
Efficient Partitioning of Fragment Shaders
for Programmable Graphics Hardware

Eric Chan
Ren Ng
Pradeep Sen
Kekoa Proudfoot
Pat Hanrahan

Computer Graphics Lab
Stanford University

Real-Time Shading Languages

Common goal:

� Make programmable hardware features accessible
via high-level language

� Easy to write large and complex shaders

Shading Language Differences

Key design question:

� How are hardware resource limits handled?

Higher-level languages
� Example: RenderMan, Stanford shading language

� Surface and light shaders

� Virtualizes hardware resources

Lower-level languages
� Examples: NVIDIA’s Cg, 3D Labs’ OpenGL 2.0 proposal

� Separate vertex and fragment programs

� No virtualization of hardware resources

Resource Limits Are Troublesome

� Every GPU has resource limits

� Sufficiently large shaders can’t be mapped to one
pass!

Registers

R0

R1

Rn

...

Instructions

TEX tex, coord;
DP3 bump, N, tex;

MUL out, t, bump;

...

V0 V1 Vk

Vertex Interpolants

Textures

T0

T1

Tm

...

...

Virtualization Is Key

“... the upcoming high level languages MUST NOT have

fixed, queried resource limits if they are going to

reach their full potential ...”

“... drivers must have the right and responsibility to

multipass arbitrarily complex inputs to hardware with

smaller limits.”

— John Carmack

id Software

June 2002

Virtualization Using Multipass

Basic idea:

� Split shaders into multiple passes

� Each pass satisfies all resource constraints

� Intermediate results saved to texture memory and
restored in later passes

Problem:

� There are many ways to split a shader.
Which one renders the fastest?

Previous Approaches

Peercy et al. used pattern-matching on shade trees:

� Handles arbitrarily large shaders for non-
programmable hardware

� But, doesn’t work well for programmable hardware!

Proudfoot et al. used custom compiler back ends:

� Targets programmable hardware

� Uses hardware resources efficiently

� But, doesn’t split shaders into multiple passes

Contributions

“Recursive Dominator Split” (RDS) algorithm:

1. Efficiently targets programmable graphics hardware

2. Supports arbitrarily large shaders

3. Supports hardware with different constraints

4. Supports hardware with different performance
characteristics

5. Integrates smoothly with a real shading system

Outline

1. Stanford shading system overview

2. Problem statement and assumptions

3. Algorithm: Recursive Dominator Split (RDS)

4. Results

Shading System Overview (1/5)

Source Code

// bowling pin, based on RenderMan bowling pin
surface shader floatv
bowling_pin (texref pinbase, texref bruns, texref marks, floatv uv)
{

// generate texture coordinates
floatv uv_wrap = { uv[0], 10 * Pobj[1], 0, 1 };
floatv uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0, 1 };

// texture transformation matrices
matrix t_base = invert(translate(0,-7.5,0) * scale(0.667,15,1));
matrix t_bruns = invert(translate(-2.6,-2.8,0) * scale(5.2,5.2,1));
matrix t_marks = invert(translate(2.0,7.5,0) * scale(4,-15,1));

// per-vertex scalar used to select front half of pin
float front = select(Pobj[2] >= 0, 1, 0);

// lookup texture colors
floatv Base = texture(pinbase, t_base * uv_wrap);
floatv Bruns = front * texture(bruns, t_bruns * uv_label);
floatv Marks = texture(marks, t_marks * uv_wrap);

// compute lighting
floatv Cd = lightmodel_diffuse({0.4,0.4,0.4,1}, {0.5,0.5,0.5,1});
floatv Cs = lightmodel_specular({0.35,0.35,0.35,1}, {0,0,0,0}, 20);

// compute surface color
return (Bruns over Base) * (Marks * Cd) + Cs;

}

Shading System Overview (2/5)

Intermediate
Representation

(fragment portion)

Hardware-independent,
high-level language operator

Shading System Overview (3/5)

DAG of hardware-specific

fragment operations

Arithmetic op

Texture op

Vertex input

Constant

Shading System Overview (4/5)

Pass partitioning

using RDS

Passes shown as different colors

Shading System Overview (5/5)

Code generation

; pass 4
texcrd r0.rgb, t0
texcrd r2.rgb, t2
texcrd r3.rgb, t3
texcrd r5.rgb, t5
tex2d r1.rgb, t1
tex2d r4.rgb, t4
mul r0.rgb, r0, r1
mul r0.a, r0, r1
mul r1.rgb, r3, r4
mul r1.a, r3, r4
texcrd r0.rgb, r0
texcrd r1.rgb, r1
mad r0, r0, r0, r1

; pass 3
texcrd r0.rgb, t0
texcrd r1.rgb, t1
texcrd r2.rgb, t2
tex2d r4.rgb, t4
tex2d r3.rgb, t3
tex2d r5.rgb, t5
mul r2.rgb, r2, r3
mul r2.a, r2, r3
mad r1, r1, r2, r5
mad r0, r0, r4, r1

; pass 1
texcrd r0.rgb, t0
tex2d r1.rgb, t1
mul r0.rgb, r0, r1
mul r0.a, r0, r1

; pass 0
texcrd r0.rgb, t0
tex2d r1.rgb, t1
tex2d r2.rgb, t2
tex2d r3.rgb, t3
tex2d r4.rgb, t4
mul r1.rgb, r0, r1
mul r1.a, r0.r, r1
mul r2.rgb, r0,r2
mul r2.a, r0.r, r2
mul r0.rgb, r0, r3
mul r0.a, r0.g, r3
mad r0, r0, r4, r0
mad r0, r2, r0, r2

; pass 2
texcrd r0.rgb, t0
texcrd r2.rgb, t2
texcrd r3.rgb, t3
texcrd r5.rgb, t5
tex2d r1.rgb, t1
tex2d r4.rgb, t4
mul r0.rgb, r0, r1
mul r0.a, r0, r1
mul r1.rgb, r3, r4
mul r1.a, r3, r4
mad r1, r2, r1, r5
texcrd r0.rgb, r0
texcrd r1.rgb, r1
mad r0, r0, r0, r1

; pass 5
texcrd r0.rgb, t0
texcrd r1.rgb, t1
texcrd r2.rgb, t2
tex2d r4.rgb, t4
tex2d r3.rgb, t3
tex2d r5.rgb, t5
mul r2.rgb, r2, r3
mul r2.a, r2, r3
mad r1, r1, r2, r5
mad r0, r0, r4, r1

; pass 6
texcrd r1.rgb, t1
tex2d r2.rgb, t2
tex2d r0.rgb, t0
tex2d r3.rgb, t3
tex2d r4.rgb, t4
add r1.rgb, r1, r3
add r1.a, r1, r3
mul r0, r0, r1
mad r0, r2, r0, r4
mad r0, r2, r0, r4

Hardware-specific
object code

Multipass Partitioning Problem (MPP)

Definitions:

� Each way of splitting a shader is a partition.

� A cost model evaluates the cost of partitions.

� A partition is valid if each pass satisfies all
constraints.

Task:

� Given a DAG and a cost model, find a valid partition
with the lowest cost.

MPP Is Hard

� Abstract problem: graph partitioning

� Falls into class of “NP optimization” problems

Assumptions

1. We only consider fragment shaders

2. Shaders are represented as a single directed acyclic
graph (DAG)

3. Only 1 output value per pass

4. Hardware preserves intermediate values at full
precision

5. Hardware provides base set of resources to support
multipass rendering

Recursive Dominator Split (RDS)

Overview:

Minimize number of passes

Identify cases when we
can avoid save / recompute
decisions

Make save / recompute
decisions when necessary

Greedy bottom-up merging

Top-down traversal through a
partial dominator tree

Search over nodes that are
multiply-referenced

1.

2.

3.

Objectives Techniques

Greedy Merging Intuition

Assumption:

� Extra passes are expensive (e.g. save to texture)

� This overhead dominates the overall cost

Idea:

� Use minimum passes to approximate minimum cost

� Merge as many nodes into as few passes as possible

� Proceed bottom-up because of dependency on
children

Merging Example: 2 kids

Node N with kids A and B already assigned to passes

N

A B

Merge All (1 pass)

First, try to place all nodes in the same pass

N

A B

Merge Left / Right (2 passes)

If that doesn’t work, try Merge Left and Merge Right

N

A B

N

A B

Merge
Left

Merge
Right

Merge None (3 passes)

If merge not possible, must start a new pass at N

N

A B

Merging Decisions

What if both Merge Left and Merge Right are possible?

Intuition:

� Pick the merge most likely to require fewer passes
later in the partitioning process

Heuristic:

� Pick the merge that consumes the fewest resources

� Break resource ties arbitrarily

Save vs. Recompute

What about multiply-referenced nodes?

� A multiply-referenced (MR) node
has two or more parents

� A MR node can be

1. merged

2. saved in a separate pass

3. recomputed (duplicated)

� Save has a cost (extra pass)

� Recompute has a cost (extra ops)

Immediate Dominators

Concept borrowed from compilers:

� The immediate dominator B of a
node A is the “closest” node to A
such that all paths from the root
to A go through B

Example:

� idom(H) = B

More Immediate Dominators

Concept borrowed from compilers:

� The immediate dominator B of a
node A is the “closest” node to A
such that all paths from the root
to A go through B

Examples:

� idom(H) = B

� idom(G) = E

� idom(K) = E

Using Immediate Dominators

Basic idea:

� Try to merge a multiply-
referenced node with its
immediate dominator

Why?

� Identifies “small enough” regions

� Avoids save / recompute cost!

Mechanism:

� Need a convenient data structure
to identify these regions

Partial Dominator Tree (PDT)

� In a dominator tree, the parent of each node is its immediate
dominator.

� A partial dominator tree (PDT) is constructed from a normal
dominator tree by keeping only the root, MR nodes, and their
immediate dominators.

Dominator Tree PDT

Recursive Subdivision Using PDT

Use a top-down traversal through the PDT

PDT DAG

Example: suppose hardware allows
only 10 operations per pass

Recursive Subdivision (1/3)

Start with node A. Does the whole DAG fit?

No — fails validity check

Recursive Subdivision (2/3)

Try B next. Does subregion(B) fit?

No — fails validity check

Recursive Subdivision (3/3)

Try H next (not E, because E depends on H).

Yes — 2 nodes fits under the limit.

Question: save or recompute at H?

Save vs. Recompute

Problem:

� Not always possible to merge up
to the immediate dominator

Options:

� Save H to its own pass

� Recompute H

Case 1: Save Subregion(H)

Partition #1:

� 3 passes

� 14 operations
(including 2 restores)

Case 2: Recompute Subregion(H)

Partition #2:

� 2 passes

� 15 operations
(including 1 restore)

Recompute Heuristic

Intuition:

� Save if a subregion is almost “full”

� Recompute if a subregion is almost
“empty”

Simple heuristic:

� Recompute iff the consumption of
each resource is less than one-half
the maximum allowed

small enough
to recompute

Complexity

Basic analysis:

� Let N = the size of the DAG

� Greedy merging requires O(N) time

� Assume validity check is g(N)

Algorithm has complexity O(N · g(N))

Validity check can be expensive:

� Code generation, resource allocation, ...

� Recompile from scratch: g(N) = O(N)

Early Observations

Greedy merging is easy, fast, and works well

� Merge heuristic is good enough

Save vs. recompute is tricky

� Recompute heuristic is not good enough

� Hard to predict how a decision will affect result

Another approach:

� Search over save / recompute decisions to obtain
better results

Search Overview

Walk bottom-up through MR nodes:

� Decisions at visited nodes are fixed

� Try both save / recompute at current node

� Apply heuristic to unvisited nodes

� Increases running time by a linear factor

Current MR node

Unvisited: use heuristic

Decision fixed
(recompute)

Implementation

Compiler back ends for the Stanford shading system:

� ATI R200 (Radeon 8500)

� ATI R300 (Radeon 9700)

� NVIDIA NV30 (software driver)

new back ends:
added since
original paper

Images

Procedural wood surface (credit: Larry Gritz)

Image generated using
NV30 software driver

50 passes on Radeon 8500

7 passes on Radeon 9700

1 pass on NV30

Limited by instructions

Images

Procedural flame shader (credit: Bill Mark)

Image courtesy of Bill Mark

20 passes on Radeon 8500

3 passes on Radeon 9700

1 pass on NV30

Limited by instructions

Images

RenderMan bowling pin + projected textured lights

Images generated using
ATI Radeon 9700

7 passes on Radeon 8500

5 passes on Radeon 9700

5 passes on NV30

Limited by interpolants!

Cost Models

Simple linear model: cost = cp p + ct t + ci i

� p = # of passes

� t = # of texture fetches

� i = # of instructions

Different kinds of cost:

� cp is a per-pass cost

� ct and ci are per-fragment costs

Measured cost model for ATI Radeon 8500:

� cost = 15.7p + 1.3t + i;

Results (Bowling Pin)

Cost model: cost = 15p + 5t + i

31453145128
o
/ 12

r
/ 16

t
/ 12

v

5184517924
o
/ 8

r
/ 8

t
/ 8

v

11310113106
o
/ 4

r
/ 4

t
/ 4

v

926992694 interpolants

417141714 textures

213121254 registers

11309113096 ops

PassesCostPassesCostArchitecture

Optimal RDS

Results (Wood)

Cost model: cost = 15p + 5t + i

33963396128
o
/ 12

r
/ 16

t
/ 12

v

17937——24
o
/ 8

r
/ 8

t
/ 8

v

922681——6
o
/ 4

r
/ 4

t
/ 4

v

237423744 interpolants

237823784 textures

321462——4 registers

912685——6 ops

PassesCostPassesCostArchitecture

Optimal RDS

Future Work

� Support for branching and loops

� Support for multiple outputs

� Support for vertex shaders

� Faster algorithms (use incremental techniques)

Summary

Contribution:

� RDS virtualizes GPU resources by splitting arbitrarily
large fragment shaders into multiple passes

Virtualization today:

� Multipass rendering + pass-splitting algorithm

Virtualization tomorrow:

� Combination of software + hardware techniques

� GPU-assisted mechanisms (like CPU register spilling)

Virtualization Is Key

Why virtualization is critical:

� All GPUs have resource limits

� Program size isn’t always the limiting factor!

� Forward compatibility is useful

Future of programmable GPUs:

� Not just procedural shading

� Large scientific computations, physical simulations

� Programs shouldn’t be held back by resource limits!

Acknowledgments

Stanford graphics architecture group

Bill Mark (NVIDIA)

Monica Lam (Stanford compilers/OS group)

Sponsors

� DARPA, ATI, NVIDIA, Sony, Sun

Hardware, drivers, and bug fixes

� Matt Papakipos, Mark Kilgard, Nick Triantos, Pat Brown

� James Percy, Bob Drebin, Evan Hart, Jeff Royle

