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Abstract  

This paper describes a 3D object-space paint program. This pro- 
gram allows the user to directly manipulate the parameters used to 
shade the surface of the 3D shape by applying pigment to its sur- 
face. The pigment has all the properties normally associated with 
material shading models. This includes, but is not limited to, the 
diffuse color, the specular color, and the surface roughness. The 
pigment also can have thickness, which is modeled by simultane- 
ously ereating a bump map attached to the shape. The output of 
the paint program is a 3D model with associated texture maps. 
This information can be used with any rendering program with 
texture mapping capabilities. Almost all traditional techniques of 
2D computer image painting have analogues in 3D object paint- 
ing, but there are also many new techniques unique to 3D. One 
example is the use of solid textures to pattern the surface. 
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i .  In troduct ion  

In recent years the technology of 3D computer graphics is 
finding application in a large number of  different disciplines. In 
the near future, it is likely that the typical personal computer or 
workstation will be fast enough to produce 3D models, anima- 
tions, and high quality computer generated imagery just as easily 
as the typical personal computer of today produces 2D paintings, 
illustrations, and documents. The key to the widespread use of 
3D computer graphics, however, is not just dependent on 
advances in hardware, but requires similar advances in interactive 
techniques that make 3D concepts easy to use and accessible to 
large numbers of people. 

There is no reason to think this is an impossible task. 
Almost all the design principles that have been successfully 
applied to designing current user interfaces are likely to apply to 
3D applications as well. One such principle is to use common 
metaphors. Users can then rely on their everyday experience to 
infer how a program works by analogy with how everyday things 
work[I,22]. This principle is easy to apply in 3D computer 
graphics because the 3D world provides so many concrete meta- 
phors. Another general principle in designing user interfaces is 
direct manipulation[27]. A pointing device such as a mouse can 
be used to move, drag, or manipulate graphics representations on 
the screen. The act of  moving the mouse is directly associated 
with some action to be performed, and feedback is given immedi- 
ately to reinforce the action. Ideally, the results of the interactive 
action should be a faithful reproduction of the final product, or 
WYSIWYG (What You See Is What You Get). 

Unfortunately, most applications involving 3D computer 
graphics are still indirect and not WYSIWYG. The most progress 
has been in positioning and creating geometric models[3,21]. 
One example is the virtual sphere where the user rotates an object 
by manipulating a hypothetical crystal ball containing the 
object[9]. Another example is to fix a 3D plane and use the same 
direct manipulation techniques used by 2D illustration programs 
to create and modify geometry on the plane. This 2D geometry 
can be converted to 3D models using sweep operations. More 
recently, Williams has described how a ordinary paint program 
can be used to sculpt height fields[33]. However, the models 
needed for computer generated imagery involve not only 
geometric attributes, but also optical attributes that define the pro- 
perties of materials and light sources. One technique for interac- 
tively modifying the optical properties of a single surface 
illuminated by distant lights is to display an image of quantized 
surface norrnals (sometimes referred to as an orientation coded 
image) using a colormap whose entries have been set to the 
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calculated shades[2, 7, 15, 28]. This type of table is often referred 
to as a reflectance map. Since the reflectance map is small it can 
be recomputed quickly so the properties of the lights or of  a single 
surface can be adjusted in real-time. Warn describes a program 
for interactively manipulating the position and properties of 
spotlights[31]. Some commercial modelers contain material edi- 
tors that allow the user to adjust the various coefficients that go 
into the standard shading models by using sliders. These editors 
normally shade a single simple shape such as a sphere and not the 
objects being built by the modeler. 

The visual appearance of materials is strongly influenced 
by their spatial textures and patterns, not only their local 
reflectance properties. The above methods for directly manipulat- 
ing materials and lights only work with surfaces made of materials 
with uniform properties. In computer graphics the most expedient 
way to model local variations in material properties involves 
using texture maps[16]. Texture maps are images mapped onto a 
surface. The value of the texture map at a point on the surface is 
used to control parameters in the local shading formula. Texture 
maps can be used to modulate surface color[8] and tran- 
sparency[13], ambient, diffuse and specular coefficients, and the 
roughness or shininess (specular exponent) of the surface. Tex- 
ture maps can also be used to select between different types of 
materials; this allows a simple shape to contain inlays or be con- 
structed from composite materials[10]. Finally, texture maps can 
be used to modulate small-scale geometric properties. Normals 
can be perturbed using bump maps[6], positions can be displaced 
using a height field or displacement map[10], and a preferred 
tangential direction (for use with anisotropic shading models) can 
be defined using tangent bundle mapping[17,20]. Because of 
their versatility, texture maps are a key component of  a high qual- 
ity rendering system. 

Texture maps are typically created by scanning in existing 
artwork, painting them with a 2D paint program, or synthesizing 
them from procedural image models. However, because the crea- 
tion of  the texture and the mapping of  it to the surface are 
separated, setting up a model involving texture mapping is an 
indirect process, This makes using texture maps to modulate 
material properties tedious and error prone. First, it is difficult to 
place the texture map on the surface in the desired position and 
orientation. This is made more complicated if  several surfaces 
share the same texture map, because it is important that no seams 
be visible at their boundaries. Second, the texture map is often 
indexed by the surface parameters, so this requires the user to 
know about the mathematics of the surface parameterization when 
creating the texture map. Another problem is caused because 
when a curved surface is uniformly subdivided in parameter 
space, the surface area of each piece can vary greatly. This causes 
the texture map to be locally compressed or expanded in different 
parts of the surface, and results in undesirable distortions which 
must be undone when creating the texture map. 

This paper describes an interactive paint program that 
allows the user to directly paint with different types of pigments 
and materials onto 3D shapes. The user controls the position of a 
brush using a tablet; the brush contains paint that is applied to the 
shape being painted on. Rather than creating a final 2D image 
like most paint programs, this paint program creates an object 
description that describes the composite material properties every- 
where on the surface of the object. The material properties are 
stored as a set of associated texture maps. An image is created of 
this object using conventional rendering techniques (optimized for 
this application) as the user paints. These material properties 
interact with the illumination environment to create the appear- 
ance of the object. Almost all the conventional computer painting 
modes can be used with this program. Examples include 
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Figure 1. The material editor medit. Above, a metallic bronze; 
below, a green plastic. 

airbrushing or alpha blending, smearing, patterning, table paint- 
ing, etc[29,30]. However, some computer painting effects, such 
as z-paint[30,32], are just simulations of  things that can be 
directly done in 3D, in this case using bump mapping. In fact, 
conventional 2D painting can be interpreted as a special case of 
this program, where a painting is made by laying down pigment 
on a 3D fiat rectangular polygonal canvas. Other painting effects, 
similar to how a pottery maker or sculptor might work rather than 
a traditional painter, are also possible with this program. Once the 
model has been painted the geometry and the texture maps can be 
saved and used with traditional batch rendering programs. 

2. Material and Geometric Representations 
The pigments used as paint have the same properties as 

materials used in shading calculations. The properties are defined 
by the following shading formula: 

C = (Ka*Ca)*La + (Kd*Cd)*Ld(P,N) + (IKs*Cs)*Ls(P,N,r) 

K a  - ambient  coef~cient 
C a  - ambient  color 
L a  - ambient  l ight color 

K d  - diffuse coe3~cient 
C d  - diffuse color 
Lcl - diffuse light color 

r - roughness  
K s  - specular coefficient 
C s  - specular color 
L s  - specular light color 
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Figure 2. A painted pot and its associated texture maps: (upper left) the diffuse color, (upper right) the specular color, (lower left) the 
roughness, (lower right) the displacement. 

The local properties of a material are modeled as an ambient color 
(Ka*Ca), a diffuse color (Kd*Cd), ahd a specular color (Ks*Cs).  
For simplicity the ambient coefficient and color are set equal to 
the diffuse values. The roughness or shininess is also a material 
property. Rough materials ( r = l )  have fuzzy highlights while 
smooth or shiny materials ( r=0 )  have sharp highlights. The vari- 
ous light colors (La, Ld, and Ls)  are given by sums over all the 
lights illuminating the object times the bidirectional reflection 
function for that type of  light transport. The diffuse transport is 
given by Lambert 's law and is a function of  the surface position 
and normal; the specular transport is given by a simplified version 
of the Torrance-Sparrow model described by Blirm[5] and is a 
function of the position, normal and roughness. The choice of  this 
shading model was motivated by what is commonly available in 
real-time rendering systems, but other shading models could also 
be used. 

Material pigments are created using an interactive pigment 
editor shown in Figure 1. Sliders control the relative contributions 
of ambient, diffuse and specular light. The diffuse and specular 
colors can be set by picking colors on the screen from color edi- 
tors and palettes running as separate processes. The properties of 
light sources can also be controlled by this editor. Lights are posi- 
tioned by interactively dragging their highlights on a sphere, and 
calculating the position of  the light that would cause a highlight at 
the new location. 

The paint program internally stores geometric objects as 
rectangular meshes. Meshes are a common surface representation 
in computer graphics and can be created in a variety of ways: (i) 
from mathematically defined parametric surfaces such as spheres 
or tori, (ii) from procedurally defined models such as surfaces of  
revolution formed from arbitrary curves, or (iii) from a 3D input 
device such as a Cyberware scanner or Polhemus digitizer. A 
mesh defines a discrete parametric surface. The independent 
parameters of the surface are the 2D integer indices of the mesh, 
and the dependent data is a vertex containing the position, normal, 
diffuse and specular color, the roughness, and the bump height. 

The mesh data structure is organized so that only the vertex data 
that is needed is allocated, and so that it is easy to add additional 
fields to experiment with new material properties. The optional 
appearance attributes are organized as 2D arrays, and are really 

just texture maps embedded in the mesh structure. It is easy to 
extract them from the mesh data structure and store them as image 
files or directly as texture maps depending on the requirements of 
the final rendering system. The size of  the mesh is related to the 
size of the texture maps created and is under user control. The 
mesh structure also stores whether the mesh wraps around in 
either the u or v direction, or both, and this information is used 
when painting. Figure 2 shows a shaded image of a pot and the 
set of  four associated texture maps. 

The material and geometric data structures were chosen so 
that the object could be drawn quickly. Since most existing 
graphics hardware does not support the use of  texture maps, we 
choose to draw the mesh as many small 4-sided micropolygons. 

bgnpolygon ( ) ; 
material (Cd [u] Iv] , Cs [u] [v] , r [u] [v] ) ; 
normal (N[u] [v] ) ; 
vertex (P [u] Iv]); 
vertex (P [u+l ] Iv] ) ; 
vertex (P [u+l ] [v+l ] ) ; 
vertex (P [u] [v+l] ) ; 

endpolygon () ; 

The material procedure outputs the parameters for the current 
material, and the remainder of the procedures output the 
geometric information. The graphics system handles the transfor- 
marion and shading of each micropolygon. Hidden surfaces are 
removed using a z-buffer. 

The workstation we are using, a Silicon Graphics 4D220 
GTX, which is typical of a high-performance 3D workstation, is 
capable of  drawing approximately 100,000 shaded quadrilaterals 
per second. (Although this number depends on the size of the 
polygons, the number of light sources, and is particularly sensitive 
to how often the surface roughness changes.) This means that a 
mesh with a 512 by 512 texture map can be drawn in about 2 1/2 
seconds. Since this is not fast enough to redraw the entire object 
in real-time, it is useful to optimize drawing for two cases: when 
moving the object or camera, and when painting on the object. 
When the position of the object changes, the mesh is subsampled 
to a resolution that can be drawn in real-time, and then redrawn in 
its entirety when the movement ends. The next frame is always 
drawn into the back-buffer while the current frame is being 
displayed in the front-buffer. Double-buffeting insures that the 
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the normal. This is a reasonable approximation to what 
might happen if a real 3D brush was being used to paint on 
a solid object, since the brush bends to conform to the sur- 
face. 

Since parameter space brushes can b e  implemented much like 2D 
brushes in a 2D paint program, that method is used at the lowest 
levels to implement the actual painting into texture maps. The 
other two methods could be implemented by first distorting the 
brush pattern to form a parameter space brush, and then using the 
distorted brush to perform the painting. In general, the distortion 
of  the brush is a complicated non-linear mapping to parameter- 
space and cannot be easily approximated. Fortunately, the map- 
ping from screen-space to parameter-space is stored in the object 
id buffer. At each xy screen location is the uv parameter that is 
visible at that location and this information can be used to recon- 
struct the functions u(x,y) and v(x,y). This reconstruction of  the 
distortion is valid as long as all mieropolygons contain at least one 
sample, or, are magnified and not minified. Unfortunately, this 
technique does not work for tangent-space brushes. Another 
approach to simulating screen-space brushes is to simulate spray 
painting by randomly picking points within the brush and apply- 
ing dabs of paint at these locations. This technique has the nice 
effect of varying the density of the applied paint with the cosine of  
the angle between the normal and the viewing direction. Inclined 
surfaces receive less paint per unit area than surfaces normal to 
the direction of view. 

Resampling brushes allows the paint program to undo any 
distortions due to the surface parameterization, and makes the sys- 
tem feel more natural. Unfortunately, resampling brushes is 
expensive and involves making simplifying assumptions; also, 
since these brush distortions are done in the innermost loops, they 
can slow the system down. 

Paint is usually applied to a surface using strokes. A stroke 
begins when the tablet stylus or mouse button is pressed and con- 
tinues until the pressure is released. Most paint programs allow 
different types of strokes. For example, a rubberstamp only sam- 
ples the initial position, a rubberband stroke allows for perfectly 
straight lines, and an inteipolated strokes fills in intermediate 
brush positions between sampled cursor positions. All  these 
methods can be used with this paint program. However, there are 
some subtleties in 3D painting that don ' t  come up in 2D painting. 
One issue is when to terminate a stroke. A stroke should always 
end when there is no object underneath the brush. A stroke 
should normally end whenever a silhouette is crossed, since that 
would cause the brush to leave the surface momentarily as it 
jumps to its new position. It is reasonable, however, to think that 
silhouettes should be handled differently for screen-space vs. 
object-space brushes, since a screen-space brush tends to behave 
like spray can. It is also unclear whether paint should be applied 
to portions of  the surface which are back-facing even though the 
center of the brush is on a front-facing surface. Another issue 
unique to 3D is the fact that there may be multiple objects (this 
would be like having multiple canvases in 2D). A parameter- 
space brush naturally paints on only one object; a tangent-space or 
screen-space brush, however, might feel more natural if it were 
allowed to paint on multiple objects if positioned near a point of 
intersection or contact between objects. A similar issue comes up 
when surface patches are pieced together, or joined to themselves. 
Connectivity information is important, otherwise seams might be 
visible when painting across a boundary. Ideally these details 
about the structure of  the model should not be known by the user. 
Surfaces also have two sides, so it is reasonable to require a com- 
plete set of materials properties for the inside and outside surface. 
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4. Paint Modes and the Paint Equation 
The mathematics of  painting is controlled by the paint 

equation[26, 30]. 
surface = blend( paint op surface, surface, brush ) 

This equation governs how the brush controls the application of  
paint to the surface. The brush shape is represented by a matte 
image; the brush is present where the matte image is 1, and not 
present where the values are 0. The matte is continuous so that it 
can represent the partial coverage of the brush over a matte sam- 
ple[32]. The function blend, also sometimes referred to as lerp, 
linearly interpolates the first two arguments under the control of 
the third argument. 

blend(cO,cl,a) = (l-a)*cO + a*cl = cO + a*(cl-cO) 

This blend in the paint equation combines the original values on 
the surface with the new computed values resulting from the 
interaction of the paint with the surface. 

There are many different possible paint operators. Those 
based on compositing are described in Salesin and Barzel[26]. 
The most common of  which are copy and over. Other possibilities 
include max to implement z-paint[30,32], filtering Or blurring 
under the brush to simulate smearing or mixing, and sliding the 
surface values in a certain direction to simulate another form of 
smearir~g. All these painting modes can, in principle, be used 
when painting in 3D. 

Normally the paint on the brush is a constant material, but 
it is possible to allow the paint to vary as a function of  position so 
that the paint has texture or is patterned. We will refer to this as 
pattern paint. The value of the paint applied at a given position is 
a function of a constant pigment and the pattern. 

paint = pigment in pattern(P) 

Ordinary painting can be considered a special case of pattern 
paint, if we use a pattern that is constant. The pattern function can 
be generated procedurally (see, for example, Lewis)[18], or from 
stored 1D tables, 2D images, or 3D voxel arrays. The pattern is 
combined with the pigment using the in compositing opera- 
tor[25] which says the pigment is present only where the pattern 
matte alpha values are non-zero. Since patterns don ' t  always con- 
tain a matte, we provide two built-in methods for automatically 
generating mattes. Self-matting sets the matte to the value of the 
pattern, and opaque-matting sets the matte to 1. 

In most 2D paint programs, patterns are indexed by the 
coordinates of  the canvas. In our 3D paint program, there is a 
much richer set of pattern coordinate transformations. First, there 
is a question as to what set of  variables to use to index the pattern. 
These can be either (i) the surface parameters or texture coordi- 
nates (u,v), (ii) the screen or raster coordinates (x,y), or (iii) the 
position of points on the surface P. The default method used is 
texture coordinates, since this seems to be most like ordinary pat- 
tern paint. Using raster coordinates is useful if  the brush is in 
screen space and the pattern is designed to simulate a frisket. 
Finally, using the surface position allows solid textures[19, 23, 24] 
to be used as patterns and leads to many new painting styles. 
When using solid textures as patterns it is also useful to transform 
points before indexing the solid texture. The same solid texture 
can then be overlaid multiple times with different orientations and 
phases. This is done by positioning the object with respect to a 
reference cube defining the texture coordinate system (by default 
this cube is aligned with the viewing pyramid) and issuing a com- 
mand which sets transformation to texture coordinates. 

An operator exists to apply a wash to the geometric object. 
This is equivalent to painting everywhere on the object and is 
used to set the initial material properties and to apply patterns and 
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Figure 3. A pot and its object identifiers: (upper) shaded image, 
(lower left) the u parameter, (lower right) the v parameter. 

motion is smooth. When painting on the object so only the part of 
the surface whose appearance changes needs to be redrawn. Since 
painting is usually localized to a small region, this involves 
redrawing many fewer polygons and can easily be done in real- 
time. These incremental changes are drawn using z-equal  mode  
into the front-buffer and no buffer swaps are done. Z-equal mode 
is a variation of z-buffering where the screen is updated only if 
what is being drawn has the same depth as what has been drawn 
previously. This usually is enough to insure that polygons are 
only drawn on top of themselves and hence where they are visible. 

3.  B r u s h - S u r f a c e  Geometry 
A 2D pointing device such as a mouse or tablet is used to 

move a cursor around the screen. The hot spot of the cursor 
specifies a unique point on the screen; in a typical 2D paint pro- 
gram this specifies the position of the brush. In 3D things are 
more complicated. First, the brush needs to be positioned on a 
surface being painted on. Second, there are more possible 
interpretations for brush orientation that must be taken into 
consideration. 

The most natural interpretation for the brush position is on 
the frontmost surface underneath the brush. To paint on back sur- 
faces involves reorienting the object so those surfaces are now 
frontfacing. One way to find the point under the brush is to find 
where the line of sight through the 2D brush position intersects 
the surface, and if multiple intersections occur, return the closest 
one. This is what a ray tracer does, and several ray tracers can in 
fact be Controlled in this way[3]. Most graphics hardware sys- 
tems, however, implement selection using picking or hit detection. 
This involves setting a pick window and then drawing the entire 
scene. A list of  objects that intersect the pick window is returned, 
and the application still must determine which one was picked, if 
more than one is returned. A disadvantage of this approach for 

this application is that because of  the large size of  the mesh it 
takes too long to redraw. Also, typically many paint strokes are 
laid down between changes of the view or object position so it 
would be worthwhile to only redraw when the object position 
changes. An easy way to find the brush position that takes advan- 
tage of  the graphics hardware is to draw object identifiers (id's) 
into an auxiliary frarnebuffer (sometimes called an object tag 
buffer or an item buffer). The object id is a integer that uniquely 
specifies what part of the object is visible at a given screen posi- 
tion. Given the position of  the cursor on the screen and an object 
id buffer, the brush position oti the surface can be found by just 
reading the pixel in the object id buffer under the cursor, This id 
encodes the mesh and the texture coordinates of  that mesh's 
micropolygon. Because the meshes must be divided into large 
numbers of micropolygons, the object id buffer must have quite a 
bit of precision. For example, drawing an object with a 512 by 
512 texture map, requires at least an 18-bit id buffer. 

As mentioned in the last section, when painting, the object 
is stationary, and the paint strokes are drawn into the front-buffer. 
This means that the back-buffer is available for object ids. When 
an object is being moved, the object ids are not drawn, but when 
the movement stops, a shaded version of the object is drawn at 
high resolution, the buffers are swapped, and then the object ids 
are drawn into the back-buffer. When movement begins again the 
normal buffer swap is initially disabled and the object is drawn 
into the back-buffer containing the object ids. Subsequent flames 
are double-buffered in the normal way. Although our current 
implementation takes advantage of the double-buffering capabili- 
ties of  the hardware, object ids could also be stored in any avail- 
able memory since they are never displayed. Figure 3 shows the 
two types of buffers, the color image buffer and the object id 
buffer (for illustrative purposes this is shown as separate u and v 
images). 

Another complication with the brush geometry is how to 
orient the brush with respect to the surface and its texture maps. 
In 2D painting the brush pattern remains aligned with the 2D 
image. In 3D there are more possibilities: 

• Parameter-space  brushes. This is the simplest and most 
direct method to index a brush. The 2D brush paints 
directly into the 2D texture maps at the~texture coordinates 
of  the brush position on the surface. Brush samples and 
texture samples are mapped one-to-one. 

• Screen-space brushes. A screen space brush is projected 
onto the surface using the inverse viewing transformation. 
This gives the effect of spray painting on the surface. 

• Tangent-space  brushes. A tangent space brush is mapped 
onto the surface by first placing the brush in the plane 
tangent to the surface at the brush position, and then pro- 
jecting the brush onto the surface in the direction parallel to 
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Figure 4. A marble sphere with applied paint strokes. 

textures globally. A variation of a wash is a dip where another 3D 
texture acts a 3D brush or matte which controls where the wash is 
applied. A dip simulates dipping the object is a bath made of the 
material coating. 

• Polish or Varnish Paint. Changes the surface roughness 
and the specular coefficient. This makes the surface shinier 
and causes highlights to appear more focussed, but leaves 
the underlying color of  the material the same. 

• Sandpaper Paint. This is the opposite of polishing. The 
surface is made rougher and its shininess is reduced. 

To reduce the amount of storage devoted to texture maps 
the various material coefficients and colors are premultiplied and 
stored as a single color. For the painting modes that modulate the 
coefficient and not the color of the material, the coefficient is 
extracted from the premultiplied color by finding the maximum of 
the three components. 

6. Geometry Paint 
In addition to having the brush apply a pigment to the sur- 

face, the brush can also be used to alter the small-scale geometry 
of the surface. Associated with the surface is a height or displace- 
ment map consisting of a signed floating point number indicating 
how far the surface is displaced along the geometric (or true nor- 
mal) from its original position. 

P = surface.P + surface.h * surface.N 

From a mesh of displaced positions P, a new perturbed normal 
for shading can be computed. 

5. Material Paint 
As mentioned previously, a pigment is modeled as a 

material with the following properties: diffuse color, specular 
color and roughness. The paint equation combines each of these 
properties with the corresponding texture channels on the surface 
of the object. Combining colors with the surface is just like a 2D 
paint program. The paint program has separate weights, or 
alphas, for each channel that can be used to modulate the blending 
of pigment with the surface. A channel alpha of 0, prevents paint- 
ing from changing that channel's properties on the surface. 

color.Cd = pain~.Cd op surface. Cd 

color.C$ = paln~.Cs off surface. Cs 

surface, ca = blend(color. Cd, surface. Cd, alphad*brush) 

surface. Cs = blend ( color. Cs, surface. Cs, alphas*brush) 

Note that even though roughness is not a color, it is bounded 
between 0 and 1 and reasonable behavior results if it treated as a 
single component color. 

surface.r = blend (paint.r, surface.r, alphar*brush) 

Various special effects can be produced by painting chan- 
nels selectively. Some of these are: 

• Ful l  Material Paint. Changes all the material properties of 
the surface. It is just like applying a coating of that material 
onto the surface. 

• Paint  Remover.  This removes paint previously applied to 
the surface and sets its properties to those of  the underlying 
object. 

• Dye Paint. Changes just the diffuse and specular colors of 
the surface, Dye paint could also change the saturation of  a 
color to simulate bleaching the surface. 
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Figure 6. A screen dump of the paint program in use. 

The displacement is painted just like the roughness chan- 
nel. 

surface, h = blend (paint. h, surface, h, alphah*brush) 

The weight controlling displacement mapping can be either posi- 
tive or negative; a positive value adds gloppy thick material to the 
surface, whereas a negative value dents the surface inward. It is 
possible to associate different thicknesses or viscosities with dif- 
ferent pigments and simultaneously displace and paint on the sur- 
face. Another nice effect is to use the current displacement as a 
pattern matte. This can be used to simulate pastels or charcoal 
sticking on the tops of bumps[4]. 

Other types of geometry paint are also possible. For exam- 
ple, averaging or filtering within a brush will locally smooth the 
surface. Smearing and sliding also can be used to move the sur- 
face. Another type of geometry paint could simulate a blowtorch, 
and be used to cut holes or windows in the surface. 

7. Results 
Figure 4 shows a sphere with several types of painting. 

Originally the sphere is carved from a marble solid texture similar 
to that used by Perlin[24]. The marble texture is also used to per- 
turb normals to simulate corrosion of the softer layers. After this 
a thick goopy blue diffuse pigment is applied which fills in the 
corroded areas. Next to this a watery shiny red pigment is applied 
next to the blue. Since this pigment has negligible thickness the 
the geometry of the bumps on the surface is unchanged but they 
stand out more because the paint is shiny. After this several 
strokes of  a gold pigment are applied while simultaneously goug- 
ing the surface. And finally, the whole sphere is coated with a 
soft translucent turbulent pattern to simulate dust. This is done 
several times with the sphere in different orientations so that each 
turbulence function is added with a different "phase ."  

Figure 5 shows two pots that were painted and then con- 
verted to separate texture maps and geometry and finally rendered 
using a conventional rendering system. 

Figure 6 is a screen dump showing the paint program, the 
color chooser, and the material editor. Notice the user interface to 
the paint program. Finally, Figure 7 shows the process of painting 
on a digitized head input with a Cyberware TM 3D digitizer. With a 
Cyberware model, the original object is typically composed of 
various materials. Unfortunately, when the model is digitized this 
information is lost and it is normally difficult to reassign these 
material properties. Direct painting on the 3D shape is a natural 
solution to this problem. The geometry paint modes can also be 
used to clean up problems with the input data. 
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Figure 7. Four snapshots during painting on a Cyberware model of a face. 

8. Discussion 
One effect that is conspicuously absent from the initial 

implementation is transparency. We imagine two ways to see 
through an object, either by making it fully or partially tran- 
sparent, or by cutting holes in its surfaces. Transparent objects 
still have a front surface that can be painted on, whereas holes 
allow the paint brush to pass through to a back surface. Tran- 
sparency is problematic, because redrawing the object requires 
redrawing the polygons in sorted order. And even if the sorted 
order is known, to incrementally redraw the object under the 
brush requires knowing not only the frontmost surface, but also 
what surface (or surfaces) are immediately behind it. We are con- 
tinuing to investigate ways to implement transparency in connec- 
tion with the graphics hardware the workstation provides. 

Although we have implemented the paint program on a 
high-powered 3D workstation, we think similar techniques can be 
used on personal computers without special 3D hardware. When 
beginning the project we thought the computationally intensive 
part of the program would be painting. However, in the current 
implementation the rate limiting step is the high resolution redraw 
after the object has been moved. The process of  painting is fast 
because it is localized to the area under the brush. A less demand- 
ing implementation might be possible by fixing the number of 
views, in effect, eliminating the high resolution redraw. 

The painting techniques discussed in this paper are just 
some of many possibilities. More and more realism could be 
added by simulating the physics of paint and painting in more 
detail. For example, more accurate models exist for the physics of 
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pigment mixtures[ll]. Wet paint could gradually dry or be 
absorbed differentially across a textured surface, or paint could 
drip under the influence of  gravity or spread due to centrifugal 
forces when the object rotates. Other interactive techniques could 
be based on duplicating techniques artists use. For example, it 
should be possible to put masking tape on the object, paint over it, 
and then peel it off to form a perfectly straight edge. Texture 
maps could act as real decals, and be slid over the surface con- 
forming to its local shape. A pressure sensitive stylus would 
allow pressure to directly control the depth of the brush's impres- 
sion on the surface. Of course, the goal of incorporating physical 
simulation into computer-assisted painting is not just the simula- 
tion of reality, but rather, to drive the development of a flexible 
procedural modeling environment that artists and designers can 
use to implement the abstractions they are interested in. Related 
work along these lines is described in another paper by one of the 
authors (Haeberli)[14]. 
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