An Efficient Hybrid Shadow Rendering Algorithm

Eric Chan Frédo Durand

Massachusetts Institute of Technology

Not Another Talk on Shadows?!

Main ideas:

- combination of shadow maps + shadow volumes
- computation masks

Classic Shadow Algorithms

Shadow maps (Williams 1978)

- fast and simple
- undersampling artifacts
- lots of recent research!

Shadow volumes (Crow 1977)

- object-space
- accurate
- accelerated by stencil buffer
- high fillrate consumption!

NVIDIA

Fillrate Problem

Lots and lots of fillrate!

- rasterization
- stencil updates

Why?

- polygons have large screen area
- polygons overlap

Fillrate Problem

Lots and lots of fillrate!

- rasterization
- stencil updates

Why?

- polygons have large screen area
- polygons overlap

But is this **really** a problem?

Case study: Doom 3 engine (id Software)

bump mapping

- bump mapping
- per-pixel surface shading

- bump mapping
- per-pixel surface shading
- dynamic and projected lights

- bump mapping
- per-pixel surface shading
- dynamic and projected lights
- atmospheric effects

- bump mapping
- per-pixel surface shading
- dynamic and projected lights
- atmospheric effects
- particle effects

- bump mapping
- per-pixel surface shading
- dynamic and projected lights
- atmospheric effects
- particle effects
- shadow volumes

Case study: Doom 3 engine (id Software)

- bump mapping
- per-pixel surface shading
- dynamic and projected lights
- atmospheric effects
- particle effects
- shadow volumes

> 50%

"Shadowing accounts for about half of the game's rendering time."

– John Carmack

Two Observations

Two Observations (shadow maps)

Shadow-map aliasing is ugly

But – only noticeable at shadow silhouettes

Two Observations (shadow volumes)

Shadow volumes are accurate everywhere But – accuracy is only needed at silhouettes

Hybrid Approach

Decompose the problem:

- use shadow volumes at silhouettes
- use shadow maps everywhere else

apply shadow volumes <u>only at silhouette pixels</u>

apply shadow maps everywhere else

Algorithm Details

Questions:

- how to find silhouette pixels?
- how to rasterize <u>only</u> silhouette pixels?

Find Silhouette Pixels

Find Silhouette Pixels (example)

Check results:

- 2 in shadow
- 2 visible

Disagreement!silhouette pixel

Restricted Rasterization

Use a mask to limit rasterization:

- tag silhouette pixels in framebuffer
- mask off all other pixels

example scene

mask

Computation Mask

We need a computation mask

- user-specified mask
- hardware early pixel rejection
- reduces rasterization, shading, memory bandwidth

Hardware Support

Current hardware doesn't have computation mask

- but hardware already has early z culling!
- minimal changes needed for native mask support
- our implementation uses a <u>simulated</u> mask

Results

- 2.6 GHz Pentium 4
- NVIDIA GeForce 6 (NV40) + crazy blue power supply

Aliased shadow of a ball

standard shadow map

Blue and red regions handled by shadow maps

visualization

Blue and red regions handled by shadow maps

Black and green regions
handled by shadow volumes

visualization

standard shadow map

hybrid algorithm

Test Scenes

Shadow maps Time: 5 ms Hybrid Time: 19 ms

Shadow volumes Time: 48 ms Hybrid Time: 19 ms

Artifacts

Low-resolution shadow map \rightarrow discretization errors Misclassified silhouette pixels \rightarrow missing features Difficult cases: fine geometry

Example of Missing Features

result

visualization

256x256

Discussion

Algorithm designed to help **<u>fillrate-bound</u>** applications:

- requires an extra rendering pass
- 30% to 100% speedup in our test scenes
- performance depends a lot on culling hardware

More details in the paper and web page ...

- tradeoff analysis
- comparison to related work
- implementation details
- more performance and image comparisons

Summary

Hybrid shadow algorithm

Screen-space decomposition:

- most pixels use fast (but inexact) algorithm
- a few pixels use accurate (but expensive) algorithm

Computation Masks

Why?

- pixels are not created equal
- programmer marks "interesting" pixels
- fast reject all other pixels
- not just for shadows!
- useful in general for multipass algorithms
- hardware is (mostly) already there

Acknowledgments

Nick Triantos and Mark Kilgard (NVIDIA) Jan Kautz and Addy Ngan (MIT) Timo Aila ASEE NDSEG Fellowship