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Abstract

Humans use a set of exploratory procedures

to examine object properties through grasp-
ing and touch. Our goal is to exploit similar
methods with a humanoid robot to enable de-
velopmental learning about manipulation. We
use a compliant robot hand to find objects
without prior knowledge of their presence or
location, and then tap those objects with a
finger. This behavior lets the robot generate
and collect samples of the contact sound pro-
duced by impact with that object. We demon-
strate the feasibility of recognizing objects by
their sound, and relate this to human perfor-
mance under situations analogous to that of
the robot.

1. Introduction

Grasping and touch offer intimate access to objects
and their properties. In previous work we have
shown how object contact can aid in the development
of haptic and visual perception (Natale et al., 2004,
Metta and Fitzpatrick, 2003). We now turn our at-
tention to audition: developing perception of contact
sounds. Hearing is complementary both to vision and
touch during contact events. Unlike vision, hearing
doesn’t require line of sight – it won’t be blocked by
the arm, hand, or the object itself. And unlike touch,
hearing doesn’t require the robot to be the one caus-
ing the contact event. We are motivated by an exper-
iment we report in this paper, where human subjects
successfully grasped objects while blindfolded, using
coarse tactile information and sound.

The extensive use of vision rather than haptic feed-
back in robotic object exploration may be due to tech-
nological limits rather than merit. The robotic hand
used in this paper is designed to overcome these lim-
itations. It is equipped with dense touch sensors and
series elastic actuators which allow passive complian-
cy and to measure force at the joints. Force feedback
and intrinsic compliance are exploited to successfully
control the interaction between robot and environ-
ment without relying on visual feedback.

The paper is organized as follows. Section 2. briefly
reviews evidence for the importance of augmenting

vision with other sensory input for manipulation in
human infants and adults, and introduces the notion
of exploratory procedures in humans and robots. Sec-
tion 3. describes our robotic platform, designed to
enable sensor-rich reaching and grasping (sensitive

manipulation). Section 4. describes an experiment
we carried out with human subjects with their senses
interfered to try to simulate our robot. The experi-
ment helps us to understand how humans would solve
the kinds of problems with which our robot will be
confronted. In section 5., we review our general de-
velopmental approach to robot perception, and then
apply it to the problem of contact sounds. This mo-
tivates us to develop a robot behavior (described in
Section 6.) which gives the robot a way to actively
probe the sound of objects in its environment in a
robust way, by tapping them. Section 7. describes
how the experience generated by the robot’s behav-
ior is exploited for learning. Section 8. quantifies the
accuracy of object recognition enabled by this pro-
cedure. Finally, Section 9. discusses the results and
places them on a broader perspective.

2. Background

Experimental results suggest that from a very ear-
ly age, arm movements in infants are influenced by
vision. For example, van der Meer and colleagues
found that sight of the hand allows infants to main-
tain the posture of the hand when pulled by an ex-
ternal force (van der Meer et al., 1995). Von Hof-
sten compared the arm movements of two groups
of infants in the presence and absence of an object
and found that in the former case arm movements
were significantly more frequent. When the infants
were fixating the objects the movements were direct-
ed closer to it (von Hofsten, 1982). Taken togeth-
er, these results suggest that in children some sort
of eye-hand coordination is already present soon af-
ter birth. But on the other hand, continuous visual
feedback from the hand is not required for infants
to reach for an object (Clifton and D.W. Muir, 1993,
Clifton et al., 1994). Indeed it is only at 9 months
of age that children seem to be able to exploit visual
feedback from the hand during the approach phase
(Ashmead et al., 1993). A possible explanation for



this could be that in the first months of development
the visual system of infants is still rather immature:
visual acuity is limited and perception of depth has
not developed yet (Bushnell and Boudreau, 1993).
Later on during development the role of vision is cer-
tainly crucial to control the correct preshape of the
hand according to the object’s shape and orientation;
however, tactile feedback from the contact with an
object is an alternative source of information that
could initially substitute for the visual feedback.

In adults, several studies have revealed the im-
portance of somatosensory input (force and touch);
for example human subjects with anesthetized fin-
gertips have difficulty in handling small objects even
with full vision (Johansson, 1991). Humans use a set
of strategies collectively called exploratory procedures

(Lederman and Klatzky, 1987) in their perception of
the world around them, such as tracing object out-
lines with a finger.

This has inspired work on robotics. An analog of
human sensitivity to thermal diffusivity was devel-
oped by (Campos et al., 1991), allowing a robot to
distinguish metal (fast diffusion) from wood (slow
diffusion). A robotic apparatus for tapping objects
was developed by (Richmond and Pai, 2000) to char-
acterize sounds so as to generate more convincing con-
tact in haptic interfaces. In (Femmam et al., 2001), a
special-purpose robot listens to sounds of the surface
it “walks” on.

We use a tapping exploratory procedure, applied
to natural objects by a general purpose, compliant
hand (rather than a rigid, special purpose tapping
device). Repetitive contact between the fingers and
the object (the tapping behavior) allows the robot to
collect information about the object itself (the sound
produced by the collision of the fingers and the object
surface) which is used for object recognition.

3. The robot Obrero

The humanoid robot used in this work, Obrero, con-
sists of a hand, arm and head, shown in Figure 1.
Obrero was designed to approach manipulation not
as a task mainly guided by a vision system, but as
one guided by the feedback from tactile and force
sensing – which we call sensitive manipulation. We
use the robot’s limb as a sensing/exploring device as
opposed to a pure acting device. This is a conve-
nient approach to operate in unstructured environ-
ments, on natural unmodeled objects. Obrero’s limb
is sensor-rich and safe – it is designed to reduce the
risk of damages upon contact with objects.

The arm used in Obrero is a clone of a force-
controlled, series-elastic arm developed for the robot
Domo (Edsinger-Gonzales and Weber, 2004). The
hand consists of three fingers and a palm. Each
one of the fingers has two links that can be opened
and closed. Two of the fingers can also rotate.
Each one of the joints of the hand is controlled us-

Figure 1: The robot Obrero (left) has a highly sensitive

and force controlled hand, a single force controlled arm

and a camcorder as a head (used simply as a microphone

in this paper). Obrero’s hand (right) has three fingers, 8

DOF, 5 motors, 8 force sensors, 10 position sensors and 7

tactile sensors.

ing an optimized design for a series elastic actua-
tor (Torres-Jara and Banks, 2004). Series elastic ac-
tuators reduce their mechanical impedance and pro-
vide force sensing (Williamson, 1995). Summary in-
formation about the hand is given in Figure 1.

4. Simulating our robot with humans

Human haptic perception is impressive, even under
serious constraint. In (Lederman and Klatzky, 2004)
we can find a review of different experiments done
with humans to determine how well they can iden-
tify objects using only haptic information. In the
experiments mentioned, the individuals wore head-
phones and a blindfold to make sure that sound and
vision did not provide extra information about the
objects. Haptic information was also systematically
interfered with to explore different aspects of man-
ual exploration. The constraints included: reduced
number of end effectors, compliant covering, applica-
tion of rigid finger splints, rigid finger sheathes, and
rigid probes. These constraints reduced either one or
many aspects of the cutaneous (spatial, temporal and
thermal) and kinesthetic information available to the
subjects.

The results showed that by reducing the type
of sensing available in the human hand, the sub-
ject’s recognition performance is reduced. The low-
est recognition accuracy for objects was around 40%
when the subjects used a probe to explore the ob-
ject. This recognition task took around 80 seconds.
For the researchers who did this work, these num-
bers may seem low – but for a robotics researcher,
they are a cause of envy, and show that human hap-
tic perception is indeed very impressive even under
unusually-constrained situations.

To get an “upper bound” of what we could expect
from our robot, we evaluated the performance of hu-
man subjects when wearing thick gloves that reduced



their sensitivity and dexterity to something approach-
ing our robot. We blocked their vision, since we know
our robot cannot compete with human visual percep-
tion, but let them hear.

We sat 10 subjects in front of a padded desk cov-
ered with various objects – a wooden statue, a bottle,
a kitchen glove, a plastic box, a paper cup, a desktop
phone, a tea bag and a business card. The subjects
wore a blindfold and a thick glove which reduced their
haptic sensitivity and the number of usable fingers.
The glove only allowed them to use their thumb, their
index and middle finger. A goal of the experiment was
to determine how much and in what way humans can
manipulate unknown objects in an unknown environ-
ment with capabilities reduced to something approx-
imating our robot (described in Section 3.).

Our subjects were instructed to perform certain
tasks starting from a constant initial position, sitting
straight with their right arm relaxed and close to their
waist. The first task was to find and (if possible) iden-
tify objects on a desk. This task was repeated with
multiple set of objects. When changing from one set
of objects to another, the subjects were moved away
and turned around so that their back was facing the
desk. The next task extended the challenge further.
Along with locating and identifying the objects (an
arbitrary name was assigned when an object was not
recognized), the subjects were instructed to remem-
ber the object’s position. Later, they were instructed
to move their hand to a named object starting from
the initial position.

For the final task, a few objects and a desktop
phone were placed on the desk. The hand set and the
phone base were disconnected – the phone cord was
removed, and the two parts of the phone were placed
in separate locations. The subjects initially had no
idea a phone was present. They were instructed to
find, identify and remember the position of the ob-
ject on the desk. If they identified the two parts of
the phone, they were instructed to grab the hand set
and placed in the correct position on the phone base.

Here is a summary of our observations:

. Exploration strategies vary. Some subjects face
their palm in the direction of motion, others to-
wards the desk. The speed at which people swing
their arm is generally slow and cautious, with oc-
casional contact with the table.

. Very light objects were consistently knocked over.

. Subjects quickly reorient their hand and arm for
grasping if either their hand or their wrist makes
contact with an object.

. Subjects exhibited a short-term but powerful
memory for object location.

. Sounds produced by objects and surfaces were
used to identify them, compensating partially for
the reduction in tactile sensitivity (see Figure 2).
This was occasionally misleading: one subject un-
wittingly dragged a teabag over the desk, and

Figure 2: Subjects exploring a desk while blindfolded and

wearing a thick glove. Top: light objects were inevitably

knocked over, but the sound of their fall alerted the sub-

jects to their presence, location, and (often) identity. Bot-

tom: the sound of object placement was enough to let this

subject know where the cup was and suggest a good grasp

to use.

thought from the sound that the surface was cov-
ered in paper.

Inspired by the last observation, in this paper we fo-
cus on exploiting the information carried by sound in
combination with tactile and force sensing.

5. Overall developmental approach

We wish to give our robots many ways to learn about
objects through action (Fitzpatrick et al., 2003).
This contributes to perceptual development, where
the robot’s experience of the world is filtered by pri-
or experience. This process can be broken down into
four steps:

. Identification of an opportunity to reliably extract
some object features

. Exploitation of that opportunity to extract those
features.

. Use careful generalization to transform the robot’s
perception of its environment.

. Transformation of the robot’s activity, enabled by
its extended perceptual abilities.

In previous work, we have demonstrated this pro-
cess. In (Arsenio et al., 2003), we showed that
poking an object gives us the opportunity to re-
liably extract visual features of its appearance.
By carefully choosing features that generalize, the
robot’s perception of its environment is transformed,
and new activities are enabled (Fitzpatrick, 2003b).
Other opportunities we have explored include the
use of grasping (Natale et al., 2005) and the in-
tegration of multi-modal cues across sound, vi-
sion, and proprioception (Fitzpatrick et al., 2005,
Arsenio and Fitzpatrick, 2005). Having established
this process, we are now seeking to broaden the range
of opportunities that can be identified and exploited



Figure 3: The component elements of the robot’s behav-

ior. The modules Arm control, Arm sensing, Hand con-

trol and Hand sensing represent the connection with the

hardware of the robot.

(steps 1 and 2 above). In the current work, we identi-
fy (and in fact create) an opportunity to reliably ex-
tract examples of contact sounds involving an object
(by tapping that object). We build the appropriate
robot behavior and data collection infrastructure to
gather those features.

6. The robot’s behavior

The behavior of the robot is as follows. It sweeps
its hand back and forth over a table, and stops to
tap any object (or, indeed, any obstacle) it comes in
contact with. This overall behavior is the product of
the combined operation of a number of sub-behaviors,
shown in Figure 3.

Before we describe how they interact, here is a sum-
mary of these component behaviors:

. Hand preshaping. This module places the middle
and index fingers together and perpendicular to
the palm. The thumb is held up, perpendicular to
the other two fingers. For preshaping, the fingers
are controlled based on position rather than force.

. Collision detection. This module uses the out-
puts from the force and tactile sensors in each fin-
ger to determine whether a collision has occurred.
This is possible because the hand has very low me-
chanical impedance and consequently the fingers
slightly bend upon contact with an object. This
bending is detected by the force sensor, often be-
fore the force exherted by the finger has greatly
affected the object.

. Surface hovering. This behavior hovers the arm
and hand over a surface using a predetermined
fixed action pattern. The motion can be inter-
rupted at any time.

. Tapping. This behavior moves the fingers back
and forward for a given time, in another fixed ac-

tion pattern.
. Arm control. This module deals directly with the

low level motor control of the arm. The arm, for
the work described in this paper, uses position
control for each of the joints. To produce motion,
a smooth trajectory is interpolated between set-
points.

. Hand control. This module provides a connection
with the low level controller of the hand. It allows
control of parameters such as the gain and the
type of controllers, i.e. position and force control.

. Arm sensing. This modules reads the force and
position measurements from the low level con-
troller for the arm.

. Hand sensing. This module reads the force, posi-
tion and tactile measurements from the low level
controller for the hand.

The interaction of these parts is as follows. The
hand preshaping and surface hovering modules make
the arm and hand sweep over the surface with the
middle and index finger extended forward and the
thumb up. This is done by sending commands to the
arm control and hand control modules.

When the fingers of the robot come in contact with
an object, the collision detection module overrides the
messages coming from hand preshaping and surface

hovering to the arm control and hand control mod-
ules, commanding the arm to an immediate stop. At
the same time the behavior tapping sends commands
to the hand control module to periodically touch the
object and to the arm control module to keep the
arm in position. The tapping lasts a few seconds,
after which the tapping module relinquishes the con-
trol and stop sending commands. At this point the
surface hovering and preshaping hand modules can
get their message across to the motor control mod-
ules. Consequently, the arm is repositioned and the
sweeping behavior reactivated.

These modules run on different machines on the
network of computers that control Obrero. The in-
terconnection between modules was done using YARP

(Fitzpatrick et al., 2004).

During the experiment we recorded vision and
sound from the head along with the force feedback
from both the arm and hand. The visual feedback
was not used in the robot’s behavior; it was simply
recorded to aid analysis and presentation of results.
All other sensory information were considered candi-
dates for detecting contact. The force feedback from
the hand proved the simplest to work with. Peaks in
the hand force feedback were successfully employed
to detect the impact of the fingers with the object
during both the exploration and tapping behaviors.
Force and sound were aligned as shown in Figure 4.
Once the duration of a tapping episode was deter-
mined, a spectrogram for the sounds during that pe-
riod was generated as shown in Figure 5. The overall
contact sound was represented directly as the relative
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Figure 4: Force readings from the fingers (bottom) re-

veal when tapping may occur. Swings in the force are

compared against sound intensity (top), looking for syn-

chronized sounds. Peaks within one fifth of a period from

a force swing are accepted. This process lets the robot

filter out environmental sounds that occur when the arm

is not moving, and even during tapping. In this example,

the first three peaks of sound are clean, but the last two

are corrupted by a phone ringing (see Figure 5).

Figure 5: This is the spectrogram of the sounds in Fig-

ure 4 (time on the x-axis, increasing frequency on the

y-axis, dark color corresponds to activity). The top of

the spectrogram is marked to show the five sample times

selected automatically. Between these times, there are

patches of sound corresponding to the sound of springs

in the fingers. The last two samples have the sound of a

phone superimposed on them.

distribution of frequencies at three discrete time in-
tervals after each tap, to capture both characteristic
resonances, and decay rates. The distributions were
pooled across all the taps in a single episode, and
averaged. Recognition is performed by transforming

these distributions into significance measures (how far
frequency levels differ from the mean across all tap-
ping episodes) and then using histogram comparison.

7. Data collection for learning

The robot’s behaviors are designed to create op-
portunities for learning, by finding and tapping ob-
jects. The modules that exploit these opportunities
for learning are entirely from the modules that con-
trol the behavior of the robot. The occurrence of
tapping is detected based on sensor data, rather than
commanded motion. The only interaction that takes
place between these modules is via actions in the
world (Brooks, 1990). This improves robustness. We
do not have to deal with explicit expectations or their
possible failure modes. For example, sometimes the
robot fails to hit an object when tapping, so it is good
to pay more attention to actual contact rather than
commanded motions.

The force measurements from the fingers is
summed into a single signal, then classified into “ris-
ing”, “falling”, and “neutral” phases. Classification
transitions to “rising” if the signal increases over 10%
of the previous range covered by the signal from its
highest to lowest point during a rising and falling
period. Similarly, the classification transitions to
“falling” if the signal falls by over 10% of this range.
Since the range is constantly updated, the classifica-
tion is robust to slow-changing offsets, and the actual
gross magnitude of swings. The classifications are
scanned for rythmic rising and falling with a period
lying between 0.2 and 2 seconds. Then the force sig-
nal in these regions is compared with the sound, to
find if peaks in the sound line up well (within 20% of
a period) of either peaks or troughs in the force sig-
nal (the sign depends on the orientation of the fingers
during tapping). All going well, a spectrogram of the
sound is performed in the appropriate range. Only
the spectrogram around the peaks (presumably from
tapping) is significant. Three samples are made in
quick succession after each peak, to capture not just
characteristic resonance but decay properties.

The robot’s learning is performed on-line, but not
in real-time. Performing data collection and learn-
ing in real-time on a robot can lead to research time
wasted optimizing code and iterating designs that are
otherwise adequate. But simply switching to off-
line performance is undesirable, since it offers too
many subtle ways for human input to enter the pro-
cess. Hence we divided the robot’s on-line system
into two parts, the real-time subsystem that controls
behavior, and the near-time subsystem that contin-
ually processes the robot’s experience. This follows
the design of the robot Cog’s object recognition sys-
tem (Fitzpatrick, 2003a).

Figure 6 shows the time course of an experiment.
The key property being illustrated is that the process-
ing of the robot’s experience happens at a relatively
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Figure 6: Time course of an experiment, showing the ag-

gregation of experience by the robot. Over this 25 minute

interval, 18 tapping episodes are detected. The episodes

are first segmented (light color), then analyzed to extract

characteristic features of the sound (darker color), then

finally compared with previous episodes (darkest color).

This process is online but unhurried – each episode can

take on the order of minutes to be completely processed.

In the meantime, the robot can continue with its normal

behavior unimpeded.

leisurely pace. This is workable as long as the process-
ing can keep ahead of incoming data. For our robot,
a complete rotating log of the robot’s sensory input
is made that covers about 30 minutes. Technically,
this is achieved using a modified version of the open-
source tool dvgrab for recording from a camcorder,
and simple text files for other (much lower band-
width) proprioceptive and summary data. The logs
are maintained on a separate computer from the one
controlling the robot’s bahavior. These logs are pro-
cessed using the open-source MATLAB-clone octave.

8. Results

We evaluated our work by performing an object
recognition experiment. We exposed the robot one
evening to a set of seven objects, and then in the
morning tested its ability to recognize another set,
which had an overlap of four objects with the train-
ing set.

Three of these objects were chosen (Figure 8) to
represent three different materials, plastic, glass and
steel (metal). The idea is that the sound produced by
each object depends on its size, shape and the materi-
al with which it is made; accordingly we expected the
tapping to produce three different distinct sounds. A
fourth object (a plastic toy) was relatively silent.

For each run, we placed randomly selected objects
on the table in front of the robot, and it was respon-
sible for finding and tapping them. Overall the robot
tapped 53 times; of these episodes 39 were success-
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Figure 7: Receiver-operator characteristic curve. Tap-

ping episodes from one day are matched against episodes

from a previous day. Matches are ranked, then truncated

based on a quality threshold. This plot shows the effect

of that threshold on the trade-off between false matches

and missed matches.

Figure 8: There were four objects in common between

the training and test run. Three of them were matched

perfectly (using a best-match rather than threshold-based

strategy) for every episode: a bottle (left), a CD case

(middle), and a spray-can (right). Images on the bottom

are from the test run, images on the top are from the best

matching episode in the training run. These objects have

quite distinctive sounds. A plastic toy (left corner of each

lower image) failed to be recognized – it was quiet, and

made just a dull thud.

ful, meaning that the sound produced by the tapping
was significantly loud; in the other 14 cases the tap-
ping did not provoke useful events either because the
initial impact caused the object to fall, or the object
remained too close to the hand. The high number
of successful trials shows that given the mechanical
design of the hand, haptic feedback was sufficient to
control the interaction between the robot and the en-
vironment.



We evaluated the performance of our spectrum
comparison method by ranking the strength of match-
es between episodes on the second day and episodes
on the first day. Figure 7 shows what detection accu-
racy is possible as the acceptable false positive rate is
varied. This predicts that we can on average correct-
ly match an episode with 50% of previous episodes
involving the same object if we are willing to accept
5% false matches.

9. Conclusions

We have demonstrated a compliant robot hand ca-
pable of safely coming into contact with a variety of
objects without any prior knowledge of their presence
or location – the safety is built into the mechanics and
the low level control, rather than into careful trajec-
tory planning and monitoring. We have shown that,
once in contact with these objects, the robot can per-
form a useful exploratory procedure: tapping. The
repetitive, redundant, cross-modal nature of tapping
gives the robot an opportunity to reliably identify
when the sound of contact with the object occurs,
and to collect samples of that sound. We demon-
strated the utility of this exploratory procedure for a
simple object recognition scenario.

This work fits in with a broad theme of learning
about objects through action that has motivated the
authors’ previous work (Fitzpatrick et al., 2003). We
wish to build robots whose ability to perceive and
act in the world is created through experience, and
hence robust to environmental perturbation. The in-
nate abilities we give our robots are not designed to
accomplish the specific, practical, useful tasks which
we (and our funders) would indeed like to see, since
direct implementations of such behaviors are invari-
ably very brittle; instead we concentrate on creating
behaviors that give the robot robust opportunities for
adapting and learning about its environment. Our
gamble is that in the long run, we will be able to build
a more stable house by building the ground floor first,
rather than starting at the top.
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