
Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

Photon Mapping on Programmable Graphics Hardware
Timothy J. Purcell1, Craig Donner2, Mike Cammarano1, Henrik Wann Jensen2 and Pat Hanrahan1

1 Stanford University

2 University of California, San Diego

Abstract
We present a modified photon mapping algorithm capable of running entirely on GPUs. Our implementation uses
breadth-first photon tracing to distribute photons using the GPU. The photons are stored in a grid-based photon
map that is constructed directly on the graphics hardware using one of two methods: the first method is a multipass
technique that uses fragment programs to directly sort the photons into a compact grid. The second method uses
a single rendering pass combining a vertex program and the stencil buffer to route photons to their respective
grid cells, producing an approximate photon map. We also present an efficient method for locating the nearest
photons in the grid, which makes it possible to compute an estimate of the radiance at any surface location in the
scene. Finally, we describe a breadth-first stochastic ray tracer that uses the photon map to simulate full global
illumination directly on the graphics hardware. Our implementation demonstrates that current graphics hardware
is capable of fully simulating global illumination with progressive, interactive feedback to the user.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: Programmable Graphics Hardware, Global Illumination, Photon Mapping

1. Introduction

Global illumination is essential for realistic image synthesis
in general environments. Effects such as shadows, caustics,
and indirect illumination are important visual cues that add
to the perceived realism of a rendered scene.

Global illumination algorithms have a long history in
computer graphics from early work based on radiosity8 and
Monte Carlo ray tracing12, to more recent algorithms such
as photon mapping10. Photon mapping is one of the more
widely used algorithms, since it is very practical and capable
of computing a full global illumination solution efficiently.
It is a two-pass technique in which the first pass consists
of tracing photons through the scene and recording their in-
teraction with the elements in the scene in a data structure,
the photon map. This photon map is used during the second

pass, the rendering pass, to estimate diffuse indirect illumi-
nation as well as caustics. The illumination at a given point
is estimated based on statistics, such as the density, of the
nearest photons located in the photon map.

Global illumination algorithms such as photon mapping
have traditionally relied on sophisticated software imple-
mentations and offline rendering. Using graphics processors
(GPUs) for computing a global illumination solution has not
previously been possible due to the lack of floating point
capability, as well as insufficient programmability. This has
changed with the most recent generation of programmable
graphics hardware such as the ATI Radeon 9800 Pro1 and
the NVIDIA GeForce FX 5900 Ultra19. The programming
model for these GPUs is still somewhat limited, mainly due
to the lack of random access writes. This prevents efficient
construction of most data structures and makes many com-

c© The Eurographics Association 2003.

41

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

mon algorithms such as sorting difficult to implement effi-
ciently. Nonetheless, several researchers have harnessed the
computational power of programmable GPUs to perform
computations previously run in software4, 5, 9, 14, 15, 21. Simi-
larly, we are interested in using GPUs to simulate global il-
lumination using photon mapping.

Previous research on graphics hardware has explored the
idea of simulating global illumination. Ma et al.16 proposed
a technique for approximate nearest neighbor search in the
photon map on a GPU using a block hashing scheme. Their
scheme is optimized to reduce bandwidth on the hardware,
but it requires processing by the CPU to build the data struc-
ture. Carr et al.5 and Purcell et al.21 used the GPU to speed
up ray tracing, and they also simulated global illumination
using path tracing. Unfortunately, path tracing takes a sig-
nificant number of sample rays to converge and even with
the use of GPUs it remains a very slow algorithm.

The idea of speeding up global illumination to achieve
interactive frame rates has been explored by several re-
searchers in the last few years. Parker et al.20 demonstrated
how ray tracing, and to some extent path tracing, could be
made interactive on a 32 processor shared memory SGI ma-
chine. This concept was later extended to Linux clusters by
Wald et al.24. Recently, Wald et al.23 also demonstrated that
photon mapping combined with instant radiosity could be
used to simulate global illumination at interactive rates on
a Linux cluster. They achieve interactive speeds by bias-
ing the algorithm and by introducing a number of limita-
tions such as a highly optimized photon map data-structure,
a hashed grid. By choosing a fixed search radius apriori,
they set the grid resolution so that all neighbor queries sim-
ply need to examine the 8 nearest grid cells. However, this
sacrifices one of the major advantages of the k-nearest neigh-
bor search technique, the ability to adapt to varying photon
density across the scene. By adapting the search radius to
the local photon density, Jensen’s photon map can maintain
a user-controllable trade off between noise (caused by too
small a radius yielding an insufficient number of photons)
and blur (caused by too large a search radius) in the recon-
structed estimate.

In this paper we present a modified photon mapping algo-
rithm that runs entirely on the GPU. We have changed the
data structure for the photon map to a uniform grid, which
can be constructed directly on the hardware. In addition, we
have implemented a variant of Elias’s algorithm6 to search
the grid for the k-nearest neighbors of a sample point (kNN-
grid). This is done by incrementally expanding the search ra-
dius and examining sets of grid cells concentrically about the
query point. For rendering, we have implemented a stochas-
tic ray tracer, based on a fragment program ray tracer like
that introduced by Purcell et al.21. We use recursive ray trac-
ing for specular reflection and refraction26 and distributed
tracing of shadow rays to resolve soft shadows from area

lights7. Finally, our ray tracer uses the kNN-grid photon map
to compute effects such as indirect illumination and caustics.

Our implementation demonstrates that current graphics
hardware is capable of fully simulating global illumination
with progressive and even interactive feedback to the user.

The contribution of this paper is a method for obtaining
a complete global illumination solution on the GPU using
photon maps. To compute various aspects of the global il-
lumination solution, we introduce a number of GPU based
algorithms for sorting, routing, and searching.

2. Photon Mapping on the GPU

The following sections present our implementation of pho-
ton mapping on the GPU. Section 2.1 briefly describes the
tracing of photons into the scene. Section 2.2 describes two
different techniques for building the photon map data struc-
tures on the GPU. Section 2.3 describes how we compute a
radiance estimate from these structures using an incremen-
tal k-nearest neighbor search. Finally, section 2.4 briefly de-
scribes how we render the final image. A flow diagram for
our system is found in figure 1.

Trace
Photons

Build
Photon
Map

Render Image

Ray
Trace
Scene

Compute
Radiance
Estimate

Compute Lighting

Figure 1: System flow for our rendering system. Photon trac-
ing and photon map construction only occur when geometry
or lighting changes. Ray tracing and radiance estimates oc-
cur at every frame.

Most of our algorithms use fragment programs to simu-
late a SIMD array of processors. For every processing pass,
we draw screen sized quad into a floating point pbuffer, ef-
fectively running an identical fragment program at every
pixel in the 2D buffer. This setup is common among sev-
eral systems treating the GPU as a computation engine4, 5, 21.
When computing the radiance estimate, however, we tile the
screen with large points, enabling us to terminate certain tiles
sooner than other tiles. The benefits of tiling are examined
further in section 3.

2.1. Photon Tracing

Before a photon map can be built, photons must be emitted
into the scene. The process of tracing eye rays and tracing
photons from a light source is very similar. The most impor-
tant difference is that at each surface interaction, a photon
is stored and another is emitted. Much like tracing reflec-
tion rays, this takes several rendering passes to propagate
the photons through several bounces. Each bounce of pho-
tons is rendered into a non-overlapping portion, or frame,

c© The Eurographics Association 2003.

42

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

of a photon texture, while the results of the previous pass
are accessed by reading from the previous frame. The ini-
tial frame is simply the positions of the photons on the light
source, and their initial random directions. The direction for
each photon bounce is computed from a texture of random
numbers.

Not all photons generated are valid; some may bounce
into space. Current GPUs do not allow us to selectively ter-
minate processing on a given fragment. We are, however,
able to mark them as invalid.

2.2. Constructing the Photon Map Data Structure

The original photon map algorithm uses a balanced k-d tree3

for locating the nearest photons. While this structure makes
it possible to quickly locate the nearest photons at any point,
it requires random access writes to construct efficiently. In-
stead we use a uniform grid for storing the photons, and in
this section we present two different techniques for building
this grid which involves placing the photons into the right
grid cells. The first method sorts photons by grid cell using
bitonic merge sort. This creates an array of photon indices
where all photons in a grid cell are listed consecutively. Bi-
nary search is then used to build an array of indices to the
first photon in each cell (see figure 4 for an example of the
resulting data structure). To reduce the large number of of
passes this algorithm requires, we propose a second method
for constructing an approximate photon map using the sten-
cil buffer. In this method, we limit the maximum number of
photons stored per grid cell, making it possible to route the
photons into their destination grid cells in a single pass using
a vertex program and the stencil buffer.

2.2.1. Fragment Program Method - Bitonic Merge Sort

One way to index the photons by grid cell is to sort them by
cell and then find the index of the first photon in each cell
using binary search.

Many common sorting algorithms require the ability to
write to arbitrary locations, making them unsuitable for im-
plementation on current GPUs. We can, however, use a de-
terministic sorting algorithm for which output routing from
one step to another is known in advance. Bitonic merge sort2

has been used for sorting on the Imagine stream processor13,
and meets this constrained output routing requirement of the
GPU.

Bitonic merge sort is a parallel sorting algorithm that al-
lows an array of n processors to sort n elements in O(log2 n)
steps. Each step performs n comparisons and swaps. The al-
gorithm can be directly implemented as a fragment program,
with each stage of the sort performed as one rendering pass
over an n pixel buffer. Bitonic sort is illustrated graphically
in figure 2 and the Cg17 code we used to implement it is
found in figure 3. The result of the sort is a texture of photon
indices, ordered by grid cell.

1

2

3

4

5

6

7

8

7

6

1

3

8

5

2

4

5

6

3

8

1

2

7

4

2

6

3

8

1

5

4

7

2

5

3

7

1

6

4

8

7

5

3

2

8

6

4

1

7

5

2

3

8

6

1

4

Figure 2: Stages in a bitonic sort of eight elements. The un-
sorted input sequence is shown in the left column. For each
rendering pass, element comparisons are indicated by the
arrows, with items swapping to low and high in the arrow
direction. The final sorted sequence is achieved in O(log2n)
passes.

fragout_float BitonicSort(vf30 In, uniform samplerRECT sortedplist,
uniform float offset, uniform float pbufinfo,
uniform float stage, uniform float stepno)

{
fragout_float dst;
float2 elem2d = floor(In.WPOS.xy);
float elem1d = elem2d.y*pbufinfo.x + elem2d.x;
half csign = (fmod(elem1d, stage) < offset) ? 1 : -1;
half cdir = (fmod(floor(elem1d/stepno), 2) == 0) ? 1 : -1;
float4 val0 = f4texRECT(sortedplist, elem2d);
float adr1d = csign*offset + elem1d;
float2 adr2d = convert1dto2d(adr1d, pbufinfo.x);
float4 val1 = f4texRECT(sortedplist, adr2d);
float4 cmin = (val0.y < val1.y) ? val0 : val1;
float4 cmax = (val0.y > val1.y) ? val0 : val1;
dst.col = (csign == cdir) ? cmin : cmax;
return dst;

}

Figure 3: Cg code for the bitonic merge sort fragment pro-
gram. The function convert1dto2d maps 1D array addresses
into 2D texture addresses.

Once the photons are sorted, binary search can be used
to locate the contiguous block of photons occupying a given
grid cell. We compute an array of the indices of the first pho-
ton in every cell. If no photon is found for a cell, the first
photon in the next grid cell is located. The simple fragment
program implementation of binary search requires O(logn)
photon lookups. Because there is no need to output interme-
diate results, all of the photon lookups can be unrolled into a
single rendering pass. An example of the final set of textures
used for a grid-based photon map is found in figure 4.

Sorting and indexing is an effective way to build a com-
pact, grid-based photon map. Unfortunately, the sorting step
can be quite expensive. Sorting just over a million photons
(1024×1024) would require 210 rendering passes, each ap-
plied to the full 1024×1024 buffer.

c© The Eurographics Association 2003.

43

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

0 0 3 3 3 3 6 6 8 9 9Uniform Grid

Photon List 1 2 7 5 4 6 0 3 8 9

Photon Position

Photon Power

Photon Direction

...

...

...

...

...

Figure 4: Resultant textures for a grid-based photon map
generated by bitonic sort. The uniform grid texture contains
the index of the first photon in that grid cell. The photon list
texture contains the list of photon indices, sorted by grid cell.
Each photon in the photon list points to its position, power,
and incoming direction in the set of photon data textures.

2.2.2. Vertex Program Method - Stencil Routing

The limiting factor of bitonic merge sort is the O(log2 n) ren-
dering passes required to sort the emitted photons. To sup-
port global illumination at interactive rates, we would prefer
to avoid introducing the latency of several hundred render-
ing passes when generating the photon map. To address this
problem, we have developed an alternate algorithm for con-
structing a grid-based photon map that runs in a single pass.

We note that vertex programs provide a mechanism for
drawing a glPoint to an arbitrary location in a buffer. The abil-
ity to write to a computed destination address is known as
a scatter operation. If the exact destination address for ev-
ery photon could be known in advance, then we could route
them all into the buffer in a single pass by drawing each pho-
ton as a point. Essentially, drawing points allows us to solve
a one-to-one routing problem in a single rendering pass.

This method of organizing photons into grid cells is a
many-to-one routing problem, as there may be multiple pho-
tons to store in each cell. However, if we limit the maximum
number of photons that will be stored per cell, we can pre-
allocate the storage for each cell. By knowing this “texture
footprint” of each cell in advance, we reduce the problem to
a variant of one-to-one routing.

The idea is to draw each photon as a large glPoint over
the entire footprint of its destination cell, and use the stencil
buffer to route photons to a unique destination within that
footprint. Specifically, each grid cell covers an m×m square
set of pixels so each grid cell can contain at most m×m pho-
tons. We draw photons with glPointSize set to m which when
transformed by the vertex program will cause the photon to
cover every possible photon location in the grid cell. We set
the stencil buffer to control the location each photon renders
to within each grid cell by allowing at most one fragment
of the m×m fragments to pass for each drawn photon. The
stencil buffer is initialized such that each grid cell region
contains the increasing pattern from 0 to m2

−1. The stencil

Vertex
Program

Vertex
Program Stencil

Vertex
Program Stencil

p0 p0

p0 p0

p0

p0p1

3 4

21

2 3

10

2 3

10

2 3

10

4 5

32

2 3

10

2 3

10

2 3

10

(a)

p0

p0

p1

(b)

(c)

Figure 5: Building the photon map with stencil routing. For
this example, grid cells can hold up to four photons, and
photons are rendered as 2 × 2 points. Photons are trans-
formed by a vertex program to the proper grid cell. In (a),
a photon is rendered to a grid cell, but because there is no
stencil masking the fragment write, it is stored in all entries
in the grid cell. In (b) and (c), the stencil buffer controls the
destination written to by each photon.

test is set to write on equal to m2
− 1, and to always incre-

ment. Each time a photon is drawn, the stencil buffer allows
only one fragment to pass through, the region of the sten-
cil buffer covering the grid cell all increment, and the next
photon will draw to a different region of the grid cell. This
allows efficient routing of up to the first m2 photons to each
grid cell. This process is illustrated in figure 5.

We generally use a 1024× 1024 stencil buffer with m set
to 16, leaving approximately 403 grid cells. In regions of
high photon density, many more photons than can be stored
will map to a single grid cell. To reduce the artifacts of
this method, we redistribute the power of the surplus pho-
tons across those that are stored. Note that the the stencil
buffer maintains a count of how many photons were destined
for each grid cell, and we assume that all our stored pho-
tons have roughly the same power. Hence, we can scale the
power of the stored photons by the ratio between the num-
ber of photons destined for a cell and the number actually
stored. This redistribution of power is an approximation, but
the potential performance benefits of the fast routing method
can be worthwhile. The idea of redistributing power of some
photons to limit the local density of photons stored is dis-
cussed more generally in Suykens and Willems22.

By storing a fixed number of photons per cell instead
of a variable length list, we can use a vertex program to
route photons to grid cells in a single rendering pass. There
are two main drawbacks to this method. First, the photons
must be read from the photon texture and drawn as points,

c© The Eurographics Association 2003.

44

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

which currently requires a costly readback. Second, the pre-
allocation of storage for each grid cell limits the method’s
flexibility and space-efficiency. Redistribution of power is
needed to represent cells containing more than m2 photons,
and space is wasted for cells with fewer photons (including
empty cells).

2.3. The Radiance Estimate

To estimate radiance at a given surface location we need to
locate the nearest photons around this location. For this pur-
pose we have developed a kNN-grid method, which is a vari-
ant of Elias’s algorithm for finding the k-nearest neighbors to
a sample point in a uniform grid6. First, the grid cell contain-
ing the query point is explored, and all of its photons are ex-
amined. As each photon is examined, it will either be added
to the running radiance estimate, or rejected. A photon is al-
ways rejected if it is outside a predefined maximum search
radius. Otherwise, rejection is based on the current state of
the search. If the number of photons contributing to the run-
ning radiance estimate is less than the number requested, the
power of the new photon is added to the running estimate
and the search radius is expanded to include that photon. If
a sufficient number of photons have already been accumu-
lated, the search radius no longer expands. Photons within
the current search radius will still be added to the estimate,
but those outside will be rejected.

Grid cells are explored in concentric sets centered about
the query point. The photon search continues until either a
sufficient number of photons have been accumulated, or a
predefined maximum search radius is reached. Figure 6 il-
lustrates the kNN-grid algorithm.

The kNN-grid always finds a set of nearest neighbor pho-
tons – that is, all the photons within a sphere centered about
the query point. It will find at least k nearest photons (or as
many as can be found within the maximum search radius).
This means that the radius over which photons are accumu-
lated will be at least as large as in Jensen’s implementation11,
which uses a priority queue to select only the k-nearest
neighbors. Accumulating photons over a larger radius could
potentially introduce more blur into our reconstructed esti-
mates. In practice, however, image quality does not seem to
suffer from this.

2.4. Rendering

To generate an image we use a stochastic ray tracer written
using a fragment program. The output of the ray tracer is is
a texture with all the hit points, normals, and colors for a
given ray depth. This texture is used as input to several addi-
tional fragment programs. One program computes the direct
illumination using one or more shadow rays to estimate the
visibility of the light sources. Another program invokes the
ray tracer to compute reflections and refractions. Finally, we
use the fragment program described in the previous section

to compute the radiance estimates for all the hits generated
by the ray tracer. We display the running radiance estimate
maintained by the kNN-grid algorithm, providing progres-
sive feedback about the global illumination of the scene.

3. Results

All of our results are generated using a GeForce FX 5900
Ultra and a 3.0 GHz Pentium 4 CPU with Hyper Thread-
ing and 2.0 GB RAM. The operating system was Microsoft
Windows XP, with version 43.51 of the NVIDIA drivers. All
of our kernels are written in Cg17 and compiled with cgc
version 1.1 to native fp30 assembly.

3.1. Rendered Test Scenes

In order to simplify the evaluation of the photon mapping
algorithm we used scenes with no acceleration structures.
For each scene, we write a ray-scene intersection in Cg that
calls ray-quadric and ray-polygon intersection functions for
each of the component primitives. For these simple scenes,
the majority of our system’s time is spent building the photon
map, and computing radiance estimates. Very little time is
spent on ray intersection. Purcell et al.21 discuss ray tracing
of more complex scenes using acceleration structures on the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Computing the radiance estimate with the kNN-
grid. For this example, four photons are desired in the ra-
diance estimate. The initial sample point and the maximum
search radius are shown in (a). The first grid cell searched
(shaded in (b) and (c) contributes two photons and expands
the search radius. The next cell searched (d) has one photon
added to the radiance estimate, and the other rejected since
it is outside the predefined maximum search radius. The pho-
ton outside the search radius in (e) is rejected because the
running radiance estimate has the requested number of pho-
tons, causing the search radius to stop expanding. The cell in
(f) contributes one photon to the estimate. None of the other
cells searched in (g) have photons that contribute to the ra-
diance estimate. The final photons and search radius used
for the radiance estimate are shown in (h).

c© The Eurographics Association 2003.

45

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

(a) Bitonic Sort (b) Stencil Routing (c) Software Reference

Figure 7: Test scene renderings. Both (a) and (b) were rendered on the GPU using bitonic sort and stencil routing respectively.
Software renderings are shown in (c) for reference.

Bitonic Sort Stencil Routing

Scene Trace Build Trace Radiance Trace Build Trace Radiance
Name Photons Map Rays Estimate Photons Map Rays Estimate

GLASS BALL 1.2s 0.8s 0.5s 14.9s 1.2s 1.8s 0.5s 7.8s
RING 1.3s 0.8s 0.4s 6.5s 1.3s 1.8s 0.4s 4.6s
CORNELL BOX 2.1s 1.4s 8.4s 52.4s 2.1s 1.7s 8.4s 35.0s

Table 1: GPU render times in seconds for the scenes shown in figure 7, broken down by type of computation. Ray tracing time
includes shooting eye rays and shadow rays.

GPU. We will examine the performance impact of complex
scenes later in section 4.

We have rendered several test scenes on the GPU using
our photon mapping implementation. Figure 7 shows three
sets of images of our test scenes. The first column shows the
images produced by the GPU when using the kNN-grid on
a photon map generated by bitonic sort. The second shows

the results of using stencil routing and power redistribution
when rendering the scenes. The third column shows a soft-
ware rendered reference image.

All of our test scenes are rendered with a single eye ray
per pixel. The GLASS BALL and CORNELL BOX scenes
have area lights which are randomly sampled by the ray
tracer when computing shadows. The GLASS BALL scene

c© The Eurographics Association 2003.

46

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

samples the light source four times per pixel, and the COR-
NELL BOX scene samples the light source 32 times per pixel.
The RING scene uses a point light source and only shoots
one shadow ray per pixel.

The GLASS BALL scene was rendered at 512× 384 pix-
els using a 250× 1× 250 grid with 5,000 photons stored in
the photon map and 32 photons were sought for the radiance
estimate. The RING scene was rendered at 512× 384 pix-
els using a 250×1×250 grid with 16,000 photons stored in
the photon map and 64 photons were sought for the radiance
estimate. Finally, the CORNELL BOX scene was rendered at
512×512 pixels using a 25×25×50 grid with 65,000 pho-
tons stored and 500 sought for the radiance estimate.

The rendering times for our test scenes vary between 8.1
seconds for the RING scene and 64.3 seconds for the COR-
NELL BOX scene. Table 1 summarizes the rendering times
for the images, broken down by computation type.

The majority of our render time is spent performing the ra-
diance estimate. The time listed in table 1 is for every pixel
to finish computation. However, for our example scenes we
find that the system reaches visual convergence (that is, pro-
duces images indistinguishable from the final output) after a
much shorter time. In the GLASS BALL scene, a photon map
built with bitonic sort will visually converge in 4 seconds –
nearly four times as fast as the time listed for full conver-
gence would suggest. This happens for two reasons: First,
dark areas of the scene require many passes to explore all
the grid cells out to the maximum search radius, but few pho-
tons are found so the radiance estimate changes little. Sec-
ond, bright regions have lots of photons to search through,
but often saturate to maximum intensity fairly early. Once a
pixel is saturated, further photons found do not contribute to
its final color. Note that these disparities between visual and
total convergence are not manifested when the photon map is
built using stencil routing. Under that method, the grid cells
contain a more uniform distribution of photons, and satura-
tion corresponds to convergence.

3.2. Kernel Instruction Use

A breakdown of how the kernels spend time is important for
isolating and eliminating bottlenecks. The instruction break-
down tells us whether we are limited by computation or tex-
ture resources, and how much performance is lost due to
architectural restrictions. Table 2 shows the length of each
compiled kernel. These instruction costs are for performing
one iteration of each computation (e.g. a single step of binary
search or a single photon lookup for the radiance estimate).
The table further enumerates the number of instructions ded-
icated to texture lookups, address arithmetic, and packing
and unpacking of data into a single output.

We see at least 20 arithmetic operations for every texture
access. It may be surprising to note that our kernels are lim-
ited by computation rather than memory bandwidth. Gener-

Kernel Inst TEX Addr Pack

Bitonic Sort 52 2 13 0
Binary Search 18 1 13 0
Rad. Estimate 202 6 47 41

Stencil Routing 42 0 25 0
Rad. Estimate 193 5 20 41

Table 2: Instruction use within each kernel. Inst is the total
number of instructions generated by the Cg compiler for one
iteration with no loop unrolling. Also shown are the num-
ber of texture fetches (TEX), address arithmetic instructions
(Addr), and bit packing instructions (Pack).

ally, we would expect sorting and searching to be bandwidth-
limited operations. There are several factors that lead our
kernels to require so many arithmetic operations:

• Limits on the size of 1D textures require large arrays to be
stored as 2D textures. A large fraction of our instructions
are spent converting 1D array addresses into 2D texture
coordinates.

• The lack of integer arithmetic operations means that many
potentially simple calculations must be implemented with
extra instructions for truncation.

• The output from an fp30 fragment program is limited
to 128 bits. This means that many instructions are spent
packing and unpacking the multiple outputs of the radi-
ance estimate in order to represent the components in the
available space.

Our kernel analysis reveals the challenges of mapping tra-
ditional algorithms onto GPUs. In cases like sorting, the lim-
ited functionality of the GPU forces us to use algorithms
asymptotically more expensive than those we would use on
processors permitting more general memory access. In other
cases, the limitations of the GPU force us to expend com-
putation on overhead, reducing the effective compute power
available. In section 4, we discuss several possible architec-
tural changes that would improve the performance of algo-
rithms like photon mapping.

It should be noted that hand coding can still produce ker-
nels much smaller than those generated by the Cg compiler.
For example, we have hand coded a bitonic sort kernel that
uses only 19 instructions instead of the 52 produced by Cg.
However, we determined that the benefits of using Cg dur-
ing development outweighed the tighter code that could be
achieved by hand coding. As the Cg optimizer improves, we
anticipate a substantial reduction in the number of operations
required for many of our kernels.

c© The Eurographics Association 2003.

47

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

(a) 0.5s (b) 1.0s (c) 2.0s

Figure 8: A detailed image of the GLASS BALL caustic over
time. Reasonably high quality estimates are available much
sooner than a fully converged solution.

3.3. SIMD Overhead

Our radiance estimate kernel is run by tiling the screen
with large points instead of with a single quad. Using the
NV_OCCLUSION_QUERY extension, we are able to stop draw-
ing a tile once all its pixels have finished. By terminating
some tiles early, we are able to reduce the amount of SIMD
overhead in our radiance estimate kernel.

This early termination of tiles substantially reduced the
time required for our scenes to converge. We found tiling
the screen with 16 × 16 points resulted in the largest im-
provements in convergence time. The CORNELL BOX scene
saw the least improvement, with the time for the radiance
estimate to fully converge dropping from 104 seconds to
52.4 seconds. Full convergence of the GLASS BALL scene
was more dramatically affected, dropping from 102 seconds
down to 14.9 seconds. These results are expected as the
CORNELL BOX scene has a fairly uniform photon distribu-
tion but the GLASS BALL scene has high variance in photon
density. Ideas for a more general way to reduce SIMD over-
head via a fine-grained “computation mask” are discussed in
section 4.

3.4. Interactive Feedback

One advantage of the incremental radiance estimate is that
intermediate results can be drawn directly to the screen. The
images in figure 7 required several seconds to fully con-
verge. However, initial estimates of the global illumination
are available very rapidly. Figure 8 shows various stages in
the convergence of the radiance estimate for the full resolu-
tion GLASS BALL scene.

For smaller image windows, our system can provide in-
teractive feedback. When rendering a 160 × 160 window,
we can interactively manipulate the camera, scene geome-
try, and light source. Once interaction stops, the photon map
is rebuilt and the global illumination converges in only one
or two seconds.

4. Discussion and Future Work

In this section we discuss the limitations of the current sys-
tem and areas for future work.

4.1. Fragment Program Instruction Set

The overhead of address conversion, simulating integer
arithmetic, and packing is a dominant cost in many of our
kernels. Addressing overhead accounts for nearly 60% of
the cost of the stencil routing, and over 72% of the cost of
the binary search. Similarly, the radiance-estimate kernels
currently spend a third to a half of their time on overhead.
Native support for integer arithmetic and addressing of large
1D arrays need not substantially complicate GPU design, but
would dramatically reduce the amount of overhead compu-
tation needed in these kernels. Providing multiple outputs
would remove the need for aggressive packing of values in
the radiance estimates as well. Even with the overhead elim-
inated from the radiance estimate kernels, they still execute
several arithmetic instructions and would continue to bene-
fit from increased floating point performance without being
limited by memory bandwidth.

4.2. Memory Bottlenecks

Texture readback and copy can impose significant perfor-
mance penalties. We have shown timings for renderings with
tens of thousands of photons. The stencil routing is partic-
ularly subject to readback performance since we currently
must readback the texture of photons in order to use them as
input to the vertex processor. With a low number of photons,
texture readback consumes about 10% of the photon map
construction time. However, as the number of photons in-
creases, the fraction of time dedicated to photon readback in-
creases to 60% and more of the total map construction time.
The DirectX 9 API18 supports displacement mapping, effec-
tively permitting texture data to control point locations. We
anticipate that similar functionality will appear as an exten-
sion to OpenGL, which would eliminate the need for read-
back in our stencil sort.

4.3. Parallel Computation Model

We mentioned in section 3 that we gained a significant per-
formance increase when computing the radiance estimate by
tiling the screen with large points instead of a full screen
quad. Unfortunately, tiling is only practical when relatively
few tiles are used and when pixels with long computations
are clustered so that they do not overlap too many tiles.
One natural solution to reducing the SIMD overhead for pix-
els with varying workloads is what we call a “computation
mask”. Similar to the early fragment kill discussed by Pur-
cell et al.21, a user controllable mask could be set for each
pixel in an image. The mask would indicate pixels where
work has completed, allowing subsequent fragments at that
location to be discarded immediately. We showed a perfor-
mance gain from two to ten using a coarse tiling, and observe
that a computation mask with single pixel granularity would
be even more efficient.

c© The Eurographics Association 2003.

48

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

4.4. Uniform Grid Scalability

One issue associated with rendering more complex scenes
is that the resolution of the grid used for the photon map
needs to increase if we want to resolve illumination details.
At some point a high density uniform grid becomes too large
to store or address on the GPU, and empty cells end up dom-
inating the memory usage. One fix is to simply store the
photons in a hash table based on their grid cell address23.
High density grids no longer have empty cell overhead or ad-
dressability issues. Handling hash table collisions would add
some overhead to the radiance estimate, however, as pho-
tons in the hash bucket not associated with the current grid
cell must be examined and ignored. An additional problem
for our stencil routing approach is that power redistribution
becomes non-trivial.

4.5. Indirect Lighting and Adaptive Sampling

Our current implementation directly visualizes the photon
map for indirect lighting and caustics. While this works well
for caustics, the indirect lighting can look splotchy when few
photons are used. A large number of photons are needed to
obtain a smooth radiance estimate when the photon map is
visualized directly. Instead, it is often desirable to use dis-
tributed ray tracing to sample incident lighting at the first
diffuse hit point, and use the photon map to provide fast es-
timates of illumination only for the secondary rays. This fi-
nal gather approach is more expensive, although the cost for
tracing indirect rays can often be reduced using techniques
like irradiance gradients25 or adaptive sampling.

We have considered an adaptive sampling algorithm that
initially computes a low resolution image and then builds
successively higher resolution images by interpolating in
low variance areas and tracing additional rays in high vari-
ance areas. Our initial studies have shown that this can re-
duce the total number of samples that need to be computed
by a factor of 10. However, such a scheme cannot be imple-
mented effectively without support for a fine-grained com-
putation mask like that described in section 4.3.

5. Conclusions

We have demonstrated methods to construct a grid-based
photon map, and how to perform a search for at least k-
nearest neighbors using the grid, entirely on the GPU. All
of our algorithms are compute bound, meaning that pho-
ton mapping performance will continue to improve as next-
generation GPUs increase their floating point performance.
We have also proposed several refinements for extending fu-
ture graphics hardware to support these algorithms more ef-
ficiently.

We hope that by demonstrating the feasibility of a global
illumination algorithm running completely in hardware,
GPUs will evolve to more easily enable and support these
types of algorithms.

6. Acknowledgments

We would like to thank Kurt Akeley and Matt Papakipos
for helpful discussions contributing to development of the
stencil routing method. Kekoa Proudfoot and Ian Buck both
contributed ideas and algorithms related to sorting, search-
ing, and counting on graphics hardware. We are grateful to
Mike Houston for advice on debugging, and to John Owens
for offering many suggestions on a draft of this paper. David
Kirk and Nick Triantos provided us with the hardware and
drivers that made this work possible.

We would also like to thank the organizations that pro-
vided us with individual funding. Tim Purcell is a recipi-
ent of an NVIDIA graduate fellowship. Mike Cammarano is
supported by a National Science Foundation Fellowship and
a 3Com Corporation Stanford Graduate Fellowship. Addi-
tional support was provided by DARPA contract F29601-
01-2-0085.

References

1. ATI. Radeon 9800 Pro product web site, 2003.
http://mirror.ati.com/products/pc/radeon9800pro/index.html.

2. Kenneth E. Batcher. Sorting networks and their
applications. Proceedings of AFIPS Spring Joint
Computing Conference, 32:307–314, 1968.

3. Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Communications
of the ACM, 18(9):509–517, 1975.

4. Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter
Schröder. Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid. ACM Transactions
on Graphics, 2003. (To appear in Proceedings of ACM
SIGGRAPH 2003).

5. Nathan A. Carr, Jesse D. Hall, and John C. Hart. The
ray engine. In Graphics Hardware, pages 37–46, 2002.

6. John Gerald Cleary. Analysis of an algorithm for
finding nearest neighbors in Euclidean space. ACM
Transactions on Mathematical Software (TOMS),
5(2):183–192, 1979.

7. Robert L. Cook, Thomas Porter, and Loren Carpenter.
Distributed ray tracing. In Proceedings of the 11th
Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’84), pages
137–145, 1984.

8. Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Bennett Battaile. Modelling the
interaction of light between diffuse surfaces. In
Computer Graphics (Proceedings of SIGGRAPH 84),
volume 18, pages 213–222, July 1984.

9. Mark Harris, Greg Coombe, Thorsten Scheuermann,
and Anselmo Lastra. Physically-based visual

c© The Eurographics Association 2003.

49

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

simulation on graphics hardware. In Graphics
Hardware, pages 109–118, 2002.

10. Henrik Wann Jensen. Global illumination using
photon maps. In Rendering Techniques ’96: 7th
Eurographics Workshop on Rendering, pages 21–30,
1996.

11. Henrik Wann Jensen. Realistic Image Synthesis using
Photon Mapping. A K Peters, 2001. ISBN
1568811470.

12. James T. Kajiya. The rendering equation. In Computer
Graphics (Proceedings of ACM SIGGRAPH 86), pages
143–150, 1986.

13. Ujval J. Kapasi, William J. Dally, Scott Rixner,
Peter R. Mattson, John D. Owens, and Brucek
Khailany. Efficient conditional operations for
data-parallel architectures. In Proceedings of the 33rd
Annual ACM/IEEE International Symposium on
Microarchitecture, pages 159–170, 2000.

14. Jens Krüger and Rüdiger Westermann. Linear algebra
operators for gpu implementation of numerical
algorithms. ACM Transactions on Graphics, 2003. (To
appear in Proceedings of ACM SIGGRAPH 2003).

15. E. Scott Larsen and David McAllister. Fast matrix
multiplies using graphics hardware. In
Supercomputing 2001, page 55, 2001.

16. Vincent C. H. Ma and Michael D. McCool. Low
latency photon mapping using block hashing. In
Graphics Hardware (2002), pages 89–98, 2002.

17. William R. Mark, Steve Glanville, and Kurt Akeley.
Cg: A system for programming graphics hardware in a
c-like language. ACM Transactions on Graphics,
2003. (To appear in Proceedings of ACM SIGGRAPH
2003).

18. Microsoft. DirectX home page, 2003.
http://www.microsoft.com/directx/.

19. NVIDIA. Geforce FX 5900 product web site, 2003.
http://nvidia.com/view.asp?PAGE=fx_5900.

20. Steven Parker, William Martin, Peter-Pike J. Sloan,
Peter Shirley, Brian Smits, and Charles Hansen.
Interactive ray tracing. In 1999 ACM Symposium on
Interactive 3D Graphics, pages 119–126, 1999.

21. Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics,
21(3):703–712, July 2002. ISSN 0730-0301
(Proceedings of ACM SIGGRAPH 2002).

22. Frank Suykens and Yves D. Willems. Density control
for photon maps. In Rendering Techniques 2000: 11th
Eurographics Workshop on Rendering, pages 23–34,
2000.

23. Ingo Wald, Thomas Kollig, Carsten Benthin,
Alexander Keller, and Philipp Slusallek. Interactive
global illumination using fast ray tracing. In
Rendering Techniques 2002: 13th Eurographics
Workshop on Rendering, pages 15–24, 2002.

24. Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive rendering with coherent
ray tracing. Computer Graphics Forum,
20(3):153–164, 2001.

25. Greg Ward and Paul Heckbert. Irradiance gradients. In
Eurographics Rendering Workshop, pages 85–98, May
1992.

26. Turner Whitted. An improved illumination model for
shaded display. Communications of the ACM,
23(6):343–349, 1980.

c© The Eurographics Association 2003.

50

Purcell et al. / Photon Mapping on Programmable Graphics Hardware

(a) Bitonic Sort (b) Stencil Routing (c) Software Reference

Figure 7: Test scene renderings. Both (a) and (b) were rendered on the GPU using bitonic sort and stencil routing respectively.
Software renderings are shown in (c) for reference.

c© The Eurographics Association 2003.

132

