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Figure 1: Three route maps for the same route rendered by (left) a standard computer-mapping system, (middle) a person, and (right) LineDrive, our route map rendering system.
The standard computer-generated map is difficult to use because its large, constant scale factor causes the short roads to vanish and because it is cluttered with extraneous details such
as city names, parks, and roads that are far away from the route. Both the handdrawn map and the LineDrive map exaggerate the lengths of the short roads to ensure their visibility
while maintainaing a simple, clean design that emphasizes the most essential information for following the route. Note that the handdrawn map was created without seeing either the
standard computer-generated map or the LineDrive map. (Handdrawn map courtesy of Mia Trachinger.)

Abstract
Route maps, which depict a path from one location to another, have
emerged as one of the most popular applications on the Web. Cur-
rent computer-generated route maps, however, are often very diffi-
cult to use. In this paper we present a set of cartographic general-
ization techniques specifically designed to improve the usability of
route maps. Our generalization techniques are based both on cogni-
tive psychology research studying how route maps are used and on
an analysis of the generalizations commonly found in handdrawn
route maps. We describe algorithmic implementations of these gen-
eralization techniques within LineDrive, a real-time system for au-
tomatically designing and rendering route maps. Feedback from
over 2200 users indicates that almost all believe LineDrive maps are
preferable to using standard computer-generated route maps alone.
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1 Introduction
Route maps, which depict a path from one location to another, are
one of the most common forms of graphic communication. Al-
though creating a route map may seem to be a straightforward task,
the underlying design of most route maps is quite complex. Map-
makers use a variety of cartographic generalization techniques in-
cluding distortion, simplification, and abstraction to improve the
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clarity of the map and to emphasize the most important informa-
tion [16, 21]. This type of generalization, performed either con-
sciously or sub-consciously, is prevalent both in quickly sketched
maps and in professionally designed route maps that appear in print
advertisements, invitations, and subway schedules [25, 13].

Recently, route maps in the form of driving directions have
become widely available through the Web. In contrast to hand-
designed route maps, these computer-generated route maps are of-
ten more precise and contain more information. Yet these maps are
more difficult to use. The main shortcoming of current systems for
automatically generating route maps is that they do not distinguish
between essential and extraneous information, and as a result, can-
not apply the generalizations used in hand-designed maps to em-
phasize the information needed to follow the route.

Figure 1 shows several problems arising from the lack of dif-
ferentiation between necessary and unnecessary information. The
primary problem is that current computer-mapping systems main-
tain a constant scale factor for the entire map. For many routes, the
lengths of roads can vary over several orders of magnitude, from
tens of feet within a neighborhood to hundreds of miles along a
highway. When a constant scale factor is used for these routes, it
forces the shorter roads to shrink to a point and essentially vanish.
This can be particularly problematic near the origin and destination
of the route where many quick turns are often required to enter or
exit a neighborhood. Even though precisely scaled roads might help
navigators judge how far they must travel along a road, it is far more
important that all roads and turning points are visible. Handdrawn
maps make this distinction and exaggerate the lengths of shorter
roads to ensure they are visible.

Another problem with computer-generated maps is that they are
often cluttered with information irrelevant to navigation. This ex-
traneous information, such as the names and locations of cities,
parks, and roads far away from the route, often hides or masks infor-
mation that is essential for following the route. The clutter makes
the maps very difficult to read, especially while driving. Hand-
drawn maps usually include only the most essential information
and are very simple and clean. This can be seen in figure 1(middle)
where even the shape of the roads has been distorted and simpli-
fied to improve the readability of the map. Furthermore, distorting
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the lengths of shorter roads and removing unnecessary information
makes it possible to include and emphasize helpful navigational
aids such as major cross-streets or landmarks before the turns.

Despite the fact that the distortion techniques used in hand-
designed maps improve usability, there has been surprisingly lit-
tle work on developing automatic cartographic generalization tech-
niques based on these distortions. Existing research on automatic
generalization has focused on developing simplification and ab-
straction techniques for standard road, geographical, and political
maps [4, 16, 14]. Unlike route maps, these general purpose maps
are designed to convey information about an entire region without
any particular focus area. Therefore, these maps cannot include the
specific types of distortion that are used in route maps.

This paper presents two main contributions:
Route Map Generalization Techniques: We have developed

a set of generalization techniques specifically designed to improve
route map usability. Our techniques are based on cognitive psy-
chology research showing that an effective route map must clearly
communicate all the turning points on the route [6], and that pre-
cisely depicting the exact length, angle, and shape of each road is
much less important [28]. We consider how these techniques are
applied in handdrawn maps and show that by carefully distorting
road lengths and angles and simplifying road shape, it is possible to
clearly and concisely present all the turning points along the route.

Automatic Route Map Design System: We describe
LineDrive, an automatic system for designing and rendering route
maps. LineDrive takes advantage of our route map generaliza-
tion techniques to produce maps that are much more usable than
those produced by standard computer-based map rendering sys-
tems. LineDrive performs a focused randomized search over the
large space of possible map designs to quickly find a near-optimal
layout for the roads, labels, and context information. An exam-
ple of a LineDrive map is shown in figure 1(right). Feedback from
over 2200 users indicates that almost all believe LineDrive maps are
preferable to using standard computer-generated route maps alone.

In computer graphics we usually consider distortion and abstrac-
tion techniques within the area of non-photorealistic rendering. To
apply these techniques to visualization requires understanding how
the techniques can improve the perception, cognition, and commu-
nicative intent of an image. Earlier examples of this approach to
visualization include Mackinlay’s [17] investigation of methods for
automating chart and graph design, Seligmann and Feiner’s [23]
research on the automatic design of intent-based illustrations, and
Interrante’s [15] work on using illustration techniques to improve
the perception of 3D surface shape in volume data. In this paper we
extend this same approach to the automatic design of route maps.

The remainder of this paper is organized as follows. In sec-
tion 2, we examine the specific generalization techniques applied
in handdrawn route maps and how these techniques improve map
usability. Section 3 describes algorithmic implementations of these
techniques in LineDrive. Results are presented in section 4, and
section 5 discusses conclusions and future work.

2 Route Map Design
In order to design a better route map, we begin by analyzing the
tasks involved in following a route. From this analysis, we identify
the essential information a route map must communicate to support
these tasks. We then describe how we use specific generalization
techniques, including distortion and abstraction, to present this in-
formation in a clear, concise, and convenient form.

2.1 Information Conveyed by Route Maps

Understanding how people think about and communicate routes can
provide great insight into what information should be emphasized
in a computer-generated route map. A common theory in the field

of cognitive psychology is that people think of routes as a sequence
of turns [27, 16]. It has been shown that verbal route directions
are generally structured as a series of turns from one road to the
next and that emphasis is placed on communicating turn directions
and the names of the roads [7]. Tversky and Lee [28] have shown
that handdrawn maps maintain a similar structure with emphasis on
communicating the roads and turn direction at each turning point.

A turning point can be defined by a pair of roads (the road en-
tering and the road exiting the turning point) and the turn direction
(left or right) between those two roads. Route maps depict this in-
formation visually, so navigators can quickly scan the map to find
the road they are currently following and look ahead to determine
the name of the next road they will turn onto. Once the name of the
next road is known, the navigator can search for the corresponding
road in the physical world. The turn direction specifies the action
navigators must take at the turning point.

Although it is possible to follow a route map that only indicates
the road names and turn direction at each turning point, additional
information can greatly facilitate navigation and is often included
in hand-designed maps. For example, if the map labels each road
with the distance to be travelled along that road, navigators can use
their odometer to determine how close they are to the next turn.
Cross-streets and local landmarks along the route, such as build-
ings, bridges, rivers, and railroad tracks, can also be used for gaug-
ing progress. Navigators can also use this information to verify that
they are still following the route and did not miss a turn. However,
cross-streets and local landmarks are not essential for following the
route and are usually included in the map only when they do not
interfere with the primary turning point information.

2.2 Generalizing Route Maps

Although route maps may be used before a trip for planning pur-
poses, they are most commonly used while actually traversing the
route. In many cases, navigators are also drivers and their atten-
tion is divided between many tasks. As a result, they can only take
quick glances at the map. Therefore, maps must convey the turning
point information in a clear, easy-to-read manner and must have a
form-factor that is convenient to carry and manipulate.

Most current styles of route maps fail these requirements. A
common approach to route mapping is to highlight a route on a
standard road map that uses a constant scale factor and depicts all
the roads within a region. This style is used by current computer-
based route map rendering systems and, as shown in figure 1(left),
the constant scale factor makes it impossible to see short roads and
their associated turning points. Strip maps, or triptiks, address the
issue of varying scale by breaking the route up onto several maps,
each with its own orientation and scale. However, the changing ori-
entation and scale make it difficult to understand the overall layout
of the route and how the different maps correspond to one another.

One existing route mapping style, the handdrawn map, manages
to display each turning point along the route clearly and simulta-
neously maintain simplicity and a convenient form factor. This is
accomplished by performing three types of generalization on the
route: (1) the lengths of roads are distorted, (2) the angles at turn-
ing points are altered, and (3) the shapes of the individual roads are
simplified. We consider each of these in turn:

Length Generalization: Handdrawn maps often exaggerate the
lengths of shorter roads on the route while shortening longer roads
to ensure that all the roads and the turning points between them are
visible, as shown in figure 1. This distortion allows routes contain-
ing roads that vary over several orders of magnitude to fit within
a conveniently sized image (i.e. a single small sheet of paper).
The distortion is usually performed in a controlled manner so that
shorter roads remain perceptually shorter than longer roads, while
maintaining the overall shape of the route as much as possible.

Angle Generalization: Mapmakers often alter the angles of
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Figure 2: The LineDrive system. (a) Given a route as a sequence of roads, LineDrive designs a route map by processing the route through five consecutive stages. (b) The resulting
LineDrive map. (c) The same map rendered without applying the generalization techniques performed by LineDrive. The constant scale factor and retention of detailed road shape
make it difficult to identify many of the roads.

turns to improve the clarity of the turning points. Very tight angles
are opened up to provide more space for growing shorter roads and
labeling roads clearly. Roads are often aligned with the horizontal
or vertical axes of the image viewport, to form a cleaner looking,
regularized map [26]. Such angular distortions are acceptable be-
cause reorienting correctly requires knowing only the turn direction
(left or right), not the exact turning angle.

Shape Generalization: Since a navigator does not need to make
active decisions when following individual roads, knowing the ex-
act shape of a road is usually not important. Simplifying the road
shape removes extraneous information and places more emphasis
on the turning points, where decisions need to be made. Roads with
simplified shape are perceptually easier to differentiate as separate
entities and are also easier to label clearly.

While these generalization techniques can increase the usabil-
ity of the route map, they can also cause confusion and mislead
the navigator if carried to an extreme. By simplifying road shape
and distorting road lengths and angles, it is possible to drastically
change the topology and overall shape of the route. When these
generalizations are performed carefully, however, they can dramat-
ically improve the usability of the map.

3 System
The LineDrive system automatically designs route maps in real-
time using the generalization techniques commonly found in hand-
drawn maps. The space of all possible route map designs and lay-
outs is extremely large and contains many dimensions. We reduce
the dimensionality of this space by performing the map design in
five independent stages as shown in figure 2.

All of the geographic data is stored in a database in the standard
latitude/longitude geographical coordinate system. The route find-
ing service computes the sequence of roads required to get from
a given origin to a given destination and passes this sequence into
LineDrive. Each road is represented as a piecewise linear curve
described by a sequence of latitude/longitude shape points.

The first stage of LineDrive is shape simplification, which re-
moves extraneous shape detail from the roads, as described in sec-
tion 3.1. The next three stages, road layout, label layout, and con-
text layout, each deal with automating a layout problem. We use

a similar search-based approach in all three stages, described in
section 3.2. The details of each layout stage are then presented
in sections 3.3 through 3.5. The decoration stage, described in sec-
tion 3.6, adds elements such as road extensions and an orientation
arrow to the map to enhance its overall usability. We conclude our
system description in section 3.7 by presenting methods for com-
puting image size based on the aspect-ratio of the route and the size
of the output display device. Our system description provides an
overview of how we automate the route map design process. Fur-
ther system implementation details can be found in [1].

3.1 Shape Simplification

LineDrive’s shape simplification stage reduces the number of seg-
ments in each road while leaving the overall shape of the route in-
tact. Shape simplification not only yields a cleaner looking map but
also increases the speed and memory efficiency of the subsequent
layout stages of the system.

Techniques for curve smoothing, interpolation, and simplifica-
tion have been well-studied in a variety of contexts including car-
tography [22, 8, 2] and computer graphics [10, 12, 5]. We take a
standard approach to simplification that ranks the relevance of all
the shape points of the curve and then removes all interior shape
points that fall below a given threshold. However, our simplification
algorithm must not introduce the three undesirable effects shown in
the rightmost column of figure 3: false intersections, missing inter-
sections and inconsistent turn directions.

We include three tests during simplification to prevent these
problems. To ensure that the simplification process does not in-
troduce false or missing intersections, we initially compute all the
true intersection points between each pair of roads. Suppose roads
r1 and r2 initially intersect at point p1. We add the intersection
point p1 to the set of shape points for both r1 and r2 and mark p1
as unremovable. Since the simplification algorithm cannot remove
these unremovable intersection points, a missing intersection can-
not be generated. Moreover, we only accept the removal of a shape
point as long as its removal does not create a new intersection point
that is not in our original list of true intersection points. This test
ensures that the simplification will not introduce any false intersec-
tions. Finally, we check for inconsistent turn direction at the turning

243



(a) false intersections

(b) missing intersections

(c) inconsistent turn direction

(d) overall route shape

original route length angle shape

N/A

N/A

Figure 3: Generalization can cause four types of undesirable effects. Each column
shows the route after generalizing the length, angle, or shape of a single road. For
comparison, the undistorted route is shown in gray. (a) The original route does not
contain an intersection but generalization causes false intersections. (b) The original
route contains an intersection (this usually occurs when one road passes over another
road) but after generalization the intersection is missing. (c) Generalization causes a
right turn to appear as left turn or vice versa. Note that distorting road length cannot
generate an inconsistent turn direction. (d) Generalization causes drastic changes in
overall route shape. This is reflected in substantial changes in the length and direction
of the vector between the route endpoints. Our shape simplification algorithm cannot
cause drastic changes to the overall route shape because it only removes shape points
from each road and never removes the first or last shape point of a road.
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Figure 4: Turn direction consistency check between roads ri and ri�1. We step
through the shape points of ri, forming two vectors: v1 , between the endpoint of ri�1
and the current shape point, and v2 , between the current shape point and the endpoint
of ri. If v1 and v2 are not in the same half-plane with respect to the coordinate
system oriented along the last segment of the ri�1 , we mark the current shape point
as unremovable. The test continues until a shape point is not marked as unremovable.

points between each road ri and the roads ri�1 and ri+1 adjacent
to it. We describe the test between ri and ri�1 in figure 4. The test
between ri and ri+1 is similar.

For most roads we are very aggressive about simplification. We
remove all shape points that are not marked as unremovable by the
previous tests, so most roads are simplified to a single line seg-
ment. For some roads, such as highway on- and off-ramps, depict-
ing more realistic shape can be useful. Knowing whether a ramp
curves around tightly to form a cloverleaf or only bends slightly
can make it easier to enter or exit the highway. Thus, when sim-
plifying ramps we use a more conservative simplification relevance
metric to retain more shape [2].

Some long routes between distant cities require traversing many
highways. Depicting all the short ramps between the highways can
clutter the map with unnecessary detail. Therefore, if the route is
longer than a given threshold we remove all ramps from the map
that can be removed without creating a false or missing intersection
or inconsistent turn direction. Note that all the ramps have been
removed from the map in figure 2(b).

3.2 Formulating Layout As Search

In almost any layout problem there are constraints on how the in-
formation can be laid out, and there are a set of criteria that can be
used to evaluate the quality of the layout. Many such layout prob-
lems can be posed as a search for an optimal layout over a space
of possible layouts. To frame the layout problem as a search we
need to define an initial layout and two functions: a score function
that assesses the quality of a layout based on the evaluation criteria,
and a perturb function that manipulates a given layout to produce a
new layout within the search space. We can then perform simulated
annealing [20] to search for a layout that minimizes the score, as
shown in the following pseudo-code:

procedure SimAnneal()
1 InitializeLayout()
2 E ScoreLayout()
3 while(! termination condition)
4 PerturbLayout()
5 newE ScoreLayout()
6 if ((newE > E) and (Random() < (1:0� e

��E=T )))
7 RevertLayout()
9 else
10 E newE

11 Decrease(T )

The simulated annealing algorithm accepts all good moves
within the search space and, with a probability that is an exponen-
tial function of a temperature T , accepts some bad moves as well.
As the algorithm progresses, T is annealed (or decreased), resulting
in a decreasing probability of accepting bad moves. Accepting bad
moves in this manner allows the algorithm to escape local minima
in the score function.

The difficult aspects of characterizing the layout problem as a
search are designing an efficient score function that captures all of
the desirable features of the optimal layout and defining a perturb
function that covers a significant portion of the search space. As we
discuss the different layout stages of LineDrive, we will focus on
explaining these aspects of our algorithm design.

3.3 Road Layout

The goal of road layout is to determine a length and an orienta-
tion for each road such that all roads are visible and the entire map
image fits within a pre-specified image size. Moreover, the layout
must avoid the problems shown in the second and third columns of
figure 3 and preserve the topology and overall shape of the route.

To generate an initial layout for the search, we first build an axis-
aligned bounding box for the original route and compute a single
factor to scale the entire route to fit within the given image view-
port. Next, we grow all roads that are shorter than a predefined
minimum pixel length, Lmin , to be Lmin pixels long. Since we
initially scaled all the roads to fit exactly within the bounds of the
image, growing the short roads may extend the map outside the
viewport. We finish the initial layout phase by again scaling the
entire route to fit within the image viewport.

To perturb a road layout during the search, we randomly choose a
road ri and either scale its length l(ri) by a random factor between
0:8x and 1:2x, or change its orientation by a random reorientation
angle between �5 degrees. The �5 degree bound on road reorien-
tation is decreased as necessary to ensure that an inconsistent turn
direction is not introduced. After modifying a road, we rescale the
route to fit within the image viewport. By disallowing perturba-
tions that cause inconsistent turn directions and forcing the route to
always fit the viewport, we limit our search space to maps that meet
our turn direction and image size constraints.

All other constraints on road layout are enforced through the
scoring function which examines three aspects of the road layout:
road length and orientation, intersections between roads, and the
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shape of the overall route. We discuss the computation of these
component scores in the next three subsections. After the road lay-
out search is complete, we fine-tune the road orientations as de-
scribed in section 3.3.4.

3.3.1 Road Length and Orientation

Each road ri is scored on two length-based criteria. First, we penal-
ize any road that is shorter than Lmin using the following formula:

score(ri) = ((l(ri)� Lmin)=Lmin)
2
�Wsmall (1)

where Wsmall is a predefined constant used to control the weight
of the score in relation to the other scoring criteria1. The func-
tion is quadratic rather than linear, so roads that are much shorter
than Lmin are given a higher penalty than roads that are just a little
shorter than Lmin. Recall that simulated annealing decides whether
to accept the current layout based on the difference between the cur-
rent score and the previous score. By using a quadratic function, we
increase the probability of accepting perturbations which grow the
shortest roads because such perturbations yield the largest change
in score per pixel length. If we used a linear function, growing any
road by an amount x would yield the same change in score with no
preference for growing the shortest roads.

The second length-based scoring criterion considers the relative
ordering of the roads by length. We add a constant penalty for each
pair of roads whose length ordering has shuffled between the orig-
inal map and the current layout. The purpose of this score is to
encourage layouts in which the longer roads appear longer than
shorter roads in the final map. Therefore, we only consider roads as
being shuffled when the difference in their lengths is greater than a
predefined perceptual threshold (usually 5-10 pixels).

We also penalize each road by a score proportional to the differ-
ence between its current orientation �curr and its original orienta-
tion �orig using the following formula:

score(ri) = j�curr � �origj �Worient (2)

Since this score is minimized when the current orientation is closest
to its original orientation, we only introduce substantial changes to
road orientation if the change helps minimize some other compo-
nent of the road layout score. For example, a substantial change in
orientation may be introduced to resolve a false intersection.

3.3.2 Intersections

Both missing and false intersections can be extremely misleading,
so we severely penalize any proposed layout containing these prob-
lems. We first describe how simple missing and false intersections
are resolved independently and then describe how scoring must
change when a layout contains both missing and false intersections.

Simple Missing Intersections: There are two forms of missing
intersections. A true missing intersection occurs when two roads
should intersect, such as when a highway ramp loops over or under
the highway, but don’t. A misplaced intersection occurs when two
roads should intersect and do, but at the wrong point. As shown
in figure 5, in both cases we compute a score that is proportional
to the Euclidean distance between the proper intersection point on
each road. However, since it is more important for the proper pair of
roads to intersect than it is for the point of intersection to be placed
exactly, we set the scoring weight for a misplaced intersection to be
much lower than for a missing intersection.

Simple False Intersections: False intersections occur when the
path incorrectly folds back on itself, forming a loop or knot. One
way to remove an individual knot is to move the route endpoint

1Each of our component scores uses a similar weighting constant.

(a) Missing Intersection (b) Misplaced Intersection
score(ri,rk) = d * Wmissing score(ri,rk) = d * Wmisplaced

d t * l(r )kk

t * l(r )i i

d
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Figure 5: Scoring missing and misplaced intersections. In both cases the score is
proportional to d, the Euclidean distance between the two points pi and pk that should
intersect (marked in red). Initially for each pair of intersecting roads ri and rk we
compute the parametric values ti and tk of the intersection point. Multiplying these
parameters by the current lengths of the roads l(ri) and l(rk) gives us the current
position of pi and pk . For comparison, the original route is shown in gray.
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Figure 6: Handling false intersections. (a),(b),(c) The direction the route endpoints
should move to independently resolve each false intersection is indicated by the large
green arrows. (b) The two false intersections pull the endpoint in opposite directions.
This is addressed by counting only the innermost false intersection score. (c) The
innermost false intersection is scored for each endpoint independently, so in this case
both false intersections are included in the final score. (d) The score for a simple
false intersection is proportional to the distance to the closest endpoint of the route as
measured in pixels along the route.

closest to the intersection (measured in pixels along the route) to-
wards the intersection point. Figure 6(a)-(c) illustrates several false
intersection scenarios, showing for each intersection point which
direction the closest endpoint must move to remove the knot.

For each false intersection we compute a score proportional to
the distance in pixels along the route to the nearest endpoint, as
shown in figure 6(d). This approach is conceptually equivalent to
building a scoring hill along the route that guides the closest end-
point towards the intersection point, thereby unravelling the knot.

When a route contains multiple false intersections, the false in-
tersection scores may conflict and push the endpoint in opposite
directions, as shown in figure 6(b). We address this problem by
counting only the score for the innermost false intersection (work-
ing inwards from the endpoint to the center of the route). By penal-
izing the layout for only the innermost false intersection, we guide
the endpoint towards the desired direction and eventually resolve
both false intersections.

False Intersections and Missing Intersections: In most cases
when false and missing intersections occur in the same map, the
scores interact properly to resolve both problems. There is one ex-
ceptional situation that occurs when the loop formed by a false in-
tersection contains a missing intersection. As shown in figure 7,
one score may push in one direction and the other score in the other
direction, resulting in a stalemate in which neither problem can be
resolved. In both of these cases there is supposed to be an intersec-
tion; it is just occurring between the wrong roads. We resolve the
situation with an additional rule: if either point of a missing inter-
section is inside the loop formed by a false intersection, we add a
constant penalty for the false intersection, rather than a hill-based
score. Using a constant false intersection score allows the missing
intersection score to guide the intersection to the desired location.

Extended Intersections: While the false and missing intersec-
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Figure 7: Interactions between false and missing intersections. In both cases, the false
and missing intersection scores push points on the route in conflicting directions, as
indicated by the arrows. To resolve the conflict, we add a constant penalty for the
false intersection and allow the missing intersection score to pull the intersection to the
desired location.
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Figure 8: (a) Scoring extended intersections. (b) The extended intersection and false
intersection scores conflict and push the layout in opposite directions. (c) All roads
between a route endpoint and a false intersection or between a pair of false intersections
are considered to be in the same false intersection interval. In this case, there are three
intervals [r0], [r1; r2; r3; r4], and [r5; r6; r7]. We resolve the conflict by only
counting extended scores between roads in the same false intersection interval. Since
r1 and r6 are in different intervals, their extended intersection score is not counted.

tions scores are essential for maintaining the overall topology of
the route, they do not consider the spacing between roads. It is
possible for the perturb function to generate road layouts in which
non-intersecting roads pass so close to one another that they incor-
rectly appear to touch. We identify such layouts by checking for
extended intersections between each pair of roads. We extend the
endpoints of each road by a fixed pixel length E and then check if
the resulting roads intersect.

Extended intersections are scored as shown in figure 8(a). If the
intersection occurs on the extended portion of the road as for ri, the
score is proportional to the distance between the intersection point
and the extended endpoint of the road. If the intersection occurs
within the main extent of the road as for rk, the score is set to the
largest possible penalty for intersection with the extended portion
of the road. As shown in figure 8(b), it is possible for an extended
intersection score to conflict with a false intersection score. To re-
duce such conflicts, we include extended intersection scores only
when the extended intersection occurs between two roads in the
same false intersection interval, as shown in figure 8(c).

3.3.3 Route Shape

The final road layout score considers the overall shape of the route.
As shown in figure 3, perturbing the lengths and angles of each road
can drastically alter the overall shape. It is possible for a destination
that should appear to the west of the origin to end up appearing to
the east of the origin, and the origin can sometimes appear much
closer to the destination than it actually is.

To reduce such problems, we compute two road layout scores
based on the vector between the origin and destination of the route.
The endpoint direction score penalizes layouts that alter the direc-
tion of this vector and is proportional to the difference in angle
between this vector in the original map and in the current map.
The endpoint distance score penalizes layouts in which distance be-

tween the origin and destination is smaller than a minimum length
based on the original distance between them.

3.3.4 Fine-Tuning Road Orientation

Once the search phase of road layout is complete, we snap each
shallow angle road in the final layout to the nearest horizontal or
vertical axis. Roads that form shallow angles (i.e. < 15 degrees)
with the image plane horizontal or vertical axes tend to increase
the visual complexity of the map. Furthermore, such roads can be
difficult to antialias, especially on personal digital assistant (PDA)
displays with limited color support. Note that we only reorient a
road if doing so does not introduce an inconsistent turn direction or
a false, missing, or extended intersection.

3.4 Label Layout

For the route map to be usable, each road on the map must be la-
beled with its name. Similarly, the origin and destination of the
route should be labeled with their addresses. Each label is added to
the map to communicate a piece of information (e.g. a road’s name)
through a combination of text and images. The label’s placement
and style further communicate which map object (e.g. road, land-
mark, etc.) it is labeling. We refer to this object as the label target.

There are many different ways to label a given target object. A
typical method for labeling roads is to simply write the name di-
rectly above or below the road. This approach uses proximity to
associate the label with its target road. Another style is to put the
text near the road and then add an arrow pointing to the road to form
the association between the name and its target. Figure 9 shows sev-
eral styles that might be used to label different objects. As shown
in figure 10, a labeling style is comprised of three components:

� Graphic Elements: A set of text and image elements. The
primary graphic element is usually a name, and secondary
graphic elements can include distance to travel, arrows, high-
way shields, etc.

� Arrangement: The arrangement of the secondary graphic
elements relative to the primary element. For example, the
arrow-left-of-name labeling style puts the arrow graphic to the
left of the primary name graphic.

� Placement Constraints: Each constraint is a region in the
map image defining a set of valid positions and orientations
for the center of the primary graphic.

To place a given label in the map, we must choose both a la-
beling style and a label location from within one of the placement
constraint regions for that style. Therefore, our label layout search
space is defined by the set of possible labeling styles and the place-
ment constraints for each style, for every label in the map.

In the first phase of label layout, we create a list of possible label-
ing styles for each target object by considering factors such as the
size, shape, and type of the target (e.g. highway, residential road,
or landmark) and the length of the label name (e.g. if the name is
long we might create a word-wrapping style). Each style is also
given a rank based on its desirability. For example, for roads, the
along-road style is preferable to to the arrow-left-of-name style.

We create an initial label layout by placing each label at the most
central position within its highest ranked labeling style. We then
deterministically fix as many labels as possible. We check if each
label in its initial position could ever conflict with the placement of
any other label by intersecting each label in its initial position with
all potential positions for every other label. The potential positions
are determined from the placement constraints defined for each la-
beling style. If no conflict is possible, then the label is fixed in its
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Figure 9: Several different labeling styles that might be used to label roads or land-
marks along the route.
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Figure 10: Components of a labeling style. (a) a set of graphic elements, (b) an ar-
rangement of those graphic elements relative to a primary graphic, and (c) a constraint
specifying the valid positions and orientations for the center of the primary graphic.

initial position and only those labels that are not fixed in this phase
are placed during the label layout search.

The perturb function for the label layout search randomly picks
a label to alter, randomly selects a labeling style for that label, and
then randomly chooses a new location for the label from within
one of the style’s placement constraints. The label layout scoring
function evaluates each label on the following criteria: (1) whether
the label intersects or overlaps any other object in the map, (2) the
proximity of the label to the center of its target, and (3) the rank of
the chosen label style. The score for the complete map labeling is
computed as the sum of the scores for each label.

Our general approach to the label layout problem is based on
previous work on labeling point and line features in traditional ge-
ographic maps. Marks and Shieber [19] have shown that finding
optimal label placements is NP-complete and several previous sys-
tems have used randomized search to find near-optimal label place-
ments [29, 9]. These systems usually consider only a discrete set
of possible locations and a single style for each label. LineDrive
extends the search-based approach to handle a continuous range of
label locations and a wider variety of potential labeling styles.

3.5 Context Layout

Although context features are secondary information not necessary
for communicating the basic structure of route, they can improve
the usability of a route map. LineDrive handles two forms of con-
text: (1) linear features that intersect the main route, such as cross-
streets, and (2) point landmarks along the route such as buildings
and highway exit signs. We use the same basic approach for placing
both cross-street and local landmarks. For brevity, we will describe
the approach in terms of placing cross-streets2.

Each cross-street is specified to the layout system by a piecewise
linear curve of latitude/longitude points, the name of the cross street
and an importance value for the cross-street. If the importance value
is not pre-specified, we place highest importance on the last major
cross-street just before each turning point. We have found that these
streets are helpful as a warning that the turn is approaching. We ini-
tially compute the intersection point between every cross-street and
the main route and then place the cross-streets at these intersection
points. We also create a constraint region around the intersection

2Interested readers should consult [1] for the details of landmark layout.
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Figure 11: Placing a cross-street. The search considers placing Castro street within
the constraint region as close to the original intersection point as possible. Once the
cross-street and its label are placed, the cross street is extended to a minimum pixel
length on either side of its base road and then further extended to pass under its label.

point which specifies the acceptable range of positions for the inter-
section point, as shown in figure 11. Cross-street labels are created
just like main road labels and initially placed using the same rules.

The perturb function for cross-street layout randomly selects a
cross-street and then randomly changes either the position of the
intersection point between the cross-street and the main road, the
position of the cross-street label, or whether the cross-street is hid-
den. Once the street is perturbed, we set the length of the cross-
street to a predefined minimum extension length. Then, if the label
has been placed directly above or below the street, we extend the
street to pass completely over or under its label.

We score each cross-street based on four criteria: (1) the distance
between the current position of the cross-street intersection point
and the true intersection position, (2) the number of other objects
the cross-street intersects, (3) the layout score of the cross-street
label, which is computed using the same scoring function as for
regular road labels, and (4) if the cross-street is hidden, we penalize
the layout by an amount proportional to the cross-street importance.

Once the search phase of cross-street layout is complete, we
clean up the layout. If the label of a cross-street overlaps any other
object on the map, we remove the cross-street from the map. Label-
object overlap can make the label difficult to read and obscure im-
portant route information. Since cross-streets are secondary fea-
tures, removing them from the map is preferable to allowing such
overlap. We do, however, allow the cross-streets to intersect other
map objects. This is acceptable because cross-streets are thin, 1D
objects, and are drawn underneath the other map objects in a light
gray color so that they do not interfere with the legibility of the
other objects. Finally, we clip each cross-street to every other road
and cross-street in the route. This ensures that we do not introduce
any false cross-street intersections in the maps.

3.6 Decoration

The decoration stage is responsible for adding four types of graphic
decorations to the map to enhance its usability. Extensions on the
ends of each road accentuate the turning points and help associate
the road’s label with the road. An orientation arrow shows the over-
all route orientation with respect to global north and can make it
easier for navigators to geographically place the route. Bullets at
each turning point show exactly where each turn decision must be
made and help differentiate between roads that are headed in the
same general direction. Finally, the rendering style for each road is
set according to the type of the road.

Before adding extensions, we look up the pair of roads at each
turning point in the database to check if they continue beyond the
turning point. If a road does extend, we set the length of the exten-
sion to a predefined minimum extension length. If during label lay-
out, the center of the road’s label was placed directly above or below
an extension, we grow the extension so that it passes completely
over or under the label. Growing the extension in this manner helps
form the proper association between the label and its target road.
Finally, we clip the extension to all other roads and cross-streets.

To place the orientation arrow, we search the map image for an
empty region large enough to hold the arrow. We accelerate the
search by building a fixed resolution occupancy grid over the map
image and only searching in empty cells of this grid. The search is
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Figure 12: Selecting image size. (a) The route contains one long north-south road
(I-91) and many short east-west roads near its origin and destination. (b) If the image
size is selected based on the original north-south aspect ratio, the image is given more
vertical space than horizontal space. The top and bottom of the image go unused
because after growing all the short roads the aspect ratio of the map becomes much
wider. (c) Computing the aspect ratio for selecting image size after growing the roads
yields a horizontal image size and a more effective use of the space.

ordered to first look for space in the four corners of the image and
then search through the remaining image.

Our road database differentiates between three types of roads:
limited access highways, highway ramps, and standard residential
roads. In the decoration stage we set the rendering style for each
road based on its type. Limited access highways are drawn as dou-
ble lines, while ramps are drawn at half the thickness of the standard
roads.

3.7 Image Size Selection

Since LineDrive designs route maps to fit within a given image size,
the image size can have a large effect on the layout of the map.
Consider a route map created for a predominantly north-south route
that is designed to fit a wide aspect ratio viewport. All of the north-
south roads would end up squashed while large regions of the image
to the left and right of route would remain unused.

A better approach is to choose the viewport size based on the as-
pect ratio of the route. However, simply using the aspect ratio of the
original uniformly scaled route does not always produce the desired
result. Suppose, as in figure 12, the original route contains many
east-west roads near its origin and destination, with one extremely
long north-south road in between. Although the original aspect ra-
tio for the route is north-south, after growing the short roads in our
road layout, the aspect ratio of the route changes substantially. To
estimate the aspect ratio of our final map before performing road
layout, we initially fit all the roads at their original lengths to a large
square viewport. We then grow all the short roads to their minimum
pixel length and finally compute the aspect ratio of this new map,
thus generating a more realistic estimate.

The image size of our maps may be limited by the resolution of
the output device. Personal digital assistants (PDAs) usually have
small screens, and long routes containing more than a few steps usu-
ally will not fit on these screens, even using our layout techniques.
One solution is to split such routes into multiple segments, each
containing a fixed number of turning points. The main drawback is
that this approach requires flipping through multiple maps.

Another solution is to create a larger map image that can be
scrolled. However, most PDAs provide good controls for scrolling
vertically but not horizontally. In such situations, our image size is
constrained only in the horizontal direction. Luckily, most routes
have some predominant orientation. We find the predominant ori-
entation by fitting a tight, oriented bounding box [11] to the route

Figure 13: LineDrive map on a PDA. The route is rotated so that it fits the horizontally
constrained image size of the PDA. The vertical dimension is unconstrained and users
can scroll up to see the remainder of the route. This is the same route shown in figure 2.

after growing all the short roads just as we did for the aspect ratio
computation. We then fit the map to our horizontally constrained
image by rotating the entire route so that the largest extent of the
map is aligned with the vertical axis of the page. This approach
provides extra space in the direction the route needs it most. As
shown in figure 13, the orientation arrow helps indicate that the
map has been rotated.

A common cartographic convention is that the north orientation
arrow should align as closely as possible with the vertical axis of
the page. Thus, we choose the rotation angle, either clockwise
or counter-clockwise, which ensures that north arrow points in the
upward semi-circle of directions. The rotation angle is bounded
between �90:0 degrees and although the north arrow may not be
aligned with the vertical axis of the page after the rotation it usu-
ally has a strong component in the vertical direction. Once the map
has been verticalized, we can compute a vertical resolution for the
image based on the number of steps in the route. We have empir-
ically found that providing a vertical resolution of 200 pixels for
maps with less than 10 steps, and adding 10 pixels for each step
thereafter, works well.

4 Results
Examples of several route maps generated using LineDrive are
presented in figure 14. We have tested the performance of the
LineDrive system in two ways: (1) by collecting detailed statis-
tics on a test suite of 7727 routes and (2) by providing web access
to a beta version of LineDrive in order to receive user feedback.

Our test suite is comprised of 7727 routes queried over one day
at www.mapblast.com. The median route distance for the test
suite is 52.5 miles and the median number of turning points is 13.
We ran each route through the system twice, first generating a web-
page size image at a fixed resolution of 600 x 400 and then gen-
erating a PDA size image with a fixed horizontal resolution of 160
and a variable vertical resolution. The running time is largely de-
pendent on the number of objects (i.e. roads, labels, etc.) that must
be placed in the map. The median run time for a single map on
an 800 MHz Pentium III was 0.7 seconds for the first run and 0.8
seconds for the second run. Although the vast majority of maps are
clustered around these median times, a few outliers containing over
100 roads took about 13 seconds to generate for the webpage size.

A small percentage of the LineDrive maps generated from the
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(a) San Francisco to Atlanta

(b) Bellevue to Seattle (c) North Las Vegas to
     Mc Carran Airport

Figure 14: Examples of LineDrive maps with thumbnails of standard computer-generated maps for the same routes. (a) Non-uniform scaling allows all roads to be visible in this
cross-country route. Since the ramp between Marin St. and US-101 intersects Army Street (actually passes above Army) it is not dropped from the map and proper intersection
topology is maintained. (b) All ramps are maintained in this relatively short route from Bellevue to Seattle. Road shape is retained at both ends of I-5 in order to maintain a consistent
turn angle with the adjacent ramps. The exit signs provide important context information for entering and exiting the highways. The highways are labeled using the highway-shield
labeling style which helps differentiate the interstate, state and local highways from residential roads. (c) Cross-streets provide context and aid navigation in this route from North
Las Vegas to McCarran Airport. The sketchy rendering style in this map is a subtle cue that the map is not drawn to scale.

test suite of routes contained layout problems such as topological
errors or label-label overlap. In many cases, these problems were
unavoidable because it is not always possible to make all roads large
enough to be visible and simultaneously maintain the topology of
the route. In a few cases, the problems could have been avoided but
the randomized search did not converge to a near-optimal layout.
The frequency of various layout problems for the 7727 route test
suite are summarized in table 1.

The most significant problems that can arise in road layout are
(1) that some roads may not be made large enough to be visible
and clearly labeled or (2) that false or missing intersections may be
introduced during the layout. Short roads, defined as less than 10
pixels in length, occurred in 5.3% of the webpage maps and 5.6%
of the PDA maps. In most cases, the short roads could not be made
longer either because there were a large number of roads all heading
in the same direction or because lengthening the roads would have
introduced a false or missing intersection. Although the PDA is
horizontally constrained, the increase in the number of maps con-
taining short roads is small because verticalization of these maps
provides space for the short roads to grow. False and missing in-
tersections occurred much less frequently than short roads and in
all cases, avoiding the false or missing intersection would have re-
quired shrinking one or more roads to be extremely small.

The main problems that can occur in label layout are (1) that a
label will be placed overlapping another label, or (2) that a label
may be placed overlapping a road or landmark. Less than 0.5% of
webpage sized maps contained overlapping labels, while 3.7% of
PDA sized maps contained label-label overlap. This increase is due

to the fact that long labels are especially difficult to place without
overlap on the horizontally constrained PDA. Although label-road
overlap occurs in a significantly larger number of maps, such in-
tersections are much less detrimental to the overall usability of the
map than label-label overlap.

The beta version of LineDrive was available to the public from
October, 2000 until March, 2001 and served over 150,000 maps.
Over 2200 users voluntarily filled out a feedback form describ-
ing their impressions of the LineDrive maps. While the group of
respondents was self-selected, it is unclear whether any resulting
bias would be positive or negative. Despite the potential bias, we
believe that the feedback provides valuable insight into users’ re-
actions to the maps. As shown in table 2, the general response
to the LineDrive maps was overwhelmingly positive. Less than
one percent of respondents said they would rather use the standard
computer-generated maps than the LineDrive maps.

Nearly half of the respondents said they would like to use
LineDrive maps in conjunction with standard maps. One difficulty
with using LineDrive maps alone is that they provide little detail
outside of the main route. If the navigator accidently strays from
the route, it can be difficult to find a way back onto it. This can
be especially problematic near the destination of the route where
the navigator is less likely to be familiar with the area and may
need to stray from the route in order to find parking. We address
these problems on the website by providing a standard computer-
generated map of the region near the destination of the route along
with the LineDrive map.

Long distance trips often require more context than LineDrive
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Performance Statistics (7727 routes)

Web PDA
Median Time 0.7s 0.8s
Short Roads (< 10 pixels) 415 5.4% 430 5.6%
False Intersections 25 0.3% 23 0.3%
Missing Intersections 15 0.2% 14 0.2%
Label-Label Overlaps 37 0.5% 289 3.7%
Label-Road Intersections 901 11.7% 2096 27.1%

Table 1: Performance statistics for a test suite of 7727 routes with a median of 13 turn-
ing points per route and a median distance of 52.5 miles. Every row except for median
time indicates the number of maps containing at least one instance of the problem. For
example, the short roads row presents the number of maps containing at least one road
less than 10 pixels long.

User Feedback (2242 responses)

Would you use LineDrive maps in the future?
1246 55.6% Yes, I would use them instead of standard driving directions.
976 43.5% Yes, I would use them along with standard driving directions.
20 0.9% No thanks, I’ll stick with standard driving directions.

How would you rate this feature?
1787 79.7% It’s a blast.
253 11.3% Just fine.
202 9.0% Needs some work ...

Table 2: User feedback. The beta version of LineDrive has been accessed over 150,000
times and we have received 2242 responses to the system.

maps provide. While the cross-country map in figure 14(a) is a good
stress-test showing that LineDrive can produce readable maps for
routes containing many steps at vastly different scales, it is probably
not the ideal map during such a long trip. Most navigators taking
this trip would require a road atlas showing detailed local context
along the way. LineDrive maps are designed for relatively short
trips (i.e. under 100 miles) within a familiar region. Our experience
is that most car-based trips fall within this range and the majority
of people who use web-based mapping services generate directions
to locations within their own greater metropolitan area.

About 9% of the respondents said the LineDrive system needs
some work. However, most concerns were not with the LineDrive
map, but instead with the particular route chosen by the route find-
ing service. The beta version of LineDrive did not support cross-
streets and local landmarks and the most common feature requests
applicable to the maps were for the addition of cross-streets and exit
signs. Based on the results of the beta test, LineDrive became the
default map style for driving directions at www.mapblast.com
in March 2001. This version supports cross-streets.

We have experimented with rendering LineDrive maps using a
stroke-based, pen-and-ink style [18]. As shown in figure 14(c), the
variations in the lines makes the map look more like a sketch than
a precise computer-generated image. Strothotte et al. [24] have
shown that rendering style can influence how people interpret ar-
chitectural drawings, and we believe a similar principle applies to
route maps. The sketchy rendering style is a subtle cue that the map
is not drawn to scale.

5 Conclusions and Future Work
In this paper we have described a set of generalization techniques
based on detailed study of the distortions made in handdrawn maps
and designed to improve route map usability. We have also pre-
sented LineDrive, an automatic system for designing and rendering
route maps that uses these techniques to ensure that all information
required to follow a route is communicated clearly and concisely.

There are several directions for future research. We are currently
exploring the use of insets as an approach for depicting route detail
at turning points. The algorithm must automatically select the set
of roads that should appear in each inset and the placement of the
inset in the overall map.

Area landmarks, such as cities, and bodies of water, can make it
easier for navigators to orient the route with respect to local geogra-
phy. However, placing such landmarks in our maps can be difficult.
In order to appear in their correct location with respect to the roads
on the route, the size and shape of the area landmarks may need
to be distorted. We are considering an approach that uses feature-
based morphing [3] to incorporate such landmarks.
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