
Graphics Hardware (2002)
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

Comparing Reyes and OpenGL on a Stream Architecture

John D. Owens, Brucek Khailany, Brian Towles, and William J. Dally†

Stanford University Computer Systems Laboratory

Abstract

The OpenGL and Reyes rendering pipelines each render complex scenes from similar scene descriptions but
differ in their internal pipeline organizations. While the OpenGL organization has dominated hardware architec-
tures over the past twenty years, a Reyes organization differs in several important ways from OpenGL, including
a shader coordinate system that supports coherent texture accesses, a single shader in the vertex stage, and tes-
sellation and sampling instead of triangle rasterization.

Hardware for the OpenGL pipeline has been well-studied, but the lack of a hardware Reyes implementation
has prevented a comparison between the two pipelines. We analyze and compare implementations of an OpenGL
and a Reyes pipeline on the Imagine stream processor, a high performance programmable processor for media
applications. This comparison both demonstrates the applicability of Reyes for hardware implementation and
exposes many issues that architects will face in implementing Reyes in hardware, in particular the need for efficient
subdivision algorithms and implementations.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures—Single-instruction-
stream, multiple-data-stream processors (SIMD).

1. Introduction

Graphics hardware continues to make remarkable gains in
performance, but the fundamental organization of today’s
consumer graphics hardware has changed little from the
original IRIS pipeline first developed by Silicon Graphics in
the early 1980’s. The OpenGL graphics system16, a widely
used standard for interactive graphics applications, is a direct
descendant of this early hardware. However, the efficiency
and flexibility of these simple, triangle-based pipelines are
taxed under the current trends of decreasing triangle size and
the demand for complex, programmable shaders. This natu-
rally leads to the question of how alternative pipelines lend
themselves to high-performance implementations. At one
extreme of the performance-realism spectrum is the Reyes
rendering pipeline4. Reyes was designed at Lucasfilm to ren-
der extremely complex scenes with total emphasis on the

† Gates Computer Science Building 4A, Stanford, CA 94305 USA;
{jowens, khailany, btowles, billd}@cva.stanford.edu

photorealistic, high-fidelity imagery targeted by today’s real-
time graphics hardware.

In this paper, we examine the issues associated in imple-
menting the Reyes rendering pipeline with the goal of real-
time frame rates. We also identify several key characteris-
tics of a pipeline that contribute to an efficient implementa-
tion: arithmetic intensity, data reference locality, predictable
memory access patterns, and instruction- and data-level par-
allelism.

The Reyes pipeline, as well as other graphics pipelines,
already contains abundant parallelism as well as high arith-
metic intensity (the number of operations per fragment). In
addition, the uniform size of the rasterization primitives,
called micropolygons, produces a predictable number of
fragments, which simplifies memory allocation and stream-
lines the rasterization and fragment-processing steps. We de-
tail our rasterization algorithm, which takes advantage of
these uniform primitives.

Another key aspect of the Reyes pipeline is support of
high-level primitives, such as subdivision surfaces. While
subdivision surfaces significantly reduce the amount of

c© The Eurographics Association 2002.

47



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

memory bandwidth consumed by loading models, they also
introduce additional control complexity. This is especially
true for adaptive subdivision schemes because crack preven-
tion traditionally requires elaborate stitching schemes and
non-local knowledge of the surface. We address these prob-
lems by introducing a novel crack prevention algorithm that
stores edge equations of the micropolygons instead of their
vertices.

Finally, we compare our implementation of the Reyes
pipeline with an OpenGL pipeline on the Imagine Stream
Processor9. Mapping applications to Imagine naturally ex-
poses the characteristics we identified for an efficient
pipeline implementation. Using Imagine as a common sub-
strate for comparison on several scenes, we identify the rel-
ative strengths and weakness of both approaches. We show
that on several scenes with complex shading, OpenGL de-
livers superior performance to Reyes. Specifically, we found
that the high computational cost of the subdivision and the
large number of micropolygons produced that did not con-
tribute to the final image are the primary impediments to
making a Reyes implementation competitive with OpenGL.

We begin in Section 2 by describing the Reyes and
OpenGL pipelines. Section 3 describes the fundamentals of
our implementation and Section 4 the details of our Reyes
implementation. In Section 5 we explain our experimental
setup and our test scenes. Finally, Section 6 analyzes and
compares the results of our implementations of the OpenGL
and Reyes pipelines.

2. OpenGL and Reyes rendering pipelines

2.1. OpenGL

The OpenGL graphics system16 is a widely used standard
for interactive graphics applications. OpenGL is well suited
for hardware implementations and most modern real-time
graphics hardware supports an OpenGL interface.

The OpenGL pipeline consists of the following stages:

Transformations and vertex operations Objects are spec-
ified in object space and are transformed to eye space,
where per-vertex operations, such as lighting and other
shading operations, are performed. Recent hardware has
added user programmability to this stage10.

Assemble/Clip/Project Triangles are assembled from ver-
tices, transformed to clip space, clipped against the view
frustum, and projected to the screen.

Rasterize Screen-space triangles are rasterized to frag-
ments, all in screen space. Per-vertex parameters are in-
terpolated across the triangle.

Fragment operations Per-fragment operations, such as
texturing and blending, are applied to each fragment. Like
the vertex operations stage, this stage supports increasing
user programmability.

Visibility/Filter Visibility is resolved in this stage, usually
through a depth buffer, and fragments are filtered and
composited into a final image.

2.2. Reyes

The Reyes image rendering system4 was developed at Lu-
casfilm and Pixar for high-quality rendering of complex
scenes. The system, developed in the mid-1980’s, was not
designed at the time for real-time rendering but instead for
rendering more complex scenes with higher image quality
and rendering times from minutes to hours. Reyes is the ba-
sis for Pixar’s implementation of the RenderMan rendering
interface17.

The Reyes pipeline has four main stages, described below.
The primary rendering primitive used by Reyes is themicro-
polygon or quad, a flat-shaded quadrilateral. In the original
Reyes implementation, quads were no larger than 1/2 pixel
on a side†, but typical quads in modern Reyes-like imple-
mentations are on the order of 1 pixel in area because mod-
ern shaders are self-antialiasing.

Dice/Split Inputs to the Reyes pipeline are typically higher-
order surfaces such as bicubic patches, but Reyes supports
a large number of input primitives. Primitives can split
themselves into other primitives, but each primitive must
ultimately dice itself into micropolygons. Dicing is per-
formed in eye space†.

Shade Shading is also done in eye space by procedurally
specified shaders. Because micropolygons are small, each
micropolygon is flat-shaded.

Sample Micropolygons are projected to screen space, sam-
pled, and clipped to the visible view area. Reyes uses a
stochastic sampling method with a variable number of
subpixels per pixel (16 in the original Reyes description†).

Visibility/Filter Visibility is resolved using a depth buffer
with one sample per subpixel, then the visible surface sub-
pixel values are filtered to form the final image.

2.3. Differences between OpenGL and Reyes

Both pipelines are similar in function, as shown in Figure 1.
In both, the application produces geometry in object coordi-
nates, which are then shaded, projected into screen space,
rasterized into fragments, and composited using a depth
buffer. However, the pipelines differ in three important ways:
shading space, texture access characteristics, and the method
of rasterization.

• The OpenGL pipeline shades at two stages: on vertices
in eye coordinates (typically lighting calculations, and
more recently programmable vertex shaders), and on frag-
ments in screen coordinates (typically textures and blends,
and more recently programmable fragment shaders). The
Reyes pipeline supports a single shading stage on micro-
polygon vertices in eye coordinates.

• In OpenGL, texturing is a per-fragment screen-space op-
eration; to avoid visual artifacts, textures are filtered using
mipmapping19. Texture accesses are incoherent from texel

† Our implementation differs from the traditional Reyes approach
in quad size, subsampling, and dice space, as described in Section 4.

c© The Eurographics Association 2002.

48



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

Dice/Split

Shade

Sample

Visibility/Filter

Clip/Project

Rasterize

Fragment Program

Visibility/Filter

Model Model

Image

Reyes OpenGL

Command

Tessellation

Assembly

Rasterization

Composite

Display

per surface

per vertex

per primitive

per fragment

per pixel

Image

Assemble

Vertex Program

Figure 1: Reyes vs. OpenGL. The left column shows stages
in a generic pipeline; the middle and right columns show
the specific stages in Reyes and OpenGL. Shaded stages are
programmable.

to texel. In Reyes, texturing is a per-vertex eye-space oper-
ation. Reyes supports “coherent access textures” (CATs)
for many classes of textures including standard projective
textures. CATs require surface dicing at power-of-two res-
olutions but cause texels in the texture pyramid to align
exactly with the vertices of the quads. Therefore, when
accessing CATs, texture filtering is unnecessary, and tex-
els in adjacent micropolygons can be accessed sequen-
tially with significant savings in computation and memory
bandwidth. Not all textures can be accessed coherently —
non-CATs include environment maps, bump maps, and
decals.

• OpenGL’s primitive is a triangle. Objects are specified in
triangles, and the rasterization stage of OpenGL must be
able to rasterize triangles of arbitrary size. The primitive
for the Reyes pipeline is the micropolygon, whose size is
bounded in screen space to a half-pixel on a side. Micro-
polygons are created in eye space during the dice stage
of the pipeline, so the dicer must make estimates of the
screen coverage of the generated micropolygons.

The fundamental differences in Reyes — single shader,
coherent texture accesses, and bounded primitives — are all
desirable properties for hardware implementation. Support-
ing only one programmable unit rather than two is a sim-
pler task for hardware designers. Coherent accessed textures
both reduce texture demand from the memory system and
increase achievable memory bandwidth.

Bounded-size primitives (particularly small ones such
as those in Reyes) have several advantages. The raster-

izer does not have to handle the complexity of arbitrary
sized primitives, so bounded-sized primitives can be raster-
ized with simpler algorithms and hardware than unbounded
ones. Moreover, every sample within a bounded primitive
can be computed in parallel because the total number of
possible samples is small and bounded. Evaluating several
bounded-size primitives in parallel load-balances better than
unbounded primitives. And storage requirements for gener-
ated samples are much more easily determined with bounded
primitives than with unbounded ones.

2.4. Graphics Trends and Issues
How do these pipelines cope with the issues facing graphics
hardware designers of today?

2.4.1. Decreasing Triangle Size
As graphics hardware has increased in capability, models
have become more detailed, and triangle size has decreased.
The efficiency of factoring work between the vertex and
fragment levels in OpenGL is one of the primary reasons
that it is the dominant hardware organization today.

The shading work in OpenGL pipelines is divided be-
tween vertices and fragments. Vertex-level shading calcu-
lations are performed on each vertex. These results are in-
terpolated during rasterization and then used as inputs to the
fragment shader, which evaluates a shading function on each
fragment.

Because interpolation is cheaper than evaluating the entire
shading function at each fragment, and because the number
of fragments in a scene is typically many times the number
of triangles, this factorization of shading work into the vertex
and fragment levels reduces the overall amount of work for
the scene.

However, as triangle size continues to decrease, the ben-
efits of this factorization become less significant. For scenes
in which the average triangle size is 1 (the numbers of trian-
gles and fragments are equal), there is no benefit.

2.4.2. Host and Memory Bandwidth
Host and memory bandwidth are both precious in mod-
ern graphics processors. Reducing the necessary memory
bandwidth is achieved by a variety of techniques as texture
caches5, prefetching6, and memory reference reordering15.
Parallel interfaces are among the methods used to reduce
host bandwidth7.

The Reyes pipeline, by natively supporting higher-order
datatypes, can reduce host bandwidth over sending a stream
of triangles. And Reyes’ coherent access textures can also
help reduce the necessary bandwidth to texture memory.

3. Implementation Fundamentals
To compare the Reyes and OpenGL pipelines, we imple-
mented each pipeline in the stream programming model
for execution on the Imagine Stream Processor. The pro-
grammable shading and lighting code was generated from
the Stanford Real-Time Shading Language compiler.

c© The Eurographics Association 2002.

49



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

N
e

tw
o

rk

SDRAM SDRAM SDRAM SDRAM

Imagine Stream Processor

Streaming Memory System

Stream
Controller

Host
Processor

Network
InterfaceStream Register File

A
L

U
 C

lu
st

e
r 

0

A
L

U
 C

lu
st

e
r 

1

A
L

U
 C

lu
st

e
r 

2

A
L

U
 C

lu
st

e
r 

3

A
L

U
 C

lu
st

e
r 

4

A
L

U
 C

lu
st

e
r 

5

A
L

U
 C

lu
st

e
r 

6

A
L

U
 C

lu
st

e
r 

7

M
ic

ro
co

n
tr

o
lle

r

Figure 2: The Imagine Stream Processor.

3.1. The Imagine Stream Processor

The Imagine Stream Processor9 is a high-performance
stream coprocessor designed to run media applications.
Imagine’s architectural primitive is thestream, a set of or-
dered elements of the same datatype. Streams are processed
by kernels which typically evaluate a function on each ele-
ment of a stream.

Imagine’s block diagram is shown in Figure 2. It consists
of a 128 KB stream register file (SRF), 8 SIMD-controlled
VLIW arithmetic clusters each containing multiple func-
tional units and controlled by a single microcontroller, and
a memory system interface to off-chip DRAM. These mod-
ules are all controlled by an on-chip stream controller under
the direction of an external host processor.

In an Imagine application, the working set of streams is
located in the SRF, which is connected to all modules on
Imagine. Stream loads and stores occur between the memory
system and the SRF, and the SRF provides the stream inputs
to kernels and stores the kernels’ stream outputs.

The kernels are evaluated in the 8 arithmetic clusters.
Each cluster contains several functional units (providing
instruction-level parallelism). The 8 clusters (providing data-
level parallelism) are controlled by the microcontroller,
which supplies the same instruction stream to each cluster.

On Imagine, streams are stored as contiguous blocks of
memory in the SRF or in memory. Kernels are implemented
as programs run on the arithmetic clusters. Kernel microcode
is stored in the microcontroller. An Imagine application con-
sists of a chain of kernels that process one or more streams.
The kernels are run one at a time, processing their input
streams and producing output streams. After each kernel is
complete, its output is typically input into the next kernel.

Imagine chips were delivered in April 2002; system
bringup is actively under way.

3.2. Imagine vs. Graphics Processors

Imagine has many similarities with modern graphics pro-
cessors in using many of the techniques of modern special-
purpose hardware to achieve good performance.

First, both Imagine and modern graphics processors ex-
ploit the native parallelism in graphics applications to
achieve high performance. Both processors use instruction-
level parallelism (functional units working in parallel on the
same data element) and data-level parallelism (multiple data
elements processed at the same time). Also, modern graph-
ics processors often exhibit task-level parallelism, working
on different parts of the graphics pipeline at the same time.
Even the APIs are becoming explicitly parallel — NVIDIA’s
vertex programs10 are designed for SIMD execution, and
Imagine’s KernelC kernel language is targeted at SIMD-
controlled arithmetic clusters.

In a lengthy pipeline such as rendering, maintaining load
balance between stages is crucial to high performance. In
modern graphics processors, data buffers between pipeline
stages smooth out short-term load imbalances. Imagine’s
stream register file also buffers intermediate results, al-
though the SRF is used to buffer between stages separated
by time instead of between different functional units on the
same chip.

In both systems, these buffers are also used to capture the
producer-consumer locality of intermediate data on the same
chip and to hide latency in the pipeline, particularly memory
system latency.

One of the major differences between Imagine and mod-
ern graphics processors is Imagine’s lack of specialization
for rendering. It contains no special purpose hardware di-
rected at graphics applications. Though the lack of special-
ization hurts Imagine’s performance compared to modern
graphics processors, when comparing graphics algorithms,
it does make Imagine performance-neutral to the algorithms
employed. Algorithms that run efficiently on Imagine are
likely to run efficiently in hardware specialized to that task,
and Imagine’s opcounts and runtimes are an accurate as-
sessment of the work involved in running the algorithm.
For these reasons, Imagine is an appropriate platform for
comparing different rendering algorithms toward an even-
tual goal of high-performance hardware implementations.

3.3. The Stanford Real-Time Shading Language

Programmable shading is supported by most modern graph-
ics hardware, but the interfaces to the shading functionality
differ greatly from vendor to vendor and also change over
time. In addition, the native interfaces to this hardware are at
a low level.

The Stanford Real-Time Shading Language (RTSL) al-
lows programmers to specify a high-level shading descrip-
tion which can then be targeted to multiple pieces of hard-
ware, including ATI, NVIDIA, and x86 processors13. The
shading description is parsed into an intermediate represen-
tation and then compiled to one or more hardware targets.

We developed back ends to the RTSL front end that target
Imagine OpenGL and Reyes shading stages. The OpenGL
back end generates code for programs run on each vertex
and each fragment, and the Reyes back end generates code

c© The Eurographics Association 2002.

50



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

that runs on each vertex. The same RTSL shader descriptions
can generate both OpenGL and Reyes target code.

3.4. Imagine OpenGL Implementation
Our OpenGL implementation on Imagine is based on the
implementation of Owens et al.12 with several differences.
All shading is programmable, with kernel code generated
directly by our RTSL back end. The entire pipeline is struc-
tured around this programmable shading, whose SIMD na-
ture matches well with Imagine’s capabilities. The perfor-
mance impact of adding generated shader code as opposed
to custom shader code is negligible. The rasterizer is now
implemented with a barycentric algorithm instead of the
previous scanline algorithm. Clipping is also supported. Fi-
nally, stream-level code is scheduled by a profiling stream
scheduler8 instead of our previous macrocode implementa-
tion.

4. Imagine Reyes Implementation
Our Reyes implementation follows the description in Sec-
tion 2.2. We begin by projecting the control points of the
input B-spline to screen space. We then subdivide in screen
space, ensuring that no quad is larger than a fixed size. Be-
cause in this implementation we do not support supersam-
pling, we do not subdivide all the way to Reyes’ traditional
0.5 pixel area limit. The effects of different subdivision lim-
its are discussed in Section 6.2.

After subdivision, we transform the resulting quad posi-
tions and normals back into eye space for shading. This dif-
fers from the traditional Reyes implementation, which sub-
divides in eye space with knowledge of screen space. Quads
are then shaded in eye space using the RTSL-generated
shader. Next, the sampling kernel inputs quads and outputs
fragments, which are composited to make the final image.

4.1. Subdivision
The subdivision step of the Reyes pipeline is responsible for
dividing the high-level primitives into micropolygons. We
chose to implement the Catmull-Clark2 subdivision rules to
refine these high-level surfaces‡, allowing native support of
subdivision, B-Spline, and Bezier surfaces. The subdivision
boundary rules are also included, so effects such as sharp
creases in the subdivision surfaces are possible.

Subdivision begins with a collection of control points for
the surface. In general, these points can be arranged in an
arbitrary topology, but for our implementation we assume
a quadrilateral mesh. The subdivision kernel begins by se-
lecting an initial quad from the control mesh and comput-
ing the side lengths of that quad. If all the side lengths fall
below the stopping threshold§, the quad is considered com-
plete and is output by the kernel. Otherwise, the quad must

‡ Other subdivision schemes present similar design issues.
§ The stopping threshold in our implementation is 1.5 pixels; the
effects of different thresholds are discussed in Section 6.2.

be subdivided further, producing four, smaller quads. Now,
one of these quads is selected and tested for completion. This
process continues as a depth-first traversal of the quad-tree
associated with the original control mesh with the leaf depth
determined by the screen size of the associated quad. Since
each stage of the subdivision requires testing the side lengths
in pixels of the quads, this step is naturally performed in
screen space.

The depth-first traversal has a key storage advantage —
the number of live data values needed at any one time to
produce a final set ofN fragments isO(log N). This is in
contrast to a triangle-based approach, where each rasteriza-
tion primitive is part of the input set and thereforeO(N)
live values are needed to produce theN fragments of a com-
plex surface. While the storage efficiency is useful in any
Reyes implementation, it is especially important in an effi-
cient hardware implementation: the ability to produce a large
number of fragments from a small amount of control infor-
mation saves critical memory bandwidth.

However, realizing this savings in memory bandwidth
presents several implementation challenges. A naive adap-
tive subdivision algorithm could use a completely local stop-
ping criterion. However, if neighboring quads are subdivided
at different levels, cracks in the final surface can appear.
Typical algorithms for eliminating cracks involve a stitch-
ing pattern to reconnect the surface11, which can be used in
concert with a global rule such as limiting the difference in
subdivision levels for neighboring quads20. However, these
approaches are not attractive in stream processors for several
reasons. First, the control decisions and number of possible
stitching patterns make an efficient data-parallel implemen-
tation difficult. Secondly, using global information to deter-
mine the stitching pattern can defeat theO(log N) storage
requirement and also increase the complexity of memory
access patterns, while also decreasing the efficiency of the
stream implementation.

We tackle the problem of surface cracks by implement-
ing a novel and completely localized solution: instead of de-
scribing the final micropolygons using their corner vertices,
they are represented using four edge equations. During sub-
division, edge lengths are continually tested to determine if a
quadrilateral requires further refinement. Instead of waiting
until all four edges meet the length threshold, our approach
freezes the final edge equations of a quadimmediately af-
ter they fall below the threshold. Once all four edges have
been stored, the final quad is output. This implies that the
four edge equations may come from different levels of re-
finement. However, the edges of a quad are always consis-
tent with its neighbors because the length criterion used on
an edge shared between two quads is consistent. This con-
sistency between shared edges is sufficient to prevent cracks
in the final surface.

An example of this algorithm in shown in Figure 3. First,
the control points of the mesh at leveli are shown as un-
filled circles. At leveli of the refinement, all the edges of
the right quad have fallen below the stopping threshold. The

c© The Eurographics Association 2002.

51



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

Figure 3: An example of crack prevention using edge equa-
tions. The dark gray quad is completed at the ith subdivision
level, while the light gray quad is completed at the i + 1th

level. By storing the shared edge as soon as it meets the sub-
division criterion, no cracks are created.

right quad, whose interior is shown in dark gray, is then com-
plete and output at theith level of refinement. The right edge
of the left quad has fallen below the threshold, so it is stored.
However, the other edges of the left quad require further sub-
division, so refinement continues. The vertices produced at
the i + 1th level of refinement are shown as filled circles.
The subdivision algorithm perturbs the four vertices of the
previous quad and also introduces five new vertices. At this
point, the edge lengths of the upper-right sub-quad are tested
and found to be below the threshold. This quad, whose inte-
rior is shown in light gray, is then output, using three edge
equations from thei + 1th subdivision level and one from
the ith. Now the importance of storing edge equations be-
comes clear. The four vertices of the second quad do not
necessarily abut the first quad because the refinement can
perturb them. However, by using the edge equation from the
previous subdivision level to define the right side of the sec-
ond quad, a crack between the two quads is avoided.

4.2. Shading

Shaders are generated from the same RTSL description as in
the OpenGL implementation. However, because Reyes has
only one stage in the pipeline for shading, RTSL’s vertex and
fragment frequencies are collapsed into a single frequency.
The generated shader kernel projects the screen-space ver-
tices and normals back into eye space, computes the shading
function (using coherent access textures if necessary), and
outputs a single color per vertex.

4.3. Sampling

The sampling stage was implemented as a simple bounding-
box rasterizer. Since the subdivider described above guar-
antees that the micropolygon to be drawn is under a cer-
tain size, only a small number of pixel locations need to be
tested against the four line equations for the micropolygon.
The bounded size of the micropolygons leads to two perfor-
mance improvements over a rasterizer found in the OpenGL
pipeline: good load balancing when run under SIMD con-
trol and flat shading within the micropolygon with no neces-

sary interpolation. The original Reyes pipeline used stochas-
tic sampling3, providing many subsamples per pixel with
slightly non-regular sample locations. This scheme was not
used for our implementation in order to provide a fair com-
parison with the OpenGL pipeline. However, it would be
straightforward to extend the current sampler to support
stochastic sampling.

Reyes is particularly well suited to more complex sam-
pling effects such as depth of field and motion blur. The cost
of implementing these effects is merely reprojecting and re-
sampling with no reshading, a much smaller cost than ac-
complishing the same effects in OpenGL using the accumu-
lation buffer. Our implementation could easily be extended
to support these effects.

4.4. Composite and Filter

This stage is identical to our OpenGL implementation. Fil-
tering is not currently implemented but could be added in
one of two ways. First, subpixels could be composited sep-
arately (effectively, a framebuffer with higher resolution)
without maintaining a concurrent image at final resolution,
and at the end of a frame, subpixels would be filtered as a
postpass to create the final image. Second, subpixels are still
composited separately but a image at final resolution is con-
currently maintained. The second method requires an extra
color read and write (for maintaining the image at final res-
olution) for each sample so potentially uses more memory
bandwidth for high-depth complexity scenes. However, it al-
leviates the massive burst of memory bandwidth necessary if
the final image is generated at the end of the scene.

5. Experimental Setup

For the results in this paper we use the Imagine cycle-
accurate simulatorisim and functional simulatoridebug.

Isim models the complete Imagine architecture, includ-
ing computation, stream and kernel level control, and mem-
ory traffic and control, and has been validated against our
RTL models and circuit studies. These simulations assume a
400 MHz Imagine stream processor with external SDRAM
clocked at 133 MHz, reflecting the actual Imagine system
clock speeds. Our OpenGL scenes are simulated inisim.

Idebug is a faster, higher-level simulator used to develop
applications that accurately models kernel runtime but does
not model kernel stalls or cluster occupancy effects. Because
of these effects,isim results are on average 20% slower
thanidebug, so allidebug results are scaled by 20% to
match the more accurate simulator. Our Reyes scenes are
simulated inidebug.

Our Reyes implementation also made slight changes to
the simulated Imagine hardware. The most significant was
increasing the size of the dynamically addressable scratch-
pad memories in each cluster from 256 to 512 words. These
scratchpads are used to implement the working set of quads
in the depth-first traversal during adaptive subdivision, and
having a larger scratchpad was vital for kernel efficiency.

c© The Eurographics Association 2002.

52



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

Visible Average
Scene Frags Tris Tri Size Patches Quads

TEAPOT-20 137k 23.5k 11.6 28 574k
TEAPOT-30 137k 52.1k 5.26
TEAPOT-40 137k 91.8k 2.99
TEAPOT-64 137k 233k 1.18

PIN 80.0k 91.6k 2.29 12 486k
ARMADILLO 48.9k 93.7k 3.83 1632 328k

Table 1: Statistics for OpenGL and Reyes scenes.

Second, the size of the microcode store and the local cluster
register files were increased. We expect future improvements
to the Reyes implementation will allow us to return the mi-
crocode store and cluster register file sizes to the same size
as the Imagine hardware.

5.1. Scenes

All scenes are rendered into a 720×720 window. Datasets,
textures, cleared depth and color buffers, and kernels are lo-
cated in Imagine memory at the beginning of the scene. For
OpenGL scenes, the input dataset is expressed as subdivided
triangle meshes; for Reyes scenes, the input dataset consists
of B-spline control points.

We compare three scenes:

• TEAPOT renders the Utah teapot lit by three positional
lights with diffuse and specular lighting components. The
OpenGL version of the teapot is drawn at several subdivi-
sion levels (indicated as TEAPOT-N, where each patch is
diced into2N2 triangles) to show performance as a func-
tion of triangle size. References to TEAPOT in the context
of OpenGL are to TEAPOT-20.

• PIN draws the bowling pin from the UNC Perfect Strike
dataset. 5 textures are applied to the pin, which is also lit
by a single light with diffuse and specular components. In
OpenGL, we render this scene as PIN-1 and PIN-8, which
use point sampled and mipmapped textures, respectively.
The Reyes version uses a single coherent access per tex-
ture per fragment.

• ARMADILLO renders the Stanford armadillo with a
single light and a complex marble procedural shader.
The shader calculates a turbulence function involving 4
noise calculations18 per fragment and applies over 1200
floating-point operations to each fragment (OpenGL) or
vertex (Reyes).

Details for the scenes are summarized in Table 1.

6. Results and Discussion

Figure 4 shows our simulated performance for OpenGL and
Reyes scenes. We see that OpenGL scenes enjoy a signifi-
cant performance advantage over their Reyes counterparts.
There are two reasons for this. First, in Reyes, scenes spend
the majority of their time in subdivision, a stage not present
in the OpenGL pipeline. Second, our Reyes implementation

Tea
pot/O

pen
GL

Pin
-1

/O
pen

GL

Pin
-8

/O
pen

GL

Arm
ad

illo
/O

pen
GL

Tea
pot/R

ey
es

Pin
/R

ey
es

Arm
ad

illo
/R

ey
es

1

10

100

F
ra

m
es

 p
er

 S
ec

o
n

d

Figure 4: Simulated runtime for our scenes. OpenGL scenes
run an order of magnitude faster than Reyes scenes.

produces many quads that cover no pixels and do not con-
tribute to the final image. We discuss these points in more
detail below in Sections 6.1 and 6.2.

6.1. Kernel Breakdown

Figure 5 classifies the time spent computing each scene into
five categories: geometry, rasterization, composition, and the
programmable vertex and fragment programs. Subdivision is
considered part of the geometry stage, and the vertex pro-
gram in Reyes encompasses all the shading work for the
scene because Reyes does not have a fragment program.

We see that Reyes runtime is dominated by geometry pro-
cessing, in particular the subdivision kernel. On average, this
kernel takes 82% of the runtime.

OpenGL does not have a subdivision stage because its
primitives are subdivided either at compile time or by the
host. When subdivision is removed from the Reyes account-
ing, the two pipelines have similar stage breakdowns. The
Reyes pipelines spend comparatively more time in the shad-
ing stages than do the OpenGL pipelines, with the excep-
tion of the OpenGL PIN-8 scene. Mipmapping is an expen-
sive operation computationally (simply adding mipmapping
to PIN-1 cut the resulting OpenGL performance in half), so
the amount of time spent in shading in this scene was greater
than its Reyes counterpart, which did not require texture fil-
tering.

Rasterization is considerably simpler in the Reyes scenes
for two reasons. First, determining pixel coverage of
bounded primitives is computationally easier and more par-
allelizable than unbounded primitives. Second, the prim-
itives in Reyes are smaller and have less computation.
OpenGL implementations must carry all their interpolants
through their rasterizers, while a Reyes sampler must only
carry a single color.

c© The Eurographics Association 2002.

53



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

Teapot
OpenGL

Pin-1
OpenGL

Pin-8
OpenGL

Armadillo
OpenGL

Teapot
Reyes

Pin
Reyes

Armadillo
Reyes

Teapot
Reyes

(no sub)

Pin
Reyes

(no sub)

Armadillo
Reyes

(no sub)

0

20

40

60

80

100
R

u
n

ti
m

e 
(%

)

Composition
Fragment Program
Rasterization
Geometry
Vertex Program

Figure 5: Stage breakdown of work in each scene. All scene runtimes are normalized to 100%. The first 4 scenes are OpenGL
scenes; the next 3 are Reyes scenes; and the final 3 are Reyes scenes with the subdivision runtime (normally part of the Geometry
stage) removed.

0 1 2 3 >= 4

Pixels Covered

0

20

40

60

80

Q
u

ad
 P

er
ce

n
ta

g
e side=1

side=1.5
side=2
side=2.5
side=3

Figure 6: Quad Size for PIN. Other scenes have similar
characteristics. Each data point represents the percentage
of quads in PIN that cover a certain number of pixels given
a certain stop length. Lines indicate points associated with
the same subdivision stop length. Our implementation has a
stop length of 1.5 pixels.

6.2. Reyes: Subdivision Effects

Even with a zero-cost subdivision, the Reyes scenes are still
about half the performance of their OpenGL equivalents.
This cost is largely due to shading and rasterization work
performed on quads that cover no pixels. Ideally, each quad
would cover a single pixel. Quads that cover more than one
pixel introduce artifacts, while quads that cover zero pixels
do not contribute to the final image.

Figure 6 shows the distribution of pixels covered by quads
for PIN for several different subdivision stopping criteria (no
quad side greater than a certain length). Our implementation
stops subdividing when all quad sides are less than 1.5 pixels
in length.

In practice, the majority of quads cover no pixels at all,

Teapot
SL=1.0
Reyes

Teapot
SL=1.5
Reyes

Teapot
SL=2.0
Reyes

Teapot
SL=2.5
Reyes

Teapot
SL=3.0
Reyes

0

20

40

60

80

100

R
u

n
ti

m
e 

(%
)
Composition
Rasterization
Geometry
Vertex Program

Figure 7: TEAPOTperformance at several stop lengths, nor-
malized to a stop length of 1.0 pixels. Our implementation
has a stop length of 1.5 pixels.

even for larger stop lengths. On our three scenes, with a stop
length of 1.5 pixels, zero-pixel quads comprise 73–83% of
all generated quads. Even when we double the stop length
to 3.0 pixels, we still find that over half of all quads gener-
ated do not cover any pixels. As a result, our implementation
spends a significant amount of time shading and sampling
quads that produce no fragments.

To improve performance, we could consider reducing the
number of zero-pixel quads that are passed through the lat-
ter half of the pipeline. At the cost of additional computa-
tion, a test could be performed before shading and sampling
that tested whether the quad covered any fragments. Alter-
natively, at the cost of slightly more artifacts due to multiple
fragments covered by the same quad, the stop length could
be increased, resulting in a significant decrease in the num-
ber of quads and hence a decrease in runtime. Increasing the
stop length from 1 to 1.5 for PIN, for instance, cuts the num-
ber of quads produced by more than a factor of 2 (1,121k

c© The Eurographics Association 2002.

54



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

Teapot-64
OpenGL

Teapot-40
OpenGL

Teapot-30
OpenGL

Teapot-20
OpenGL

0

20

40

60

80

100
R

u
n

ti
m

e 
(%

)
Composition
Fragment Program
Rasterization
Geometry
Vertex Program

Figure 8: TEAPOT performance at several subdivision lev-
els, normalized to TEAPOT-64 = 100%. The benchmark de-
scribed in Section 5 is TEAPOT-20.

to 486k). Doubling the stop length to 3 further decreases the
number of quads (to 121k).

Figure 7 shows the performance impact of varying the
stop length. Subdivision and geometry/vertex operations de-
crease with an increased stop length. Because the number of
quads decreases (though the total number of fragments cov-
ered does not), rasterization work also declines, although not
at the same rate. Composition is unaffected.

Also important are datasets that are well-behaved under
subdivision. Many of our patches, when subdivided, gener-
ated quads with irregular aspect ratios that covered no pixels.
Partially this is because when we subdivide a quad, we al-
ways generate 4 quads; at the cost of additional computation,
subdividing in only one direction instead of both would sig-
nificantly aid the quality of the generated quads. Choosing
both a subdivision scheme that produces well-behaved data
and a dataset that conforms well to the subdivision scheme
is vital for achieving high efficiency.

6.3. OpenGL: Triangle Size Effects

Similarly, OpenGL performance degrades as triangles be-
come smaller. Figure 8 shows TEAPOT’s performance at
different subdivision levels. As triangles shrink, the ver-
tex program, geometry, and rasterization cost grows rapidly.
TEAPOT-64, with Reyes-sized primitives (an average trian-
gle size of 1.18 pixels), has more than twice the runtime of
TEAPOT-20, our benchmark scene.

Small triangles make OpenGL’s performance suffer for
the same reasons that Reyes’ performance is poor. The shad-
ing work increases with the number of triangles, and much
of the rasterization work is also per-triangle.

6.4. Toward Reyes in Hardware

Many parts of our pipeline are well-suited for programmable
stream hardware such as Imagine. The vertex programs for
our three Reyes scenes, for instance, sustain an average of
24.5 operations per cycle in their main loops. The sampling
algorithm is also efficient, and both would benefit in future

stream hardware from more functional units to exploit fur-
ther levels of instruction-level parallelism.

But subdivision cost dominates the runtime of our Reyes
scenes, so continued investigation of subdivision algorithms
and hardware is vital. The ideal subdivider has several prop-
erties:

Adaptive Uniform subdivision, while simple to implement,
is inappropriate for a general subdivider. Uniformly sub-
dividing a patch with part of that patch requiring a fine
subdivision means that the entire patch will also be di-
vided finely. This could lead to a huge number of pro-
duced quads, most of which would not contribute to the
final image.

High performance Ideally, the subdivider would not dom-
inate the runtime of the entire scene.

Artifact free Subdividers must take care that neighboring
quads at different subdivision levels do not allow cracks
to form as a result of the different levels. Our algorithm,
with its use of line equations to represent quad boundaries,
guarantees cracks will not occur.

Efficient The ideal subdivider would not output any quads
that did not contribute to the final image. Our subdivider
does poorly on this point, but could potentially improve at
the cost of more computation by testing for pixel coverage
before outputting quads or by improving quad quality by
allowing subdivision in only one direction.

In the future, we hope to explore other subdivision algo-
rithms that might better address some of the above points.
As well, other subdivision schemes and algorithms may be
better candidates for our hardware and programming sys-
tem. For example, Pulli and Segal explore a Loop subdi-
vision scheme that is amenable to hardware acceleration14;
Bischoff et al. exploit the polynomial characteristics of
the Loop scheme with another algorithm for efficient
subdivision1.

Investigating what functional units and operations would
allow stream hardware to better perform subdivision would
be an interesting topic for future research. Alternatively, our
pipelines are implemented in programmable hardware, but
due to its large computational costs and regular computa-
tion, subdivision may be better suited for special purpose
hardware. Hybrid stream-graphics architectures, with high-
performance programmable stream hardware evaluating pro-
grammable elements such as shading and special-purpose
hardware performing fixed tasks such as subdivision, may
be attractive organizations for future graphics hardware.

7. Conclusion

In this paper, we have presented implementations of
OpenGL and Reyes pipelines running complex pro-
grammable shaders on the Imagine Stream Processor. We
have shown that although Reyes has several desirable char-
acteristics — bounded-size primitives, a single shader stage,
and coherent access textures — the cost of subdivision in

c© The Eurographics Association 2002.

55



Owens, Khailany, Towles, and Dally / Comparing Reyes and OpenGL on a Stream Architecture

the Reyes pipeline allows the OpenGL pipelines to demon-
strate superior performance. Continued work in the area of
efficient and powerful subdivision algorithms is necessary
to allow a Reyes pipeline to demonstrate comparable perfor-
mance to its OpenGL counterpart.

As triangle size continues to decrease, Reyes pipelines
will look more attractive. And though the shaders we have
implemented are relatively sophisticated for today’s real-
time hardware, they are much less complex than the shaders
of many thousands of lines of code used in movie produc-
tion. When graphics hardware is able to run such complex
shaders in real time, and the cost of rendering is largely
determined by the time spent shading, we must consider
pipelines such as Reyes that are designed for efficient shad-
ing.

Furthermore, as graphics hardware becomes more flexi-
ble, multiple pipelines could be supported on the same hard-
ware, as we have done with our implementation on Imagine.
Both the OpenGL and Reyes pipelines in our implemen-
tation use the same API, the Stanford Real-Time Shading
Language, for their programmable elements. Such flexibility
will allow graphics hardware of the future to support multi-
ple pipelines with the same interface or multiple pipelines
with multiple interfaces, giving graphics programmers and
users a wide range of options in both performance and vi-
sual fidelity.

Acknowledgements

The Imagine project was primarily supported by the De-
fense Advanced Research Projects Agency under ARPA or-
der E254 and monitored by the Army Intelligence Cen-
ter under contract DABT63-96-C0037. The authors were
supported by the DARPA Polymorphous Computing Archi-
tectures Project (monitored by the Department of the Air
Force under contract F29601-00-2-0085), an Intel Founda-
tion Fellowship, and the Interconnect Focus Center Program
for Gigascale Integration (contracted by the Georgia Tech
Research Corporation under DARPA Grant MDA972-99-1-
0002 as Georgia Tech Project Number B-12-D00). Kekoa
Proudfoot and Bill Mark were instrumental in developing
and using the RTSL compiler for this work, and Pat Han-
rahan helped to develop the subdivision algorithm. David
Ebert contributed the marble shader. Matt Pharr’s comments
on this work were particularly insightful.

References

1. Stephan Bischoff, Leif P. Kobbelt, and Hans-Peter Seidel. To-
wards hardware implementation of Loop subdivision. In2000
SIGGRAPH / Eurographics Workshop on Graphics Hardware,
pages 41–50, August 2000.

2. E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes.Computer-Aided De-
sign, 10(6):350–355, September 1978.

3. Robert L. Cook. Stochastic sampling in computer graphics.
ACM Transactions on Graphics, 5(1):51–72, January 1986.

4. Robert L. Cook, Loren Carpenter, and Edwin Catmull. The
Reyes image rendering architecture. InComputer Graphics
(Proceedings of SIGGRAPH 87), volume 21, pages 95–102,
July 1987.

5. Ziyad S. Hakura and Anoop Gupta. The design and analysis
of a cache architecture for texture mapping. InProceedings of
the 24th International Symposium on Computer Architecture,
pages 108–120, 1997.

6. Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot.
Prefetching in a texture cache architecture. In1998 SIG-
GRAPH / Eurographics Workshop on Graphics Hardware,
pages 133–142. ACM SIGGRAPH / Eurographics / ACM
Press, August 1998.

7. Homan Igehy, Gordon Stoll, and Patrick M. Hanrahan. The
design of a parallel graphics interface. InProceedings of SIG-
GRAPH 98, Computer Graphics Proceedings, Annual Con-
ference Series, pages 141–150. ACM SIGGRAPH / Addison
Wesley, July 1998.

8. Ujval J. Kapasi, Peter Mattson, William J. Dally, John D.
Owens, and Brian Towles. Stream scheduling. InProceed-
ings of the 3rd Workshop on Media and Streaming Processors,
pages 101–106, 2001.

9. Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Ka-
pasi, Peter Mattson, Jin Namkoong, John D. Owens, Brian
Towles, and Andrew Chang. Imagine: Media processing with
streams.IEEE Micro, pages 35–46, Mar/Apr 2001.

10. Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-
programmable vertex engine. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 149–158, August 2001.

11. Kerstin M̈uller and Sven Havemann. Subdivision surface tes-
selation on the fly using a versatile mesh data structure.Com-
puter Graphics Forum, 19(3), August 2000.

12. John D. Owens, William J. Dally, Ujval J. Kapasi, Scott
Rixner, Peter Mattson, and Ben Mowery. Polygon rendering
on a stream architecture. In2000 SIGGRAPH / Eurographics
Workshop on Graphics Hardware, pages 23–32, August 2000.

13. Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and
Pat Hanrahan. A real-time procedural shading system for pro-
grammable graphics hardware. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 159–170, August 2001.

14. Kari Pulli and Mark Segal. Fast rendering of subdivision sur-
faces. InRendering Techniques ’96 (Proceedings of the 7th
Eurographics Workshop on Rendering), pages 61–70, 1996.

15. Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson,
and John D. Owens. Memory access scheduling. InProceed-
ings of the 27th International Symposium on Computer Archi-
tecture, pages 128–138, June 2000.

16. Mark Segal and Kurt Akeley.The OpenGL Graphics System:
A Specification (Version 1.2.1). 1999.

17. Steve Upstill.The Renderman Companion. Addison-Wesley,
1990.

18. Greg Ward.Graphics Gems II, chapter VIII. 10 (A Recursive
Implementation of the Perlin Noise Function), pages 396–401.
AP Professional, 1991.

19. Lance Williams. Pyramidal parametrics. InComputer Graph-
ics (Proceedings of SIGGRAPH 83), volume 17, pages 1–11,
July 1983.

20. Denis Zorin and Peter Schröder. Subdivision for Modeling
and Animation: Implementing Subdivision and MultiResolu-
tion Surfaces, chapter 5, pages 105–115.

c© The Eurographics Association 2002.

56


