Rendering Fake Soft Shadows with Smoothies

Eric Chan Frédo Durand

Laboratory for Computer Science
Massachusetts Institute of Technology
Real-Time Shadows

Goals:
- Interactive framerates
- Hardware-accelerated
- Good image quality
- Dynamic environments

Applications:
- Game engines (e.g. Doom 3)
- Interactive walkthroughs

Challenge: balancing quality and performance
Two Algorithms from the 1970’s

Shadow volumes (Crow 1977)
- Object-space
- Accelerated by hardware stencil buffer
- Large fillrate consumption

Shadow maps (Williams 1978)
- Image-space
- Fast and simple
- Supported in hardware
- Undersampling artifacts
Soft Shadow Volumes

Penumbra wedges:
- Shadow polygons → wedges
- Compute penumbra with pixel shaders
- Accurate approximation

Papers:

But: much higher fillrate needed
Soft Shadow Maps

Ideas:
- Filtering
- Stochastic sampling
- Image warping

Examples:
- Percentage closer filtering (Reeves et al., SIGGRAPH 1987)
- Deep shadow maps (Lokovic and Veach, SIGGRAPH 2000)
- Image-based soft shadows (Agrawala et al., SIGGRAPH 2000)
- Multisampling hard shadows (Heckbert and Herf, TR 1997)

But: need dense sampling to minimize artifacts
Soft Shadow Maps (cont.)

Approximations

Examples:
- Convolution ([Soler and Sillion, SIGGRAPH 1998])
- Linear lights ([Heidrich et al., EGRW 2000])
- Outer surfaces ([Parker et al., TR 1998])
- Plateaus ([Haines, JGT 2001])
- Penumbra maps ([Wyman and Hansen, EGSR 2003])
Overview

- Extend basic shadow map approach
- Use extra primitives (smoothies) to soften shadows
Fake Soft Shadows

- Shadows not geometrically correct
- Shadows appear qualitatively like soft shadows
Contributions

Smoothie shadow algorithm:
- Creates soft shadow edges
- Hides aliasing artifacts
- Efficient (object / image space)
- Hardware-accelerated
- Supports dynamic scenes
1. Create Shadow Map

Render blockers into depth map
2. Identify Silhouette Edges

Find blockers’ silhouette edges in object space

object-space silhouettes

observer’s view

light’s view
3. Construct Smoothies

Blocker only:

- silhouette vertex
- silhouette edges
- blocker exterior
3. Construct Smoothies (cont.)

Blocker + smoothies:

- silhouette vertex
- silhouette edges
- smoothie edge
- smoothie corner
- blocker exterior
3. Construct Smoothies (cont.)

- **Smoothie edges** are rectangles in screen space with a fixed width.
- **Smoothie corners** connect adjacent smoothie edges.

![Diagram of geometry and shading](image-url)
4. Render Smoothies

Store depth and alpha values into **smoothie buffer**
5. Compute Shadows

Compute intensity using depth comparisons

Diagram:
- Light source
- Blocker
- Smoothie
- Receiver
5. Compute Shadows

Image sample behind blocker (intensity = 0)
5. Compute Shadows

Image sample behind smoothie (intensity = α)
5. Compute Shadows

Image sample illuminated (intensity = 1)
Computing Alpha Values

Intuition:
- Alpha defines penumbra shape
- Should vary with ratio b/r
Computing Alpha Values (cont.)

1. Linearly interpolate alpha
2. Remap alpha at each pixel using ratio b/r:

$$\alpha' = \frac{\alpha}{1 - \frac{b}{r}}$$
Multiple Blockers and Receivers
Multiple Receivers

Smoothie buffer (linearly-interpolated α)

same thickness

light’s view
Multiple Receivers (cont.)

Smoothie buffer (remapped α)

different thickness

light’s view
Multiple Receivers (cont.)

Final image

different thickness

observer’s view
Multiple Blockers

What happens when smoothies overlap?
Multiple Blockers (cont.)

Minimum blending: just keep minimum of alpha values

smoothie ray tracer
Comparison to Penumbra Maps

Penumbra maps (Wyman and Hansen, EGSR 2003)

- Same idea, different details

<table>
<thead>
<tr>
<th>Geometry:</th>
<th>Penumbra Maps</th>
<th>Smoothies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cones and sheets</td>
<td>quads</td>
</tr>
</tbody>
</table>

| Store depth: | blockers only | blockers + smoothies |

Smoothie depth:

- Extra storage + comparison
- Handles surfaces that act only as receivers
Results

System information:
- 2.6 GHz Intel Pentium 4
- NVIDIA Geforce FX 5800 Ultra
Video

Ordinary Shadow Map

Triangles: 2324
Average FPS: 100.0
Hiding Aliasing (256 x 256)

shadow map

16 ms

bicubic filter

129 ms

smoothie (t = 0.02)

19 ms

smoothie (t = 0.08)

19 ms
Hiding Aliasing (1024 x 1024)

- 17 ms shadow map
- 142 ms bicubic filter
- 22 ms smoothie (t = 0.02)
- 24 ms smoothie (t = 0.08)
Comparison to Ray Tracer

increasing size of light source

smoothie ray tracer
Video

original md2shader demo courtesy of Mark Kilgard
Discussion

Shadow maps:
- Assumes directional light or spotlight
- Discrete buffer samples

Shadow volumes:
- Assumes blockers are closed triangle meshes
- Silhouettes identified in object space

Smoothies:
- Rendered from light’s viewpoint
- Occupy small screen area ➔ inexpensive
Summary

Contribution:
- Simple extension to shadow maps
- Shadows edges are fake, but look like soft shadows
- Fast, maps well to graphics hardware
Trends in Real-Time Shadows

Architectures and algorithms go together

Currently, architectures → algorithms:
- Store per-pixel data at full precision

But also, algorithms → architectures:
- Shadow maps
- Shadow volume depth bounds
- Aggressive early z and stencil reject
Acknowledgments

Hardware, drivers, and bug fixes
- Mark Kilgard, Cass Everitt, David Kirk, Matt Papakipos (NVIDIA)
- Michael Doggett, Evan Hart, James Percy (ATI)

Writing and code
- Sylvain Lefebvre, George Drettakis, Janet Chen, Bill Mark
- Xavier Décoret, Henrik Wann Jensen

Funding
- ASEE NDSEG Fellowship