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Abstract

Experimental results in psychology have
shown the important role of manipulation in
guiding infant development. This has inspired
work in developmental robotics as well. In
this case, however, the benefits of this ap-
proach has been limited by the intrinsic dif-
ficulties of the task. Controlling the interac-
tion between the robot and the environment
in a meaningful and safe way is hard espe-
cially when little prior knowledge is available.
We push the idea that haptic feedback can
enhance the way robots interact with unmod-
eled environments. We approach grasping and
manipulation as tasks driven mainly by tac-
tile and force feedback. We implemented a
grasping behavior on a robotic platform with
sensitive tactile sensors and compliant actua-
tors; the behavior allows the robot to grasp
objects placed on a table. Finally, we demon-
strate that the haptic feedback originated by
the interaction with the objects carries im-
plicit information about their shape and can
be useful for learning.

1. Introduction

Recent work in developmental robotics has empha-
sized the role of action for perception and learning
(Metta and Fitzpatrick, 2003, Natale et al., 2004,
Natale et al., 2005). Developmental psychol-
ogy, on the other hand, recognizes that mo-
tor activity is of paramount importance for
the correct emergence of cognition and in-
telligent behavior (Gibson, 1988, Streri, 1993,
Bushnell and Boudreau, 1993, von Hofsten, 2004).
All embodied agents, either artificial or natural, have
numerous ways to exploit the physical interaction
with the environment to their advantage.

In robotics actions like pushing, prodding, and
tapping have been used for visual and auditory per-
ception respectively (Metta and Fitzpatrick, 2003,

Figure 1: The robot Obrero. The robot has a highly

sensitive and force controlled hand, a force controlled arm

and a camcorder as a head. Obrero’s hand has three

fingers, 8 DOF, 5 motors, 8 force sensors, 10 position

sensors and 160 tactile sensors.

Torres-Jara et al., 2005). More articulated explo-
rative actions or grasping might increase these bene-
fits, as they give direct access to physical properties
of objects like shape, volume and weight. Unfortu-
nately, all these aspects have not been extensively
investigated yet. One of the reasons for this is that
controlling the interaction between the robot and the
environment is a difficult problem (Volpe, 1990), es-
pecially in absence of accurate models of either the
robot or the environment (as it is often the case in
developmental robotics). The design of the robot can
ease these problems. We know for example that hav-
ing a certain degrees of elasticity in the limbs helps
to ”smooth” and control the forces that originate
upon contact. Another approach is to enhance the
perceptual abilities of the robot. Traditional robotic
systems in fact have perceptual systems that do not
seem adequate for grasping. Haptic feedback in par-
ticular is often quite limited or completely absent.
This is because, unfortunately, most of the tactile
sensors commercially available are inadequate for ro-



botics tasks: they are only sensitive to forces coming
from a specific angle of incidence, rigid and almost
frictionless.

Obrero is an upper body humanoid robot designed
to overcome these limitations (Torres-Jara, 2005).
It is equipped with series elastic actuators, which
provide intrinsic elasticity and force feedback at
each joint. The hand is equipped with tactile sen-
sors (Torres-Jara et al., 2006) which provide a de-
formable and sensitive interface between the fingers
and the objects.

We report a series of experiments where Obrero
exploits its sensing capabilities to grasp a number of
objects individually placed on a table. No prior in-
formation about the objects is available to the robot.
The use of visual feedback was voluntarily limited.
Vision is used at the beginning of the task to direct
the attention of the robot and to give a rough esti-
mation of the position of the object. Next, the robot
moves its limb towards the object and explores with
the hand the area around it. During exploration,
the robot exploits tactile feedback to find the actual
position of the object and grasp it. The mechani-
cal compliance of the robot and the control facilitate
the exploration by allowing a smooth and safe inter-
action with the object. Results show that the haptic
information acquired by the robot during grasping
carries information about the shape of the objects.

The paper is organized as follows. Section 2.
briefly reviews the importance of haptic feedback
for manipulation in infants and adults. Section 3.
describes our robotic platform. Section 4. provides
some implementation details and describes the grasp-
ing behavior. The latter is evaluated in Section 5. Fi-
nally, Section 6. draws the conclusions of this work.

2. Haptic feedback, perception and
action

In adults, several studies have revealed the
importance of somatosensory input (force and
touch). For example Johansson and Westling
(Johansson and Westling, 1990) have studied in de-
tail what feedback is provided by the skin during
object lifting tasks and how it is used to control
the movements of the fingers. The results of these
experiments proved the importance of somatosen-
sory feedback: they showed that human subjects
had difficulties avoiding object slipping when they
had their fingertips anesthetized, even with full vi-
sion (Johansson, 1991).

Haptic feedback has an important role for ob-
ject perception as well. Lederman and Klatzky
(Klatzky and Lederman, 1987) identified and de-
scribed a set of motor strategies exploratory proce-
dures used by humans to determine properties of ob-
jects such as shape, texture, weight or volume.

Little is known concerning how infants use tactile
sensing for manipulation (Streri, 1993). In some cir-
cumstances children exploit tactile feedback to learn
about objects (Streri and Pêcheux, 1986). Streri
and Pêcheux measured the habituation time of new-
borns (2 months and 5 months old) during tactile
exploration of objects placed in their hands. In this
experiment children spent more time exploring novel
rather than familiar objects, even when they did not
make visual contact with the hand.

Motor abilities of children are quite limited dur-
ing the first months of development. This does
not prevent infants from using their hand to en-
gage interaction with the world. The impor-
tance of motor activity for perceptual develop-
ment has been emphasized in developmental psychol-
ogy (von Hofsten, 2004, Gibson, 1988). Researchers
agree on the fact that motor development deter-
mines the timing of perceptual development. In
other words the ability of infants to explore the envi-
ronment would determine their capacity to perceive
certain properties. Accordingly, perception of object
features like temperature, size and hardness is likely
to occur relatively early in development, whereas
properties requiring more dexterous actions like tex-
ture or three dimensional shape would emerge only
later on (see (Bushnell and Boudreau, 1993) for a re-
view).

3. The robot Obrero

Obrero (Torres-Jara, 2005) consists of a hand, an
arm and a head (Figure 1). Obrero was designed
to approach manipulation as a task manly guided
by tactile and force feedback. Obrero’s limbs are
designed to reduce the risk of damages upon con-
tact with objects. The head consists of a commercial
camcorder (SONY DCR-HC20) that can move along
the pan and tilt directions. The arm has 6 Degrees of
Freedom (DOF) distributed in this way: three in the
shoulder, one at the elbow and two in the wrist. The
arm (Edsinger-Gonzales and Weber, 2004) uses Se-
ries Elastic Actuators (Williamson, 1995) which pro-
vide low-impedance and force feedback at each joint.
Position feedback is provided by potentiometers.

The software controlling Obrero runs on a clus-
ter of computers interconnected through an ethernet
network. The connection between the different mod-
ules is done using YARP (Metta et al., 2006).

3.1 The hand and the tactile sensors

The hand consists of a palm, a thumb, a middle
and an index finger (figure 2). Each one of the
fingers has two phalanges that can be opened and
closed. The thumb and the middle finger can also
rotate. These rotations allow the thumb to oppose
to either the index or the middle finger. The to-



Figure 2: Obrero’s hand and detail of the tactile sensors.

(a) Group of four tactile sensors. The deformation of

each of them is measured by a total of four sensors. (b)

Tactile sensors mounted on the hand.

tal number of degrees of freedom in the hand is
8. All joints in the hand are equipped with an
optimized version of the Series Elastic Actuators
(Torres-Jara and Banks, 2004); the fingers have low
mechanical compliance to soften the contact with the
objects during grasping. The hand is underactuated
and driven by only 5 motors: three motors open
and close each finger, whereas two motors control
the rotation of the thumb and middle finger. The
phalanges of each finger are mechanically coupled.
However, due to the presence of a Series Elastic Ac-
tuator in the joint, independent motion is achieved
when the proximal phalange blocks (for example,
as a result of contact with an object). This elas-
tic coupling allows the hand to automatically adapt
to the object it grasps. Finally, position feedback
is obtained through potentiometers mounted in all
joints and encoders in the motors. The tactile sen-
sors mounted on the hand were designed to satisfy
the needs of robotic tasks. Each unit has a dome-
like sensor (see figure 2a) made of silicon rubber. At
the tip of the dome we embedded a small magnet,
whose position is measured by four hall-effect sen-
sors placed at the dome’s base. By sensing the po-
sition of the magnet the defomation of the dome is
estimated. The sensors are very sensitive and capa-
ble of detecting a minimum normal force of 0.098N.
The shape of the sensors favors contact with the en-
vironment from any direction, as opposed to most of
the tactile sensors which are flat. The high deforma-
bility and the properties of the silicon rubber allow
the sensors to conform to the objects, thus increas-
ing friction and improving contact detection. In this
particular implementation, we used the “magnetic”
version of these tactile sensors, however, an optical
version has also been tested. The description of the
design and the analysis of these sensors can be found
in (Torres-Jara et al., 2006).

Groups of tactile sensors were placed on the hand.
Two groups of four were placed on each finger (a
group in each of the two phalanges) and 16 on the
palm. A detail of the palm and fingers can be ob-
served in figure 2b. Each one of these tactile units
uses four sensors to determine the contact forces.
This means that overall the tactile feedback consists

of 160 signals. At the base of the palm, where for
practical reasons, we were not able to mount these
tactile sensors, we placed a smaller infrared proxim-
ity sensor. To summarize, the hand has 5 motors, 8
DOF, 8 force sensors, 10 position sensors, 160 tactile
sensors and an infrared proximity sensor.

4. Controlling the body

In this section we describe a few perceptual and mo-
tor competencies required for the robot to be able
to control the body in a meaningful and safe way:
this includes a simple attention system to spot the
objects to be grasped and the ability to control the
body to reach out for them. A the end of the section
we describe how the these capabilities are integrated
in the grasping behavior.

4.1 Attention System

Motion is a simple yet powerful cue to select points
of interest in the visual scene; for an active cam-
era system this is still true assuming we can esti-
mate the motion of the background and account for
it. In this paper we use the algorithm proposed by
(Kemp, 2005), which uses a 2D affine model to ro-
bustly estimate the image motion resulting from the
background. In short, the algorithm measures the
motion of each pixel with a block matching proce-
dure, and performs a least square fitting of the global
affine model. Using the affine model the algorithm
predicts the motion of each edge, and marks as fore-
ground those edges that poorly match this predic-
tion. Under the assumption that the majority of the
image motion is due to the background, these edges
can be used to build a saliency map to direct the
attention of the robot.

4.2 Eye-hand coordination

We decided to focus on explorative actions rather
than precise, goal directed, actions towards the tar-
get objects. This was also motivated by the fact that
the monocular visual system of Obrero makes depth
estimation very difficult. This situation is actually
quite common in robotics, as depth estimation in
real time is a challenging problem even with stereo
vision. However, we cannot hope to program the
robot to perform a blind exploration of the entire
workspace. A possible solution is to constrain the
exploration to the area of the workspace where the
object is detected visually. Since the 3D location
of the object is not available, reaching is performed
in 2D; the exploration procedure allows the robot
to find the actual position of the object. The mo-
tor skills required for reaching and exploring can be
learned from the visual ability to localize the hand
and compute the orientation of the arm.



4.3 Hand Localization

A visual module detects the hand and computes the
orientation of the arm in the image. The initial step
of the hand detector consists in running a high fre-
quency filter. All points whose frequency is below
a certain threshold (fixed a priori) are discarded. A
blob detector is run on the resulting image and the
biggest blob is selected as the arm. The orienta-
tion of the arm is computed as the orientation of
the line passing through the top-most and bottom-
most pixels of the arm area. Next, specific features
(the small circular black and white potentiometers
on the fingers) are searched on the arm area. The
hand is identified if more than two of these features
are found. The detection just described proved re-
liable enough for our purposes and was used as a
short-cut in place of other, more general, methods
(Metta and Fitzpatrick, 2003, Natale et al., 2005).

The visual feedback of the hand could be used for
closed-loop control. However closed-loop control is
not always suitable. This happens for example in
presence of occlusions or when the hand is not within
the visual field. Open-loop control is an alternative
solution. A possible open-loop control consists of a
mapping between the fixation point of the head and
the arm end-point (Metta, 2000). The advantage
of this approach is that the mapping can be easily
learned if the robot is able to look at the hand. An-
other approach uses the output of the hand detector
to learn a direct mapping between the arm propri-
oception (encoder feedback) and the position of the
hand in the image (Natale et al., 2005). The direct
(forward) mapping can be inverted locally to con-
trol the arm to reach for a visually identified target.
The solution we adopt here is similar: in a discovery
phase the robot tracks the hand as the arm moves
to randomly explore the workspace. This behavior
allows the robot to acquire samples in the form:(

x y α qhead qarm

)
0,1...,k

where x, y and α are the coordinates of the hand
and the orientation of the arm in the image, qhead

and qarm are the position of the head and arm re-
spectively. Given qhead it is possible to convert x and
y into an egocentric reference frame:

[
θh φh

]T = f−1
head

([
x y qhead

]T
)

(1)

θh and φh represents the polar coordinates of the
hand in the reference frame centered at the base of
the head (azimuth and elevation). Basically f−1

head

includes knowledge of the inverse kinematics of the
head and the parameters of the camera. The oppo-
site transformation maps polar coordinates into the
image plane:

[
x y

]T = fhead

([
θh φh qhead

]T
)

(2)

Given these two transformations a neural network
can be trained to learn the following mapping:

[
θh φh α

]T = f (qarm) (3)

which links the arm posture qarm to the polar
coordinates of the hand [θh, φh]T and the orien-
tation of the arm α. This mapping was learnt
online by using the neural network proposed by
(Schaal and Atkenson, 1998).

The mapping of equation 3 allows computing the
polar coordinates of the hand with respect of the
robot from the encoders of the arm. Whenever re-
quired equation 2 maps the polar coordinates back
onto the image plane.

4.4 Reaching

Suppose we want to move the arm towards a location
of the workspace identified visually. Let

[
xt yt

]T

be such position. Knowing qhead from equation 1
we can convert the target position into the body
centered reference frame

[
θt φt

]T . The reaching
problem can now be stated as a the minimization of
the following cost function:

min
qarm

(C) = min
qarm

∥∥∥
[

θt φt

]T − [
θh φh

]T
∥∥∥

2

(4)

where θh and φh are computed from equation 3.
Assuming a stationary target the minimum of

equation 4 can be found by gradient descent. The
gradient of C is proportional to the Jacobian trans-
posed of the manipulator, that is:

∇C = −2∇f (qarm) = −2JT (qarm) (5)

∇f (qarm) was approximated by partial differentia-
tion of equation 3. Because the basis functions used
by the neural network are guassians this was easily
done analytically (another approach is to perform
numerical differentiation).

To summarize we have described a method to com-
pute the arm commands required to reach for a visual
target. The method employs the forwards kinemat-
ics of the arm. The direct kinematics is learned by
the robot as described in the previous section. The
reaching problem is solved iteratively by using an
approximation of the arm Jacobian. The latter is
obtained by differentiating the basis functions of the
neural network approximating the direct kinematics.
This procedure is carried out online without using
the real visual feedback of the hand.

In the robot visual information (and hence the
mapping of equation 3) is two-dimensional and does
not carry any information about distance. The solu-
tion found by descending the gradient of the direct
kinematics takes care of minimizing the distance be-
tween the target and the hand on the image plane,



Figure 3: Left, frames 1 and 2: hand localization and

arm orientation. Right, frame 3: exploration primitives.

Primitives v1 and v2 are perpendicular and parallel to

the arm orientation. v3 is along the null space of the arm

Jacobian. For simpler understanding these primitives are

here sketched in the cartesian plane, but they are actu-

ally computed in the joint space (see Section 4. for more

details).

and as such, is not concerned with the third dimen-
sion R (the distance between the hand and the head,
along the optical axis of the camera). In practice
however the components of the gradient along R are
small compared to the others. The value of R at the
end of the reaching movement depends on the initial
position of the arm; we chose this value so to keep
the hand above the table.

4.5 Exploration

Starting from the direct mapping of the hand po-
sition and arm orientation we can identify a set of
explorative primitives, that is a set of vectors in
joint space that allows the robot to explore the arm
workspace. We chose three vectors v1, v2 and v3, as
follows (see also Figure 3):

v1: moves the hand along the direction perpendic-
ular to the arm. It is computed by planning a reach-
ing movement towards a point a few pixels away from
the hand along the line perpendicular to the orien-
tation of the arm.

v2: moves the hand along the direction of the arm.
It is computed by planning a reaching movement to-
wards a point a few pixels away from the hand along
the arm.

v3 ∈ ker (J (qarm)): v3 lays in the null space of the
arm Jacobian; in our case the null space of the Jaco-
bian consists of those vector that do not affect either
the projection of the hand onto the visual plane or
the orientation of the arm. These vectors produce a
movement of the hand along the optical axis of the
camera, or, in other word, along R.

4.6 A grasping behavior

In this section we describe the grasping behavior
of the robot. The sequence begins when the ex-

perimenter waves an object in front of the robot.
The head tracks the object until it remains station-
ary within the workspace of the arm. The robot
reaches for the object; motion is planned visually as
described in Section 4.4. Reaching is not accurate
enough to guarantee a correct grasp. Since no three
dimensional information is available the arm reaches
a region above the object (see Section 4.4). At this
point the exploration starts; the robot computes the
explorative primitives v1, v2 and v3. The exploration
uses three behaviors:

• depth behavior, moves the hand “downwards”
along v3;

• hovering behavior, moves the hand back and forth
along v1;

• pushing behavior, moves the hand along v2;

The depth behavior moves the hand along the di-
rection of the optical axis of the camera and ad-
justs the height of the hand with respect to the ob-
ject/table. To avoid crashing the hand into the table
this behavior is inhibited when the infrared proxim-
ity sensor detects an obstacle (usually this happens
close to the table). The hovering behavior and the
depth behavior are activated at the beginning of the
exploration. The goal of this initial phase is to adjust
the position of the hand until the index finger touches
the object. This allows adjusting the position of the
hand along the directions v1 and v3. During the ex-
ploration the arm stops when the hand detects the
object, to avoid pushing it away or knocking it over;
if no contact is detected, on the other hand, the am-
plitude of the exploration is extended (this increases
the probability to touch the object in case the reach-
ing error is large). The exploration terminates when
the contact with the object is detected by any of the
tactile sensors placed on the index finger. At this
point the hovering behavior is suspended and the
pushing behavior activated. The “pushing” move-
ment along v2 brings the palm in contact with the
object while the depth behavior takes care of main-
taining the correct distance with the table. When
the robot detects contact on the palm the explo-
ration stops and the grasping behavior is activated.
The grasping behavior simply closes the fingers to a
specific position. The low impedance of the joints
allows the fingers to adapt to the different objects
being grasped.

Figure 4 reports an example of the robot grasping
a porcelain cup. The grasping behavior proved to be
quite reliable, as repetitive tests show in Section 5.

5. Results

The grasping behavior described in Section 4. was
evaluated by presenting different objects to the ro-
bot and by counting the number of successful grasps.



Figure 4: Grasping behavior: an example. Sequence of the robot grasping a porcelain cup. Frame 1: the cup is

presented to the robot. Frame 2: the robot reaches for the cup. Frames 3 to 6: the robot explores the space and uses

tactile feedback to find the object and adjust the position of the hand. Frames 7 and 8: the robot grasps and lifts the

cup.

Table 1: Objects.

Description Weight(Kg) No.Trials No.Failures Contains
1 Plastic bottle 0.265 22 0 Vitamins
2 Porcelain cup 0.255 24 1 Nothing
3 Plastic cup (Starbucks) 0.220 24 4 Bolts
4 Rectangular box (Nesquick) 0.240 24 2 Nesquick powder

We chose objects of different size and shape: a plas-
tic bottle, a plastic rectangular box, a porcelain cup
and a plastic cup (see figure 5). Some of the objects
were partially filled, so that the weight was roughly
uniform among all objects (about 220-250 grams, see
Table 1). The robot had no prior knowledge about
these objects.

Each object was presented to the robot more than
20 times and randomly placed on the table. Overall
the number of grasping trials was 94, of which only
7 were not successful. In some of these trials, the
robot managed to grasp the object, but was not able
to hold it because the grip did not produce enough
friction. In a few cases the tactile sensors failed to
detect the object and the exploration was aborted
before the object was actually grasped (more details
are reported in Table 1).

As a further validation, we clustered the haptic
information originated from the grasping. We col-
lected the hand feedback at the moment the robot
lifted the object; the idea is that given the intrin-
sic compliance of the hand, its configuration and the
force exerted by each joint depend on the shape of
the object being grasped. The hand feedback was
clustered by means of a Self Organizing Map (SOM).
The results show that the bottle, the rectangular box

and the cups form three clusters. Unfortunately the
clusters formed by the two cups are not clearly dis-
tinguishable. This is probably due to the fact that
the hand grasped the objects from the top, and that
in that part the two objects are quite alike (both are
circular with similar diameter). In these cases the
limited number of fingers (three) made it hard to dis-
tinguish between the cylindrical and conic shape of
the cups. Together the results prove that the grasp-
ing behavior of the robot is reliable. The high num-
ber of successful trials shows that the haptic feed-
back manages to drive the robot during the explo-
ration until it finds the object and grasps it. This is
further demonstrated by the clustering, which show
that the behavior allows extracting meaningful infor-
mation about the physical properties of the objects
(i.e. their shape).

6. Conclusions

We have described the design of a behavior that al-
lows a humanoid robot to grasp objects without prior
knowledge about their shape and location. We sum-
marize here our approach and the lessons we learned:

• Give up precision, explore instead. Sometime in
robotics we struggle to have robots as precise as



Figure 5: Left: the set of objects used in the experiments: a plastic bottle, a porcelain cup, a plastic cup and a

rectangular plastic box. Some objects were partially filled to increase the weight (all objects weighed about 220-250g).

Right: result of the clustering. Black circles, green triangles, red stars and blue squares represent respectively the

bottle, the rectangular box and the porcelain and the plastic cups. The two cups are not clearly separated because

have similar shape in the area where they were grasped.

possible in performing the tasks for which we pro-
gram them. We found that exploration can be
more effective in dealing with uncertainties.

• Be soft. Exploration must be gentle if we want to
avoid catastrophic effects on either the robot or
the objects/environment. The mechanical design
of the robot proved helpful in this respect.

• Sense and exploit the environment. If inquired
the world can provide useful feedback; however
the robot must be able to ask the right questions
(interact) and interpret the answers (have appro-
priate sensors).

We endowed the robot with the minimum capabil-
ities required to explore the environment. These in-
clude a simple ability to detect visual motion, a way
to control the arm to roughly reach for objects and a
set of explorative primitives. Haptic feedback drives
the exploration and allows the robot to successfully
grasp objects on a table. We show that the informa-
tion generated in this ways can be potentially used
to learn physical properties of objects like shape.

In the context of epigenetic robotics we are inter-
ested in studying methods to improve the perceptual
abilities of robots by exploiting the physical interac-
tion with the environment. In this paper we have
shown how haptic feedback can significantly improve
this interaction thereby enhancing the robot’s ability
to learn about the environment.

Finally, it is worth saying that, to better illustrate
our point, we deliberately took a somewhat extreme
approach. We certainly believe that future robots
will have to take advantage of the integration of all
sensory modalities.
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