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A humanoid robot needs to be able to operate safely in human workspaces, prefer-
ably without extensive calibration. We consider the problem of directing a robot arm
towards, across, and away from an unmodeled surface without damaging it. For this
task we make use of a powerful resource: the shadow cast by the robot’s own body. We

show that the cast shadow of the arm on the surface can be detected by a camera and
used to derive a time-to-contact estimate. This estimate, when combined with the 2D
tracked location of the arm’s endpoint in the camera image, is sufficient to allow 3D
control relative to the surface. We show that the same method can detect either cast
shadows or reflections, allowing the robot to operate correctly over water, mirrors, or
other reflective materials. Such scenarios, along with low-texture surfaces, are cases in
which stereo vision – the more commonly used depth cue in robotics – might fail and
is worth augmenting. We draw on the literature of computer graphics and virtual real-
ity to argue that for manipulation, sensitivity to shadows and interreflection will be of
similar importance to stereo vision as a depth cue when attempting to touch an object.
In computer vision, shadows are generally treated as a nuisance, but that doesn’t mean
roboticists should do the same.
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1. Introduction

Shadows have long been a bane of computer vision, creating illusory objects and

obscuring true object boundaries. Much energy has been devoted to developing the

means to detect shadows automatically, not because they are considered valuable

in themselves, but because they need to be distinguished from true objects 1. On

the other hand, researchers in computer graphics and virtual reality have struggled

to render shadows in order to increase realism and aid depth perception 2. Robotics

draws on all these fields, so should we be fans or foes of shadows?

In this paper we observe that in visually-guided reaching, perception of the

shadow(s) cast by a robot arm is potentially very useful. As the arm approaches

a surface, the shadow that it casts rushes to meet it. This gives an indication of

1
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Fig. 1. The gorilla-like robot Coco 5 . In this work, Coco was sitting up and using its right arm to
touch surfaces. The arm has one ‘elbow’ hinge joint and two differential ‘shoulder’ joints. For this
work, a single higher-resolution camera (720 × 480 pixels) was used rather than the pair of lower
resolution cameras already installed.

the arm’s proximity to the surface. If we track this approach, we can estimate a

“time-to-contact” for touching. This is analogous to the time-to-contact quantity

derived from optic flow for navigation3,4. We demonstrate directing an arm to touch

a target using information from a single camera. This is done by driving the arm

to simultaneously reduce the visual error between the endpoint and the target and

the visual error between the endpoint’s shadow and the target. When both these

errors are zero, the endpoint is at the target in 3D space. We use a tactile sensor in

the arm’s endpoint to verify contact.

Section 2 introduces Coco, the gorilla-like robot upon which this work is im-

plemented (see Figure 1). Section 3 reviews in brief the literature on shadows and

their role in human depth perception, making the case that they are important to

the perception of contact and are an very strong cue, particularly when combined

with motion. Section 4 discusses the particular method proposed for detecting cast

shadows of the arm, using the fact that the robot is in control of the arm and can

move it to its advantage. Section 5 uses the detected shadow as the basis for a

controller, which drives the arm from point to point on a surface, rising away from

and falling towards the surface at the beginning and end of the trajectory. Section 6

looks more closely at estimating the time-to-contact from shadow information. We

close with discussion and proposals for future work.

2. The robot

The platform used is the robot Coco designed by Morse5 (see Figure 1). Coco

is a gorilla-like robot, with two legs and two arms. Each leg has two degrees of

freedom (DOF), one in the knee and one in the hip. Each arm has three DOF,

one in the elbow and two in the shoulder. The neck has two DOF. This robot has

a mass of 10 kg. Each arm is 312 mm long, the legs are 110 mm long and the

body is 310×345×100 mm. The arm cam be used to walk and to interact with the

environment. The motor control is performed by five Agile MAX2000 motor control

boards. Each board drives 3 motors and is controlled across an RS232 serial port.
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In the tip of the arm there is a force sensor with a resolution of 120 mV/kg and a

limit of 0.5 kg.

The vision system consists of a Sony camcorder with a resolution of 720 × 480

pixels and controllable zoom and focus. The control is done by a custom board that

interfaces the LANC port of the camera to a RS232 port. The camera connects to

an offboard computer running Linux through its IEEE 1394 (Firewire) interface.

This computer runs the vision system described in the remainder of this paper, and

communicates via TCP/IP with a second computer charged with motor control and

interfacing with the motor control boards.

3. The role of shadows in human perception of depth

Many cues play a role in the human perception of depth, including occlusions,

stereopsis, motion parallax, shadows (attached or cast), interreflections, perspective

effects, etc. Over the centuries these cues have become better understood in art;

the idea of perspective, for example, first gained currency in the 15th century. In

this century, the need to understand depth perception has grown in urgency as

researchers in computer graphics and virtual reality strive for increasing realism.

Stereopsis has proven to be an important cue; shadows and interreflections have also

proven effective, and in some cases match stereopsis in power 6,7,8,2. Moving shadows

can profoundly influence the interpretation of a scene, in some cases overruling other

depth cues such as apparent size9,10. Apparent shadow motion can give a very strong

sense of object motion even in the absence of any other cue 11. Shadows help in the

perception of spatial relationships in computer-generated images 12. Shadows and

interreflections are particularly important for giving a strong impression of object

contact in computer graphics13.

There is speculation that the cast shadow of the hand may be integrated into

the body schema, in a manner somewhat analogous to the extension of the schema

to include tools14. There is some evidence that the processing of shadows in the

brain, which can impact on object recognition performance, is at least partially

done without conscious awareness15.

In computer vision, shadows cannot be ignored. Much work has been devoted to

detecting them, even if only for the purposes of discounting them16 (for a review,

see Prati et al1). Less common is work to utilize shadows. In computer graphics, it

was realized that the cast shadow of a known object (a long stick) could be used

to recover the shape of an object the shadow passed over, in a manner analogous

to (but cheaper than) active illumination methods that scan lines of light across

the scene17. Shadow has also been used to recover body pose in video of moving

people18. There is a great deal of work on ‘shape from shadow’ which is generally

concerned with shading rather than cast shadows.

To summarize, shadows have a demonstrable and significant impact on the abil-

ity of humans to perceive depth and adjacency, and to judge whether an object

and a surface are in contact. We wish to import that advantage into robotics,
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Endpoint marker

Shadow marker

Fig. 2. Detection of the arm endpoint (shown as a circle) and the arm’s shadow (shown as a bar).
The surfaces shown are a cardboard box, a metal table, and a text-covered box, all at different
distances from the robot. Lighting varies from ambient (where the shadow is barely perceptible to
the human eye) to strongly directional, from left or right.

rather than continue to rely only on stereo vision for depth perception. Shadows

and stereopsis have somewhat complementary properties; stereo is at is best when

depth changes are sharp, while shadows are easiest to track when depth changes

are relatively smooth. The error in stereo measurements grows with distance from

the camera, while the error in shadow measurements grows with distance from the

surface. Shadows (and reflections) are detectable even in the absence of texture, or

with reflective surfaces, situations that can confuse stereo. We believe that combin-

ing stereopsis and shadows could lead to a more robust system for manipulation. In

this paper we seek to show the benefits of shadows on their own, but that should

not be read as a belief that shadows are better than stereo.

4. Detecting cast shadows of the arm

What properties of a cast shadow can be used to reveal its presence? The most

obvious property of a cast shadow is that the surface it is cast on becomes darker

than it otherwise would be. In a single image, this is not very helpful, since we

do not know how dark different surfaces should be, and the appearance of surfaces

varies for many reasons other than shadows. In a video stream, this property is more

helpful, since we can watch for moving patches of darkness, or compare against an

image of the background without the arm or its shadow present.

For this work, two methods are used for detecting regions of illumination change,

labeled static and dynamic. The static method is based on building a background

model of the workspace while holding the arm to the side, then looking for novel

regions of illumination change relative to that model when the arm swings into
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Fig. 3. Another form of illumination change that can occur is a reflection. The method described
for shadow detection works without change to detect reflections. The top row shows the reflection
of the arm being detected in a small mirror. The middle row shows reflections in a dark bowl of
water, and the bottom row shows reflections and shadows on a sheet of acrylic, partially covered.

action. This method can detect very weak shadows, and operates just as well when

the arm is stationary as when it is moving. The dynamic method specifically looks

for moving regions of illumination change, by comparing the current image from

the camera with one from half a second ago. This gives better localization of the

shadow of the endpoint (the fastest moving part of the arm) while the robot is in

motion, but is useless when the robot is stationary.

The first step in finding the cast shadow is to find the endpoint of the arm itself,

as a reference. The endpoint of the arm is tracked at 30Hz. In each frame, a small

window (1/25 of the image area) around the last known position of the endpoint

is scanned for the dominant local orientation within ±5◦ of the arm’s last known

orientation. It is assumed this dominant orientation will be due to the edges of the

arm and the highlights running along its length. The tracked position of the arm is

then updated to the center of mass of the pixels that are at the dominant orientation,

with a small constant offset in the direction of the orientation. When iterated, this

procedure drives the tracked position out along the arm to the endpoint, and pulls

it back in if it begins to drift. The tracking procedure makes minimal assumptions

about the endpoint. The tracker is initialized using an appearance model of the arm

and an assumption that the arm is initially in an area with good contrast with the

background.

Once the position of the endpoint is known, the vision system waits for an op-

portunity to build a background model. This is provided by simply swinging the

endpoint to the side, out of the way. The background model is simply a snapshot
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Robot sees target, arm, 
and arm’s shadow

Robot moves to reduce
visual error between

arm and target

Robot moves to reduce
visual error between

arm’s shadow and target

Fig. 4. Shadow error and endpoint error. If both visual errors are driven to zero, the endpoint is
at the target. Either error individually is insufficient to drive the arm to a 3D target.

of the scene. When the arm swings back into action, static and dynamic shadow

cues are combined by simple summation of grayscale pixel differences with the ref-

erence images. To speed shadow detection, we make some simplifying assumptions:

we assume there will be a shadow below the arm in visual coordinates, and some

component (even if very faint, and not the main shadow) will be vertically un-

derneath the arm. Figure 2 shows a range of scenarios that meet this assumption.

Given that assumption, we simply scan down from the endpoint, looking for a peak

of illumination change. The shadow (or reflection – see Figure 3) we find will in

general not be of the forearm. We could trace from this starting point to find the

shadow, but choose not to do so, since the distance to this point from the endpoint

is as good as any as a measure of shadow distance.

5. Reaching across a surface

Shadow detection allows us to design a controller for reaching across from one point

to another on a surface. A control loop designed to maintain the distance of the

cast shadow from the arm served to keep the arm at a constant ‘cruising’ height.

At the beginning of the trajectory the arm rises away from the surface, as judged

using shadows, to avoid scraping across the surface. At the end of the trajectory

the arm sinks towards the surface (see Figure 4).

Which motor combinations move towards the surface? This just needs to be

known qualitatively, and doesn’t need to be exact – errors can be absorbed into the

closed loop visual errors. A very crude kinematic model for the workspace can be

constructed by making small exploratory movements and measuring the amount of

change caused in 2D endpoint location and shadow distance by displacements in

each of the degrees of freedom. Coco’s arm has three degrees of freedom – a hinge

joint at the elbow (θ1) and a differential pair at the shoulder (θ2 and θ3). To control

the arm, virtual axes are used that correspond very roughly with extension away

from the body (m1) rising towards the head (m2) and drawing inwards towards the
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chest (m3), which are related to the physical axes as follows:

θ1 = m1

θ2 = m1 + m2 + m3

θ3 = m1 − m2 + m3

Drawing inwards towards the chest (m3) is achieved by driving the differential

shoulder motors θ2 and θ3 in lock-step. Rising towards the head (m2) is similar,

but now the differential motors are driven in opposition. Extension of the arm (m1)

is achieved by moving the elbow joint, then compensating at the shoulder by the

same angle to keep the endpoint moving out along a ray from the shoulder.

We wish to be able to move the endpoint of the arm, detected in visual co-

ordinates, towards a target also defined in visual coordinates, while controlling

the height of the arm above a surface (estimated from the behavior of the arm’s

shadow). When the robot’s gaze is directed downwards at a workspace, the virtual

axes correspond very approximately to variables we would like to control. Changing

m2 (rotation towards the head) is approximately what we need to control depth,

whereas m1 and m3 will have a big impact on moving the position of the arm across

the image while having a lesser impact on its depth.

Since we can also recover the projected angle of the arm in the image, which

for the geometry of this robot is an approximate indicator of rotation towards

the chest (m3), desired visual displacements can be expressed in terms of desired

visual rotation and extension of the arm. These quantities can be controlled coarsely

using m2 and m3. We label the three visual control quantities as v1 (desired visual

extension of the arm), v2 (desired visual distance to shadow), and v3 (desired visual

rotation of the arm). To discover the relationship between the observed variables

and the control variables, the robot makes exploratory movements that start small,

then grow until it sees significant changes in at least one of the observed variables.

The result of this exploration will be somewhat dependent on the geometry of the

surface and the location of the arm – here is the result of a typical run:





∆v1

∆v2

∆v3



 =





8.1 6.3 −4.4

8.4 10.8 −7.1

3.9 1.9 11.3









∆m1

∆m2

∆m3





Note that ∆m1 has its strongest influence on ∆v1, ∆m2 has its strongest influ-

ence on ∆v2, and ∆m3 has its strongest influence on ∆v3, which corresponds to the

general intuition. We can invert this relationship to produce a reasonable controller:





∆m1

∆m2

∆m3



 =





0.31 −0.18 0.01

−0.28 0.25 0.05

−0.06 0.02 0.08









∆v1

∆v2

∆v3
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Fig. 5. This figure depicts the quantities used to estimate the time to contact.
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Fig. 6. On the left is the result of driving the arm towards a surface (a brown box under ambient
light). The Y axis represents the distance in pixels between the end point of the arm and the
shadow. As the arm drives down, this quantity reduces linearly. Ideally, it should reach zero at the
moment of contact (vertical line); in practice, there is an offset. Results for another run are shown
on the right, showing that the offset is consistent.

6. Estimating time to contact

In this section we evaluate and quantify the accuracy of shadow detection for pre-

dicting the time to contact as the robot arm approaches a surface. The principle

used to estimate the time to contact is depicted in figure 5. We can estimate the

time to contact using the following equation.

tc =
(Ycontact − Ythreshold)

slope
(1)

where tc is time to contact, slope is the rate of change of the shadow distance,

Ycontact is the distance at which the arm makes contact with the surface, Ythreshold
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Fig. 7. In this scenario the level of illumination has been increased and the direction of the light
source changed.

is any distance from which we can predict the time to contact.

This equations holds if the rate of change of the distance between the arm

and shadow is roughly constant. We expect this to be true if the illumination is

constant and the arm moves at constant velocity. To test these assumptions we

ran the following experiment. We direct the robot to drive its arm approximately

downwards using the m2 virtual axis described in section 5. The robot detects that

it touches the surface using the touch sensor in the endpoint of its arm.

Figure 6 shows the outcome of one such trajectory. We can observe that as the

robot moves its arm towards the surface the distance between the shadow and the

arm is reduced.

One complication shown in the figure is that when the shadow is too close to

the arm (around 70 pixels), the shadow merges with the arm and cannot be reliably

localized. At this point cues such as shadow darkness and crispness should be used,

but are not yet available. However, time to collision still can be computed with

good precision. Under the same light conditions we ran the experiment starting at

different positions. The results are shown to the right in Figure 6. In this figure we

observe that the difference between Ycontact from the first experiment (54.1) and the

current one (53.3) is very small. This supports the assumption that we can reliably

and accurately compute time to contact for a given value of slope.

Next, we performed experiments with different surfaces and/or illumination con-

ditions. The results are shown in Figures 7 and 8.

More experiments were done in a given scenario to address the consistency of

the Ycontact threshold and its effect in the time to contact estimation.

We performed 10 runs with fixed illumination and surface while varying the

initial arm position. For each run we fitted a line using the distance points whose

value were above 70 pixels. This value (70 pixels) is the threshold above which the
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Fig. 8. The surface used in this experiment has a different texture than in Figures 6 and 7.

Table 1. Data obtained from 10 experiments ran under the same surface and illumination condi-
tions.

Number Slope Ycontact tc

1 -20.8 -5.8 2.8

2 -19.2 27.5 3.1

3 -19.0 36.8 3.1

4 -15.7 -41.4 3.8

5 -19.3 25.1 3.1

6 -20.3 6.4 2.9

7 -20.8 11.1 2.8

8 -20.2 1.5 2.9

9 -20.8 44.0 2.8

10 -20.1 3.1 2.9

mean -19.6 10.8 3.0

stdev. 1.5 24.6 0.28

detection of the shadow is reliable. We can observe this threshold in figure 5 labeled

as Ythreshold. From the line fitted to the data we obtained its slope. Consequently,

the only remaining parameter required to determine the time to contact according

to equation 1 is Ycontact.

Ycontact is obtained in each one of the experiments when the touch sensor detects

a contact. These results are presented in table 1. Due to the variability of the

behavior of the touch sensor, we can observe that Ycontact is quite noisy. Therefore,

we computed its average to use in equation 1.

The time to contact obtained for each of the experiments has a very small

standard deviation, which shows that the method is applicable in practice, and
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Fig. 9. Shadows tend to be low-frequency illumination changes. With sufficient zoom and good
focus, higher-frequency texture can be found and used to show the shadow is not a physical edge.
Comparing cast edges with true edges can suggest the presence of physical gaps – very useful for
the purposes of manipulation.

suggest that the time estimation is more accurate than the touch sensor readings

can confirm. The computation can be done very quickly since the slope obtained

from a set of data can also be obtained on-line with a few points.

7. Conclusions and future directions

This work is part of a larger project to build a robot capable of manipulating

unfamiliar objects in an unstructured environment. This is a very challenging task

since perceptual uncertainty translates directly into clumsy motion. For example, if

the robot estimates the location and orientation of a surface incorrectly, then there

is a limit to what can be salvaged by clever control algorithms.

Our goal is to give our robot the perceptual abilities it needs to actively resolve

ambiguity in its environment, when the passive vision algorithms it uses fail. Pre-

vious work in our group showed how manipulation could be used to detect object

boundaries experimentally19. In that work, shadows were dealt with as a nuisance.

Now we want to make them a positive benefit. In this paper, we showed that shad-

ows cast by the arm make a fine depth cue. The shadow detection mechanism could

and should be extended to further evaluate the shadow, and not just report its gross

position. Over important parameters include size, darkness, and the crispness of its

outline. For example, as the arm approaches the surface, darkness and crispness in-

crease dramatically. This should permit an independent measure of time to collision

which can take over when gross position begins to give little information.

We are also making an effort to exploit object shadows (see Figure 9). Since our

camera has controllable zoom and focus, we can look very closely at the boundary

of objects, and confirm the existence of shadows that indicate a point at which we
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might be able to lift the object.
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