Further details, as
well as a set of optimizations that avoid moves to unproductive
stamp positions, are available in [9].

10. ACKNOWLEDGEMENTS

Laura Mendyke and Todd Dutton were largely responsible
for implementing six-context tiling (“chunking”) in the Neon
graphics accelerator.  We apologize for coming up with a better
algorithm after they were done.

References

[1] Kurt Akeley.  RealityEngine Graphics.  SIGGRAPH 93
Conference Proceedings, ACM Press, New York, August
1993, pp. 109-116.

[2] Michael F. Deering, Stephen A. Schlapp, Michael G. Lav-
elle.  FBRAM: A New Form of Memory Optimized for 3D
Graphics.  SIGGRAPH 94 Conference Proceedings, ACM
Press, New York, July 1994, pp. 167-174.

[3] Henry Fuchs, et. al.  Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes.
SIGGRAPH 85 Conference Proceedings, ACM Press, New
York, July 1985, pp. 111-120.

[4] Siyad S. Hakura & Anoop Gupta.  The Design and Analysis
of a Cache Architecture for Texture Mapping.  Proceedings
of the 24th International Symposium on Computer Archi-
tecture (ISCA), ACM Press, New York, June 1997, pp. 108-
120.

[5] Homan Igehy, Matthew Eldridge & Kekoa Proudfoot.  Pre-
fetching in a Texture Cache Architecture.  Proceedings of
the 1998 EUROGRAPHICS/SIGGRAPH Workshop on
Graphics Hardware, ACM Press, NY, August 1998, pp.
133-142.

[6] Homan Igehy, Matthew Eldridge & Pat Hanrahan.  Parallel
Texture Caching.  Proceedings of the 1999
EUROGRAPHICS/SIGGRAPH Workshop on Graphics
Hardware, ACM Press, NY, August 1999, pp. 95-106.

[7] Brian Kelleher.  PixelVision Architecture, Technical Note
1998-013, System Research Center, Compaq Computer
Corporation, October 1998, available at http://
www.research.digital.com/SRC/publications/src-tn.html.

[8] Joel McCormack, Robert McNamara, Chris Gianos, Larry
Seiler, Norman Jouppi, Ken Correll, Todd Dutton & John
Zurawski.  Neon: A (Big) (Fast) Single-Chip 3D Worksta-
tion Graphics Accelerator.  Research Report 98/1, Western
Research Laboratory, Compaq Computer Corporation, Re-
vised July 1999, available at http://
www.research.compaq.com/wrl/techreports/pubslist.html.

[9] Joel McCormack & Robert McNamara.  Efficient and Tiled
Polygon Traversal Using Half-Plane Edge Functions.  Re-
search Report 2000/4, Western Research Laboratory, Com-
paq Computer Corporation, August 2000, available at
http://www.research.compaq.com/wrl/techreports/
pubslist.html.

[10] John S. Montrym, Daniel R. Baum, David L. Dignam &
Christopher J. Migdal.  InfiniteReality: A Real-Time
Graphics System.  SIGGRAPH 97 Conference Proceedings,
ACM Press, New York, August 1997, pp. 293-302.

[11] Juan Pineda.  A Parallel Algorithm for Polygon Rasteriza-
tion.  SIGGRAPH 88 Conference Proceedings, ACM Press,
New York, August 1988, pp. 17-20.

19

23

25

27

20

24

28

21

33

35

22

32

34

36

29 30 37 38

1

3

5

7

9

2

4

6

8

10

26

55

59

61

56

58

60

62

63 64

31

39 40 47 4811 12 65 66

41 42 49 5013 14 67 68

43 44 51 5215 16 69 70

45 46 53 5417 18 71 72

57

Figure 8: Copy operation with metatiling.  Octagons are down-
Save positions, diamonds are downMetatileSave,

upright triangles are rightTileSave, and upside-down
triangles are rightMetatileSave.
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