
Interactive Multi-Pass Programmable Shading

Mark S. Peercy, Marc Olano, John Airey, P. Jeffrey Ungar
SGI

Abstract
Programmable shading is a common technique for production an-
imation, but interactive programmable shading is not yet widely
available. We support interactive programmable shading on vir-
tually any 3D graphics hardware using a scene graph library on
top of OpenGL. We treat the OpenGL architecture as a general
SIMD computer, and translate the high-level shading description
into OpenGL rendering passes. While our system uses OpenGL,
the techniques described are applicable to any retained mode in-
terface with appropriate extension mechanisms and hardware API
with provisions for recirculating data through the graphics pipeline.

We present two demonstrations of the method. The first is
a constrained shading language that runs on graphics hardware
supporting OpenGL 1.2 with a subset of the ARB imaging exten-
sions. We remove the shading language constraints by minimally
extending OpenGL. The key extensions are color range (support-
ing extended range and precision data types) and pixel texture (us-
ing framebuffer values as indices into texture maps). Our second
demonstration is a renderer supporting the RenderMan Interface
and RenderMan Shading Language on a software implementation
of this extended OpenGL. For both languages, our compiler tech-
nology can take advantage of extensions and performance charac-
teristics unique to any particular graphics hardware.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement.

Keywords: Graphics Hardware, Graphics Systems, Illumina-
tion, Languages, Rendering, Interactive Rendering, Non-Realistic
Rendering, Multi-Pass Rendering, Programmable Shading, Proce-
dural Shading, Texture Synthesis, Texture Mapping, OpenGL.

1 INTRODUCTION
Programmable shading is a means for specifying the appearance of
objects in a synthetic scene. Programs in a special purpose lan-
guage, known as shaders, describe light source position and emis-
sion characteristics, color and reflective properties of surfaces, or
transmittance properties of atmospheric media. Conceptually, these
programs are executed for each point on an object as it is being ren-
dered to produce a final color (and perhaps opacity) as seen from
a given viewpoint. Shading languages can be quite general, having

Now at Intrinsic Graphics

constructs familiar from general purpose programming languages
such as C, including loops, conditionals, and functions. The most
common is the RenderMan Shading Language [32].

The power of shading languages for describing intricate light-
ing and shading computations been widely recognized since Cook’s
seminal shade tree research [7]. Programmable shading has played
a fundamental role in digital content creation for motion pictures
and television for over a decade. The high level of abstraction in
programmable shading enables artists, storytellers, and their techni-
cal collaborators to translate their creative visions into images more
easily. Shading languages are also used for visualization of scien-
tific data. Special data shaders have been developed to support the
depiction of volume data [3, 8], and a texture synthesis language has
been used for visualizing data fields on surfaces [9]. Image process-
ing scripting languages [22, 31] also share much in common with
programmable shading.

Despite its proven usefulness in software rendering, hardware
acceleration of programmable shading has remained elusive. Most
hardware supports a parametric appearance model, such as Phong
lighting evaluated per vertex, with one or more texture maps ap-
plied after Gouraud interpolation of the lighting results [29]. The
general computational nature of programmable shading, and the un-
bounded complexity of shaders, has kept it from being supported
widely in hardware. This paper describes a methodology to support
programmable shading in interactive visual computing by compil-
ing a shader into multiple passes through graphics hardware. We
demonstrate its use on current systems with a constrained shading
language, and we show how to support general shading languages
with only two hardware extensions.

1.1 Related Work
Interactive programmable shading, with dynamically changing
shader and scene, was demonstrated on the PixelFlow system [26].
PixelFlow has an array of general purpose processors that can ex-
ecute arbitrary code at every pixel. Shaders written in a language
based on RenderMan’s are translated into C++ programs with em-
bedded machine code directives for the pixel processors. An appli-
cation accesses shaders through a programmable interface exten-
sion to OpenGL. The primary disadvantages of this approach are
the additional burden it places on the graphics hardware and driver
software. Every system that supports a built-in programmable in-
terface must include powerful enough general computing units to
execute the programmable shaders. Limitations to these computing
units, such as a fixed local memory, will either limit the shaders
that may be run, have a severe impact on performance, or cause the
system to revert to multiple passes within the driver. Further, ev-
ery such system will have a unique shading language compiler as
part of the driver software. This is a sophisticated piece of software
which greatly increases the complexity of the driver.

Our approach to programmable shading stands in contrast to
the programmable hardware method. Its inspiration is a long line of
interactive algorithms that follow a general theme: treat the graph-
ics hardware as a collection of primitive operations that can be used

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
 SIGGRAPH 2000, New Orleans, LA USA
 © ACM 2000 1-58113-208-5/00/07 ...$5.00

425

to build up a final solution in multiple passes. Early examples of this
model include multi-pass shadows, planar reflections, highlights on
top of texture, depth of field, and light maps [2, 10]. There has been
a dramatic surge of research in this area over the past few years.
Sophisticated appearance computations, which had previously been
available only in software renderers, have been mapped to generic
graphics hardware. For example, lighting per pixel, general bidi-
rectional reflectance distribution functions, and bump mapping now
run in real-time on hardware that supports none of those effects na-
tively [6, 17, 20, 24].

Consumer games like ID Software’s Quake 3 make extensive
use of multi-pass effects [19]. Quake 3 recognizes that multi-pass
provides a flexible method for surface design and takes the impor-
tant step of providing a scripting mechanism for rendering passes,
including control of OpenGL blending mode, alpha test functions,
and vertex texture coordinate assignment. In its current form, this
scripting language does not provide access to all of the OpenGL
state necessary to treat OpenGL as a general SIMD machine.

A team at Stanford has been investigating real-time pro-
grammable shading. Their focus is a framework and language that
explicitly divides operations into those that are executed at the ver-
tex processing stage in the graphics pipeline and those that are exe-
cuted at the fragment processing stage [25].

The hardware in all of these cases is being used as a com-
puting machine rather than a special purpose accelerator. Indeed,
graphics hardware has been used to accelerate techniques such as
back-projection for tomographic reconstruction [5] and radiosity
approximations [21]. It is now recognized that some new hardware
features, such as multi-texture [24, 29], pixel texture [17], and color
matrix [23], are particularly valuable for supporting these advanced
computations interactively.

1.2 Our Contribution
In this paper, we embrace and extend previous multi-pass tech-
niques. We treat the OpenGL architecture as a SIMD computer.
OpenGL acts as an assembly language for shader execution. The
challenge, then, is to convert a shader into an efficient set of
OpenGL rendering passes on a given system. We introduce a com-
piler between the application and the graphics library that can target
shaders to different hardware implementations.

This philosophy of placing the shading compiler above the
graphics API is at the core of our work, and has a number of
advantages. We believe the number of languages for interactive
programmable shading will grow and evolve over the next sev-
eral years, responding to the unique performance and feature de-
mands of different application areas. Likewise, hardware will in-
crease in performance and many new features will be introduced.
Our methodology allows the languages, compiler, and hardware to
evolve independently because they are cleanly decoupled.

This paper has three main contributions. First, we formalize
the idea of using OpenGL as an assembly language into which pro-
grammable shaders are translated, and we show how to apply dy-
namic tree-rewriting compiler technology to optimize the mapping
between shading languages and OpenGL (Section 2). Second, we
demonstrate the immediate application of this approach by intro-
ducing a constrained shading language that runs interactively on
most current hardware systems (Section 3). Third, we describe the
color range and pixel texture OpenGL extensions that are neces-
sary and sufficient to accelerate fully general shading languages
(Section 4). As a demonstration of the viability of this solution,
we present a complete RenderMan renderer including full support
of the RenderMan Shading Language running on a software im-

Vertex Operations (transforms,
tex coord generation, lighting)

Texture Memory

Pixel Operations (lookup table,
 color matrix, minmax)

Rasterization (color
interpolation, texturing, fog)

Fragment Operations (depth,
alpha test, stencil, blending) Framebuffer

Figure 1:

plementation of this extended OpenGL. We close the paper with a
discussion (Section 5) and conclusion (Section 6).

2 THE SHADING FRAMEWORK
There is great diversity in modern 3D graphics hardware. Each
graphics system includes unique features and performance charac-
teristics. Countering this diversity, all modern graphics hardware
also supports the basic features of the OpenGL API standard.

While it is possible to add shading extensions to graphics hard-
ware, OpenGL is powerful enough to support shading with no ex-
tensions at all. Building programmable shading on top of standard
OpenGL decouples the hardware and drivers from the language,
and enables shading on every existing and future OpenGL-based
graphics system.

A compiler turns shading computations into multiple passes
through the OpenGL rendering pipeline (Figure 1). This compiler
can produce a general set of rendering passes, or it can use knowl-
edge of the target hardware to pick an optimized set of passes.

2.1 OpenGL as an Assembly Language
One key observation allows shaders to be translated into multi-pass
OpenGL: a single rendering pass is also a general SIMD instruction
— the same operations are performed simultaneously for all pixels
in an object. At the simplest level, the framebuffer is an accumu-
lator, texture or pixel buffers serve as per-pixel memory storage,
blending provides basic arithmetic operations, lookup tables sup-
port function evaluation, the alpha test provides a variety of con-
ditionals, and the stencil buffer allows pixel-level conditional exe-
cution. A shader computation is broken into pieces, each of which
can be evaluated by an OpenGL rendering pass. In this way, we
build up a final result for all pixels in an object (Figure 2). There
are typically several ways to map shading operations into OpenGL.
We have implemented the following:

Data Types: Data with the same value for every pixel in an ob-
ject are called uniform, while data with values that may vary from
pixel to pixel are called varying. Uniform data types are handled
outside the graphics pipeline. The framebuffer retains intermediate
varying results. Its four channels may hold one quadruple (such as
a homogeneous point), one triple (such as a vector, normal, point,
or color) and one scalar, or four independent scalars. We have made
no attempt to handle varying data types with more than four chan-
nels. The framebuffer channels (and hence independent scalars or

426

#include "marble.h"

surface marble()
{
 varying color a;
 uniform string tx;
 uniform float x; x = 1/2;

 tx = "noisebw.tx";

 FB = texture(tx,scale(x,x,x));
 repeat(3) {
 x = x*.5;
 FB *= .5;
 FB += texture(tx,scale(x,x,x));
 }
 FB = lookup(FB,tab);

 a = FB;
 FB = diffuse;
 FB *= a;
 FB += environment("env");
}

Figure 2:

the components of triples and quadruples) can be updated selec-
tively on each pass by setting the write-mask with glColorMask.

Variables: Varying global, local, and temporary variables
are transferred from the framebuffer to a named texture using
glCopyTexSubImage2D, which copies a portion of the frame-
buffer into a portion of a texture. In our system, these textures can
be one channel (intensity) or four channels (RGBA), depending on
the data type they hold. Variables are used either by drawing a tex-
tured copy of the object bounding box or by drawing the object ge-
ometry using a projective texture. The relative speed of these two
methods will vary from graphics system to graphics system. In-
tensity textures holding scalar variables are expanded into all four
channels during rasterization and can therefore be restored into any
framebuffer channel.

Arithmetic Operations: Most arithmetic operations are per-
formed with framebuffer blending. They have two operands: the
framebuffer contents and an incoming fragment. The incom-
ing fragment may be produced either by drawing geometry (ob-
ject color, a texture, a stored variable, etc.) or by copying pix-
els from the framebuffer and through the pixel operations with
glCopyPixels. Data can be permuted (swizzled) from one
framebuffer channel to another or linearly combined more gen-
erally using the color matrix during a copy. The framebuffer
blending mode, set by glBlendEquation, glBlendFunc,
and glLogicOp, supports overwriting, addition, subtraction, mul-
tiplication, bit-wise logical operations, and alpha blending. Unex-
tended OpenGL does not have a divide blend mode. We handle di-
vide using multiplication by the reciprocal. The reciprocal is com-
puted like other mathematical functions (see below). More com-
plicated binary operations are reduced to a combination of these
primitive operations. For example, a dot product of two vectors is

a component-wise multiplication followed by a pixel copy with a
color matrix that sums the resulting three components together.

Mathematical and Shader Functions: Mathematical func-
tions with a single scalar operand (e.g. sin or reciprocal) use color
or texture lookup tables during a framebuffer-to-framebuffer pixel
copy. Functions with more than one operand (e.g. atan2) or a sin-
gle vector operand (e.g. normalize or color space conversion) are
broken down into simpler monadic functions and arithmetic opera-
tions, each of which can be supported in a pass through the OpenGL
pipeline. Some shader functions, such as texturing and diffuse or
specular lighting, have direct correspondents in OpenGL. Often,
complex mathematical and shader functions are simply translated
to a series of simpler shading language functions.

Flow Control: Stenciling, set by glStencilFunc and
glStencilOp, limits the effect of all operations to only a subset
of the pixels, with other pixels retaining their original framebuffer
values. We use one bit of the stencil to identify pixels in the ob-
ject, and additional stencil bits to identify subsets of those pixels
that pass varying conditionals (if-then-else constructs and loops).
One stencil bit is devoted to each level of nesting. Loops with uni-
form control and conditionals with uniform relations do not need a
stencil bit to control their influence because they affect all pixels.

A two step process is used to set the stencil bit for a varying
conditional. First, the relation is computed with normal arithmetic
operations, such that the result ends up in the alpha channel of the
framebuffer. The value is zero where the condition is true and one
where it is false. Next, a pixel copy is performed with the alpha
test enabled (set by glAlphaFunc). Only fragments that pass
the alpha test are passed on to the stenciling stage of the OpenGL
pipeline. A stencil bit is set for all of these fragments. The stencil
remains unchanged for fragments that failed the alpha test. In some
cases, the first operation in the body of the conditional can occur in
the same pass that sets the stencil.

The passes corresponding to the different blocks of shader
code at different nesting levels affect only those pixels that have
the proper stencil mask. Because we are executing a SIMD compu-
tation, it is necessary to evaluate both branches of if-then-else con-
structs whose relation varies across an object. The stencil compare
for the else clause simply uses the complement of the stencil bit for
the then clause. Similarly, it is necessary to repeat a loop with a
varying termination condition until all pixels within the object exit
the loop. This requires a test that examines all of the pixels within
the object. We use the minmax function from the ARB imaging
extension as we copy the alpha channel to determine if any alpha
values are non-zero (signifying they still pass the looping condi-
tion). If so, the loop continues.

2.2 OpenGL Encapsulation
We encapsulate OpenGL instructions in three kinds of rendering
passes: GeomPasses, CopyPasses, and CopyTexPasses. Geom-
Passes draw geometry to use vertex, rasterization, and fragment
operations. CopyPasses copy a subregion of the framebuffer (via
glCopyPixels) back into the same place in the framebuffer to
use pixel, rasterization, and fragment operations. A stencil allows
the CopyPass to avoid operating on pixels outside the object. Copy-
TexPasses copy a subregion of the framebuffer into a texture object
(via glCopyTexSubImage2D) and also utilize pixel operations.
There are two subtypes of GeomPass. The first draws the object
geometry, including normal vectors and texture coordinates. The
second draws a screen-aligned bounding rectangle that covers the
object using stenciling to limit the operations to pixels on the ob-
ject. Each pass maintains the relevant OpenGL state for its path

427

through the pipeline. State changes on drawing are minimized by
only setting the state in each pass that is not default and immedi-
ately restoring that state after the pass.

2.3 Compiling to OpenGL
The key to supporting interactive programmable shading is a com-
piler that translates the shading language into OpenGL assembly.
This is a CISC-like compiler problem because OpenGL passes are
complex instructions. The problem is somewhat simplified due to
constraints in the language and in OpenGL as an instruction set.
For example, we do not have to worry about instruction scheduling
since there is no overlap between rendering passes.

Our compiler implementation is guided by a desire to retarget
the compiler to easily take advantage of unique features and perfor-
mance and to pick the best set of passes for each target architecture.
We also want to be able to support multiple shading languages and
adapt as languages evolve. To help meet these goals, we built our
compiler using an in-house tool inspired by the iburg code gen-
eration tool [11], though we use it for all phases of compilation.
This tool finds the least-cost covering of a tree representation of the
shader based on a text file of patterns.

A simple example can show how the tree-matching tool op-
erates and how it allows us to take advantage of extensions to
OpenGL. Part of a shader might be matched by a pair of tex-
ture lookups, each with a cost of one, or by a single multi-texture
lookup, also with a cost of one. In this case, multi-texture is cheaper
because it has a total cost of one instead of two. Using similar
matching rules and semantic actions, the compiler can make use of
fragment lighting, light texture, noise generation, divide or condi-
tional blends, or any other OpenGL extension [16, 27].

The entire shader is matched at once, giving the set of match-
ing rules that cover the shader with the least total cost. For exam-
ple, the computations surrounding the above pair of texture lookups
expand the set of possible matching rules. Given operation A, tex-
ture lookup B, texture lookup C, and operation D, it may be pos-
sible to do all of the operations in four separate passes (A,B,C,D),
to do the surrounding operations separately while combining the
texture lookups into one multi-texture pass for a total cost of three
(A,BC,D), or to combine one computation with each texture lookup
for a cost of two (AB,CD). By considering the entire shader we can
choose the set of matching rules with the least overall cost.

When we use the tool for final OpenGL pass generation, we
currently use the number of passes as the cost for each matching
rule. For performance optimization, the costs should correspond
to predicted rendering speed, so the cost for a GeomPass would be
different from the cost for a CopyPass or a CopyTexPass.

The pattern matching happens in two phases, labeling and re-
ducing. Labeling is done bottom-up through the abstract syntax
tree, using dynamic programming to find the least-cost set of pat-
tern match rules. Reducing is done top-down, with one semantic
action run before the node’s children are reduced and one after.
The iburg-like label/reduce tool proved useful for more than just
final pass selection. We use it for shader syntax checking, constant
folding, and even memory allocation (although most of the memory
allocation algorithm is in the code associated with a small number
of rules). The ease of changing costs and creating new matching
rules allows us to achieve our goal of flexible retargeting of the
compiler for different hardware and shading languages.

2.4 Scene Graph Support
Since objects may be rendered multiple times, it is necessary to
retain geometry data and to deliver it repeatedly to the graphics

hardware. In addition, shaders need to be associated with objects to
describe their appearances, and the shaders and objects need to be
translated into OpenGL passes to render an image. Our framework
supports these operations in a scene graph used by an application
through the addition of new scene graph containers and new traver-
sals.

In our implementation, we have extended the Cosmo3D scene
graph library [30]. Cosmo3D uses a familiar hierarchical scene
graph. Internal nodes describe coordinate transformations, while
the leaves are Shape nodes, each of which contains a list of Geome-
try and an Appearance. Traversals of the scene graph are known as
actions. A DrawAction, for example, is applied to the scene graph
to render the objects into a window.

We have implemented a new appearance class that contains
shaders. When included in a shape node, this appearance com-
pletely describes how to shade the geometry in the shape. The
shaders may include a list of active light shaders, a displacement
shader, a surface shader, and an atmosphere shader. In addition,
we have implemented a new traversal, known as a ShadeAction. A
ShadeAction converts a scene graph containing shapes with the new
appearance into another Cosmo3D scene graph describing the mul-
tiple passes for all of the objects in the original scene graph. (The
transformation of scene graphs is a powerful, general technique that
has been proposed to address a variety of problems [1].) The key
element of the ShadeAction is the shading language compiler that
converts the shaders into multiple passes. A ShadeAction may treat
multiple objects that share the same shader as a single, combined
object to minimize overhead. A DrawAction applied to this second
scene graph renders the final image.

The scene graph passes information to the compiler including
the matrix to transform from the object’s coordinate system into
camera space and the screen space footprint for the geometry. The
footprint is computed during the ShadeAction by projecting a 3D
bounding box of the geometry into screen space and computing an
axis-aligned 2D bounding box of the eight projected points. Only
pixels within the 2D bounding box are copied on a CopyPass or
drawn on the quad-GeomPass to minimize unnecessary data move-
ment when shading each object.

We provide support for debugging at the single-step, pass-
by-pass level through special hooks inserted into the DrawAction.
Each pass is held in an extended Cosmo3D Group node, which in-
vokes the debugging hook functions when drawn. Each pass is also
tagged with the line of source code that generated it, so everything
from shader source-level debugging to pass-by-pass image dumps
is possible. Hooks at the per-pass level also let us monitor or es-
timate performance. At the coarsest level, we can find the number
of passes executed, but we can also examine each pass to record
details like pixels written or time to draw.

3 EXAMPLE: INTERACTIVE SL
We have developed a constrained shading language, called ISL (for
Interactive Shading Language) [25] and an ISL compiler to demon-
strate our method on current hardware. ISL is similar in spirit to the
RenderMan Shading Language in that it provides a C-like syntax
to specify per-pixel shading calculations, and it supports separate
light, surface, and atmosphere shaders. Data types include varying
colors, and uniform floats, colors, matrices, and strings. Local vari-
ables can hold both uniform and varying values. Nestable flow con-
trol structures include loops with uniform control, and uniform and
varying conditionals. There are built-in functions for diffuse and
specular lighting, texture mapping, projective textures, environment
mapping, RGBA one-dimensional lookup tables, and per-pixel ma-

428

surface celtic() {
 varying color a;
 FB = diffuse;
 FB *= color(.5,.2,0.,1.);
 a = FB;
 FB = specular(30.);
 FB += a;
 FB *= texture("celtic");
 a = FB;
 FB = 1;

celtic");
 FB *= texture("silk");
 FB *= .15;
 FB += a;
}
distantlight leaves(uniform string
 map = "leaves", ...) {
 uniform float tx;
 uniform float ty;
 uniform float tz;
 tx = frame*speedx+phasex;
 ty = frame*speedy+phasey;
 tz = frame*speedz+phasez;
 FB = project(map,
 scale(sx,sx,sx)*
 rotate(0,0,1,rx)*
 translate(ax*sin(tx),0,0)*
 shadermatrix);
 FB *= project(map,
 scale(sy,sy,sy)*...);
}
uniform matrix lt = (0,0,0,0,
 0,0,0,0,1,1,1,0,0,0,0,1);
surface bump(uniform string b="";
 uniform string tx = "") {
 uniform matrix m;
 FB = texture(b);
 m = objectmatrix;
 m[0][3] = m[1][3] = m[2][3] = 0.;
 m[3][3] = m[3][0] = m[3][1] = 0.;
 m[3][2] = 0.;
 m = lt*m*transl
 scale(2,2,2);
 FB = transform(FB,m);
 FB *= texture(tx);
}
#include "threshtab.h"
surface shipRockRot(...) {
 varying color a, b, c;
 FB = texture(rot); FB *= .5;

s(.08*frame));
 FB = lookup(FB,mtab); c = FB;
 FB = color(1,1,
 FB *= texture(t1); a = FB;
 FB = texture(t2);
 FB *= texture(rot);
 FB = diffuse;
 FB *= color(.5,.2,0,1); b = FB;
 FB = specular(30.);
 FB += b; FB *= texture(t2);
 FB *= c; FB += a;
}

#include "swizzle.h"
table greentable = { {0,.2,0,1},
 {0,.4,0,1) };
surface toon(uniform float do = 1.;
 uniform float edge = .25) {
 FB = environment("park.env");
 if (do > .5) {
 FB += edge;
 FB =transform(FB,rgba_rrra);
 FB =lookup(FB,greentable);
 FB += environment("sun");
 }
}

Figure 3:

trix transformations. In addition, ISL supports uniform shader pa-
rameters and a set of uniform global variables (shader space, object
space, time, and frame count).

We have intentionally constrained ISL in a number of ways.
First, we only chose primitive operations and built-in functions
that can be executed on any hardware supporting base OpenGL 1.2
plus the color matrix extension. Consequently, many current hard-
ware systems can support ISL. (If the color matrix transformation
is eliminated, ISL should run anywhere.) This constraint provides
the shader writer with insight into how limited precision of current
commercial hardware may affect the shader. Second, the syntax
does not allow varying expressions of expressions, which ensures
that the compiler does not need to create any temporary storage
not already made explicit in the shader. As a result, the writer of
a shader knows by inspection the worst-case temporary storage re-
quired by the shading code (although the compiler is free to use less
storage, if possible). Third, arbitrary texture coordinate computa-
tion is not supported. Texture coordinates must come either from
the geometry or from the standard OpenGL texture coordinate gen-
eration methods and texture matrix.

One consequence of these design constraints is that ISL shad-
ing code is largely decoupled from geometry. For example, since
shader parameters are uniform there is no need to attach them di-
rectly to each surface description in the scene graph. As a result,
ISL and the compiler can migrate from application to application
and scene graph to scene graph with relative ease.

3.1 Compiler
We perform some simple optimizations in the parser. For instance,
we do limited constant compression by evaluating at parse time
all expressions that are declared uniform. When parameters or the
shader code change, we must reparse the shader. In our current sys-
tem, we do this every time we perform a ShadeAction. A more so-
phisticated compiler, such as the one implemented for the Render-
Man Shading Language (Section 4) performs these optimizations
outside the parser.

We expand the parse trees for all of the shaders in an appear-
ance (light shaders, surface shader, and atmosphere shader) into a
single tree. This tree is then labeled and reduced using the tree
matching compiler tool described in Section 2.3. The costs fed into
the labeler instruct the compiler to minimize the total number of
passes, regardless of the relative performance of the different kinds
of passes.

The compiler recognizes and optimizes subexpressions such
as a texture, diffuse, or specular lighting multiplied by a constant.
The compiler also recognizes when a local variable is assigned a
value that can be executed in a single pass. Rather than executing
the pass, storing the result, and retrieving it when referenced, the
compiler simply replaces the local variable usage with the single
pass that describes it.

3.2 Demonstration
We have implemented a simple viewer on top of the extended scene
graph to demonstrate ISL running interactively. The viewer sup-
ports mouse interaction for rotation and translation. Users can also
modify shaders interactively in two ways. They can edit shader text
files, and their changes are picked up immediately in the viewer.
Additionally, they can modify parameters by dragging sliders, ro-
tating thumb-wheels, or entering text in a control panel. The viewer
creates the control panel on the fly for any selected shader. Changes
to the parameters are seen immediately in the window. Examples
of the viewer running ISL are given in Figures 2 and 3.

429

4 EXAMPLE: RENDERMAN SL
RenderMan is a rendering and scene description interface standard
developed in the late 1980s [14, 28, 32]. The RenderMan stan-
dard includes procedural and bytestream scene description inter-
faces. It also defines the RenderMan Shading Language, which
is the de facto standard for programmable shading capability and
represents a well-defined goal for anyone attempting to accelerate
programmable shading.

The RenderMan Shading Language is extremely general, with
control structures common to many programming languages, rich
data types, and an extensive set of built-in operators and geomet-
ric, mathematical, lighting, and communication functions. The lan-
guage originally was designed with hardware acceleration in mind,
so complicated or user-defined data types that would make acceler-
ation more difficult are not included. It is a large but straightforward
task to translate the RenderMan Shading Language into multi-pass
OpenGL, assuming the following two extensions:

Extended Range and Precision Data Types: Even the sim-
plest RenderMan shaders have intermediate computations that re-
quire data values to extend beyond the range [0-1], to which
OpenGL fragment color values are clamped. In addition, they
need higher precision than is found in current commercial hard-
ware. With the color range extension, color data can have an
implementation-specific range to which it is clamped during raster-
ization and framebuffer operations (including color interpolation,
texture mapping, and blending). The framebuffer holds colors of
the new type, and the conversion to a displayable value happens
only upon video scan-out. We have used the color range extension
with an IEEE single precision floating point data type or a subset
thereof to support the RenderMan Shading Language.

Pixel Texture: RenderMan allows texture coordinates to be
computed procedurally. In this case, texture coordinates cannot
be expected to change linearly across a geometric primitive, as re-
quired in unextended OpenGL. This general two-dimensional indi-
rection mechanism can be supported with the OpenGL pixel texture
extension [17, 18, 27]. This extension allows the (possibly float-
ing point) contents of the framebuffer to be used as texture indices
when pixels are copied from the framebuffer. The red, green, blue,
and alpha channels are used as texture coordinates s, t, r, and q,
respectively. We use pixel texture not only to index two dimen-
sional textures but also to index extremely wide one-dimensional
textures. These wide textures are used as lookup tables for math-
ematical functions such as sin, reciprocal, and sqrt. These can be
simple piecewise linear approximations, starting points for Newton
iteration, components used to construct the more complex mathe-
matical functions, or even direct one-to-one mappings for a reduced
floating point format.

4.1 Scene Graph Support
The RenderMan Shading Language demands greater support from
the scene graph library than ISL because geometry and shaders are
more tightly coupled. Varying parameters can be supplied as four
values that correspond to the corners of a surface patch, and the
parameter over the surface is obtained through bilinear interpola-
tion. Alternatively, one parameter value may be supplied per con-
trol point for a bicubic patch mesh or a NURBS patch, and the
parameter is interpolated using the same basis functions that de-
fine the surface. We associate a (possibly empty) list of named pa-
rameters with each surface to hold any parameters provided when
the surface is defined. When the surface geometry is tessellated
to form GeoSets (triangle strip sets and fan sets, etc.), its parame-
ters are transferred to the GeoSets so that they may be referenced

Figure 4:

illuminance

noise

http://www.renderman.org

430

and drawn as vertex colors by the passes produced by the compiler.
Similarly, a shader may require derivatives of surface properties,
such as the partial derivatives of the position (dP/du and dP/dv)
either as global variables or through a differential function such
as calculatenormal. A shader may also use derivatives of
user-supplied parameters. The compiler can request from the scene
graph any of these quantities evaluated over a surface at the same
points used in its tessellation. As with any other parameter, they are
computed on the host and stored in the vertex colors for the surface.
Where possible, lazy evaluation ensures that the user does not pay
in time or space for this support unless requested.

4.2 Compiler
Our RenderMan compiler is based on multiple phases of the tree-
matching tool described in Section 2.3. The phases include:

Parsing: convert source into an internal tree representation.
Phase0: detect errors
Phase1: perform context-sensitive typing (e.g. noise, texture)
Phase2: detect and compress uniform expressions
Phase3: compute “difference trees” for Derivatives
Phase4: determine variable usage and live range information
Phase5: identify possible OpenGL instruction optimizations
Phase6: allocate memory for variables
Phase7: generate optimized, machine specific OpenGL
The mapping of RenderMan to OpenGL follows the method-

ology described in Section 2.1. Texturing and some lighting carry
over directly; most math functions are implemented with lookup
tables; coordinate transformations are implemented with the color
matrix; loops with varying termination condition are supported with
minmax; and many built-in functions (including illuminance, solar,
and illuminate) are rewritten in terms of simpler operations. Fea-
tures whose mapping to OpenGL is more sophisticated include:

Noise: The RenderMan SL provides band-limited noise
primitives that include 1D, 2D, 3D, and 4D operands and single
or multiple component output. We use floating point arithmetic and
texture tables to support all of these functions.

Derivatives: The RenderMan SL provides access to surface-
derivative information through functions that include Du, Dv,
Deriv, area, and calculatenormal. We dedicate a compiler
phase to fully implement these functions using a technique similar
that described by Larry Gritz [12].

A number of optimizations are supported by the compiler.
Uniform expressions are identified and computed once for all pix-
els. If texture coordinates are linear functions of s and t or vertex
coordinates, they are recognized as a single pass with some com-
bination of texture coordinate generation and texture matrix. Tex-
ture memory utilization is minimized by allocating storage based
on single-static assignment and live-range analysis [4].

4.3 Demonstration
We have implemented a RenderMan renderer, complete with shad-
ing language, bytestream, and procedural interfaces on a software
implementation of OpenGL including color range and pixel tex-
ture. We experimented with subsets of IEEE single precision float-
ing point. An interesting example was a 16 bit floating point format
with a sign bit, 10 bits of mantissa and 5 bits of exponent. This
format was sufficient for most shaders, but fell short when com-
puting derivatives and related difference-oriented functions such
as calculatenormal. Our software implementation supported
other OpenGL extensions (cube environment mapping, fragment
lighting, light texture, and shadow), but they are not strictly neces-
sary as they can all be computed using existing features.

ISL Image celtic leaves bump rot toon
MPix Filled 2.8 4.3 1.2 2.2 1.9
Frames/Second 6.8 7.3 9.6 12.5 4.6

RSL Image teapots apple print
MPix Filled 500 280 144

Table 1:

The RenderMan bytestream interface was implemented on top
of the RenderMan procedural interface. When data is passed to the
procedural interface, it is incorporated into a scene graph. Higher
order geometric primitives not native to Cosmo3D, such as trimmed
quadrics and NURBS patches are accommodated by extending the
scene graph library with parametric surface types, which are tes-
sellated just before drawing. At the WorldEnd procedural call, this
scene graph is rendered using a ShadeAction that invokes the Ren-
derMan shading language compiler followed by a DrawAction.

To establish that the implementation was correct, over 2000
shading language tests, including point-feature tests, publicly avail-
able shaders, and more sophisticated shaders were written or ob-
tained. The results of our renderer were compared to Pixar’s com-
mercially available PhotoRealistic RenderMan renderer. While
never bit-for-bit accurate, the shading is typically comparable to
the eye (with expected differences due, for instance, to the noise
function). A collection of examples is given in Figure 4. We fo-
cused primarily on the challenge of mapping the entire language to
OpenGL, so there is considerable room for further optimization.

There are a few notable limitations in our implementation.
Displacement shaders are implemented, but treated as bump map-
ping shaders; surface positions are altered only for the calculation
of normals, not for rasterization. True displacement would have
to happen during object tessellation and would have performance
similar to displacement mapping in traditional software implemen-
tations. Transparency is not implemented. It is possible, but re-
quires the scene graph to depth-sort potentially transparent surfaces.
Pixel texture, as it is implemented, does not support texture filter-
ing, which can lead to aliasing. Our renderer also does not currently
support high quality pixel antialiasing, motion blur, and depth of
field. One could implement all of these through the accumulation
buffer as has been demonstrated elsewhere [13].

5 DISCUSSION
We measured the performance of several of our ISL and RenderMan
shaders (Table 1). The performance numbers for millions of pixels
filled are conservative estimates since we counted all pixels in the
object’s 2D bounding box even when drawing object geometry that
touched fewer pixels.

5.1 Drawbacks
Our current system has a number of inefficiencies that impact our
performance. First, since we do not use deferred shading, we may
spend several passes rendering an object that is hidden in the final
image. There are a variety of algorithms that would help (for ex-
ample, visibility culling at the scene graph level), but we have not
implemented any of them.

Second, the bounding box of objects in screen space is used
to define the active pixels for many passes. Consequently pixels
within the bounding box but not within the object are moved un-
necessarily. This taxes one of the most important resources in hard-
ware: bandwidth to and from memory.

431

Third, we have only included a minimal set of optimization
rules in our compiler. Many current hardware systems share frame-
buffer and texture memory bandwidth. On these systems, stor-
age and retrieval of intermediate results bears a particularly high
price. This is a primary motivation for doing as many operations
per pass as possible. Our iburg-like rule matching works well for
the pipeline of simple units found in standard OpenGL, but more
complex units (as found in some new multitexture extensions, for
example) require more powerful compiler technology. Two possi-
bilities are surveyed by Harris [15].

5.2 Advantages
Our methodology allows research and development to proceed in
parallel as shading languages, compilers, and hardware indepen-
dently evolve. We can take advantage of the unique feature and
performance needs of different application areas through special-
ized shading languages.

The application does not have to handle the complexities of
multipass shading since the application interface is a scene graph.
This model is a natural extension of most interactive applications,
which already have a retained mode interface of some sort to enable
users to manipulate their data. Applications still retain the other
advantages of having a scene graph, like occlusion culling and level
of detail management.

As mentioned, we have only implemented a few of the many
possible compiler optimizations. As the compiler improves, our
performance will improve, independent of language or hardware.

Finally, the rapid pace of graphics hardware development has
resulted in systems with a diverse set of features and relative feature
performance. Our design allows an application to use a shading
language on all of the systems, and still take advantage of many of
their unique characteristics. Hardware vendors do not need to create
the shading compiler and retained data structures since they operate
above the level of the drivers. Further, since complex effects can be
supported on unextended hardware, designers are free to create fast,
simple hardware without compromising on capabilities.

6 CONCLUSION
We have created a software layer between the application and the
hardware abstraction layer to translate high-level shading descrip-
tions into multi-pass OpenGL. We have demonstrated this approach
with two examples, a constrained shading language that runs inter-
actively on current hardware, and a fully general shading language.
We have also shown that general shading languages, like the Ren-
derMan Shading Language, can be implemented with only two ad-
ditional OpenGL extensions.

There is a continuum of possible languages between ISL and
the RenderMan Shading Language with different levels of func-
tionality. We have applied our method to two different shading lan-
guages in part to demonstrate its generality.

There are many avenues of future research. New compiler
technology can be developed or adapted for programmable shading.
There are significant optimizations that we are investigating in our
compilers. Research is also needed to understand what hardware
features are best for supporting interactive programmable shading.
Finally, given examples like the scientific visualization constructs
described by Crawfis that are not found in the RenderMan shading
language [9], we believe the wide availability of interactive pro-
grammable shading will spur exciting developments in new shading
languages and new applications for them.

References
[1] BIRCH, P., BLYTHE, D., GRANTHAM, B., JONES, M., SCHAFER, M., SE-

GAL, M., AND TANNER, C. An OpenGL++ Specification. SGI, March 1997.

[2] BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., NEL-
SON, S. R., FOWLER, C., HUI, S., AND WOMACK, P. Advanced graphics
programming techniques using OpenGL: Course notes. In Proceedings of
SIGGRAPH ’99 (July 1999).

[3] BOCK, D. Tech watch: Volume rendering. Computer Graphics World 22, 5
(May 1999).

[4] BRIGGS, P. Register Allocation via Graph Coloring. PhD thesis, Rice Uni-
versity, April 1992.

[5] CABRAL, B., CAM, N., AND FORAN, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. 1994 Sympo-
sium on Volume Visualization (October 1994), 91–98. ISBN 0-89791-741-3.

[6] CABRAL, B., OLANO, M., AND NEMEC, P. Reflection space image based
rendering. Proceedings of SIGGRAPH 99 (August 1999), 165–170.

[7] COOK, R. L. Shade trees. Computer Graphics (Proceedings of SIGGRAPH
84) 18, 3 (July 1984), 223–231. Held in Minneapolis, Minnesota.

[8] CORRIE, B., AND MACKERRAS, P. Data shaders. Visualization ’93 1993
(1993).

[9] CRAWFIS, R. A., AND ALLISON, M. J. A scientific visualization synthe-
sizer. Visualization ’91 (1991), 262–267.

[10] DIEFENBACH, P. J., AND BADLER, N. I. Multi-pass pipeline rendering: Re-
alism for dynamic environments. 1997 Symposium on Interactive 3D Graph-
ics (April 1997), 59–70.

[11] FRASER, C. W., HANSON, D. R., AND PROEBSTING, T. A. Engineering
a simple, efficient code generator generator. ACM Letters on Programming
Languages and Systems 1, 3 (September 1992), 213–226.

[12] GRITZ, L., AND HAHN, J. K. BMRT: A global illumination implementation
of the RenderMan standard. Journal of Graphics Tools 1, 3 (1996), 29–47.

[13] HAEBERLI, P. E., AND AKELEY, K. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (Proceedings of SIG-
GRAPH 90) 24, 4 (August 1990), 309–318.

[14] HANRAHAN, P., AND LAWSON, J. A language for shading and lighting cal-
culations. Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August
1990), 289–298.

[15] HARRIS, M. Extending microcode compaction for real architectures. In Pro-
ceedings of the 20th annual workshop on Microprogramming (1987), pp. 40–
53.

[16] HART, J. C., CARR, N., KAMEYA, M., TIBBITTS, S. A., AND COLEMAN,
T. J. Antialiased parameterized solid texturing simplified for consumer-level
hardware implementation. 1999 SIGGRAPH / Eurographics Workshop on
Graphics Hardware (August 1999), 45–53.

[17] HEIDRICH, W., AND SEIDEL, H.-P. Realistic, hardware-accelerated shading
and lighting. Proceedings of SIGGRAPH 99 (August 1999), 171–178.

[18] HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Appli-
cations of pixel textures in visualization and realistic image synthesis. 1999
ACM Symposium on Interactive 3D Graphics (April 1999), 127–134. ISBN
1-58113-082-1.

[19] JAQUAYS, P., AND HOOK, B. Quake 3: Arena shader manual, revision 10. In
Game Developer’s Conference Hardcore Technical Seminar Notes (Decem-
ber 1999), C. Hecker and J. Lander, Eds., Miller Freeman Game Group.

[20] KAUTZ, J., AND MCCOOL, M. D. Interactive rendering with arbitrary brdfs
using separable approximations. Eurographics Rendering Workshop 1999
(June 1999). Held in Granada, Spain.

[21] KELLER, A. Instant radiosity. Proceedings of SIGGRAPH 97 (August 1997),
49–56.

[22] KYLANDER, K., AND KYLANDER, O. S. Gimp: The Official Handbook.
The Coriolis Group, 1999.

[23] MAX, N., DEUSSEN, O., AND KEATING, B. Hierarchical image-based ren-
dering using texture mapping hardware. Rendering Techniques ’99 (Proceed-
ings of the 10th Eurographics Workshop on Rendering) (June 1999), 57–62.

[24] MCCOOL, M. D., AND HEIDRICH, W. Texture shaders. 1999 SIGGRAPH /
Eurographics Workshop on Graphics Hardware (August 1999), 117–126.

[25] OLANO, M., HART, J. C., HEIDRICH, W., MCCOOL, M., MARK, B., AND
PROUDFOOT, K. Approaches for procedural shading on graphics hardware:
Course notes. In Proceedings of SIGGRAPH 2000 (July 2000).

[26] OLANO, M., AND LASTRA, A. A shading language on graphics hardware:
The PixelFlow shading system. Proceedings of SIGGRAPH 98 (July 1998),
159–168.

[27] OPENGL ARB. Extension specification documents. http://www.opengl.org-
/Documentation/Extensions.html, March 1999.

[28] PIXAR. The RenderMan Interface Specification: Version 3.1. Pixar Anima-
tion Studios, September 1999.

[29] SEGAL, M., AKELEY, K., FRAZIER, C., AND LEECH, J. The OpenGL
Graphics System: A Specification (Version 1.2.1). Silicon Graphics, Inc.,
1999.

[30] SGI TECHNICAL PUBLICATIONS. Cosmo 3D Programmer’s Guide. SGI
Technical Publications, 1998.

[31] SIMS, K. Particle animation and rendering using data parallel computation.
Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August 1990),
405–413.

[32] UPSTILL, S. The RenderMan Companion. Addison-Wesley, 1989.

432

