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Procedural Modeling of Structurally-Sound Masonry Buildings
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Figure 1: Our method generates models of masonry buildings that are structurally stable. In this building based on Cluny Abbey in France,
parameters controlling the flying buttresses, columns, and window sizes have been automatically optimized to support a stone vaulted ceiling.
The right image shows reaction forces at the ground plane. We solve for forces at all block interfaces, and apply a compression-only constraint
for masonry materials.

Abstract

We introduce structural feasibility into procedural modeling of
buildings. This allows for more realistic structural models that can
be interacted with in physical simulations. While existing structural
analysis tools focus heavily on providing an analysis of the stress
state, our proposed method automatically tunes a set of designated
free parameters to obtain forms that are structurally sound.

Keywords: procedural modeling, statics, structural stability, ar-
chitecture, optimization, physics

1 Introduction

Content creation for virtual environments has become a bottleneck
in computer graphics and interactive applications. Geometric mod-
els are required to have high visual realism and also be suitable
for use in physical simulations. Structurally stable models enhance
realism in virtual environments by allowing characters to interact
with the built surroundings, whereas models which are not consis-
tent with mechanics might collapse under their own weight.

Procedural modeling has emerged as a powerful technique for gen-
erating architectural geometry. However, existing techniques focus
on visual realism and do not account for the structural validity of
the results. Users may not have intuition about the mechanics that
govern structural stability, or knowledge of traditional proportions
used in building design. Determining the precise dimensions of a

structure that guarantee stability can be a tedious task. We present a
method to automatically “snap” to feasible dimensions, while leav-
ing control in the designer’s hands for deciding which aspects of
the model are variable.

Our contribution is to introduce physical constraints into procedural
modeling methods. We solve an inverse statics problem: given a set
of physical constraints and a building topology, we determine an ap-
propriate shape. The user provides a set of production rules that de-
scribes the desired architectural style, along with a small set of free
parameters. The relationship between rule parameters and internal
forces in the structure is nonlinear. Using gradient-based nonlinear
optimization, our method searches over the parameter space for a
stable configuration.

We focus on masonry structures, which encompass historic cathe-
drals, stone bridges, brick walls, unreinforced concrete dams, and
other common structures. Masonry constructions behave as unde-
formable rigid blocks with interaction forces limited to compres-
sion and friction [Heyman 1995]. In order to impose structural fea-
sibility, a forward analysis tool is required to assess the soundness
of a structure. However, current engineering tools based on finite
element methods and elasticity theory [Zienkiewicz 1971] are not
appropriate in this context because they focus on material failure
and stress, and because the high stiffness of stone results in poorly
conditioned numerical systems. In contrast, the critical factor in
masonry structures is the geometric configuration and whether it
is in static equilibrium. In particular, Block et al. [2006] demon-
strated that linear elastic theory was unable to differentiate between
a feasible masonry arch and an infeasible arch. For this reason, we
revisit an approach introduced by Livesley [1978], and we present a
new forward structural analysis method based on optimization un-
der linear constraints.

We model the stress state by dividing the structure into rigid ele-
ments and computing force resultants on inter-element boundaries.
We formulate the stability problem as a quadratic program, where
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Figure 2: Pipeline. User input is a set of production rules, the selection of free parameters, and associated bounds.

each element is subjected to static equilibrium constraints. We build
on this forward analysis to search for parameters of our procedural
model that yield a stable building. In particular, we extend the anal-
ysis to return a measure of infeasibility when the quadratic program
fails, by minimizing violation of failure criteria at the joints. This
allows us to define an energy function and use non-linear optimiza-
tion to find the appropriate parameters.

Contributions We introduce the idea of generating structurally
feasible procedural models of buildings through automatic parame-
ter selection.

We present a measure of infeasibility that determines how close a
model is to being structurally sound. It is enabled by a quadratic
programming formulation and agrees closely with available exper-
imental data.

We use the measure of infeasibility as an energy function, and apply
gradient-based optimization to select rule parameters that satisfy
structural stability constraints.

We show examples of procedural models of buildings with both
internal and external structure that are consistent with mechanics.

1.1 Related Work

Procedural Modeling Our work builds on the approach proposed
by Müller et al. [2006]. Their system uses grammars to produce
variations of building designs, generated through random or user-
selected parameter adjustment. In contrast, our method selects rule
parameters by determining values that will make the model stand in
a stable configuration. Previous work in procedural modeling has
focused on visual realism and detail in the building façade and does
not model the internal structural elements [Lipp et al. 2008; Müller
et al. 2007; Müller et al. 2006; Wonka et al. 2003; Parish andMüller
2001].

Inverse Statics Static analysis is an important tool for posing
characters, e.g. positioning the center of mass over the ground sup-
ports [Shi et al. 2007]. In plant modeling, static analysis has been
used to balance the weight of branches for creating realistic tree
structures [Hart et al. 2003]. Statics has also been applied to au-
tomatic truss design that optimizes for minimal material consump-
tion [Smith et al. 2002]. We solve a similar problem of determining
model geometry based on physical constraints. However, the set of
possible production rules for buildings has greater complexity than
branching systems used in plant modeling. Further, we work with

three-dimensional template shapes, compared to the 1-D elements
in bridge structures.

Design by Optimization Optimization has been used in a num-
ber of design scenarios. Harada et al. [1995] optimize constrained
layout designs with physically based user interaction. Welch and
Witkin [1992] solve a constrained variational optimization for in-
teractive modeling of free-form surfaces. In architectural applica-
tions, optimization has been used for modeling free-form surfaces
that meet fabrication criteria [Pottmann et al. 2008; Pottmann et al.
2007; Liu et al. 2006]. However, these examples do not consider
structural feasibility constraints.

Structural Engineering Some CAD modeling systems, such as
CATIA, provide visual feedback from finite element analysis that
indicates the current state of stress. However, they do not guide the
user on how to modify designs for improved stability, and manual
model adjustment is still required. This approach can be ineffective
for designers lacking intuition in mechanics. Our method modifies
the structure automatically to a feasible solution.

Block et al. [2006] investigated interactive analysis of masonry
structures, but were limited to two-dimensional slices of buildings.
Gilbert et al. [2006] focus on friction behavior for rigid block struc-
tures and also consider two-dimensional problems. Livesley [1978]
described the use of linear programming for 2Dmasonry analysis in
1978, with further work on a small class of 3D structures [Livesley
1992]. In practice, the RING software applies limit state analysis
to 2D masonry bridges [Gilbert 2001]. A comprehensive review
of analysis techniques for historic masonry structures is given by
Lourenco [2002]. We extend Livesley’s approach to handle infea-
sible cases and provide a measure of infeasibility that can be used
for optimization.

1.2 Overview

Our approach allows users to generate architectural models using
procedural modeling, and then automatically tweak a set of desig-
nated design variables to make the model structurally sound. We
propose an iterative algorithm that loops over three main steps.
First, we construct a model given a grammar and a set of fixed pa-
rameters. Then, we estimate the stability of the obtained structure.
Finally, if the model is not stable, we modify the parameter values
to reduce the instability and start a new iteration.

The pipeline is shown in Figure 2. The input is a set of grammatical
rules, a selection of free parameters, θ, and their associated upper
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and lower bounds. The information computed at each step of the
optimization loop is as follows:

• Standard procedural modeling rules (e.g. repeat, split, trans-
form) are used to generate the geometry of buildings. The
output is a mass model representing the blocks of the struc-
ture, including the interfaces between all adjacent blocks.

• The analysis stage computes interaction forces at each inter-
face using quadratic programming, and outputs a measure of
distance to a feasible structure, y(θi).

• At each iteration of the parameter search a new set of values,
θ

i, is chosen for the free parameters.

• The optimization terminates when a feasible structure is found
(y(θ∗) = 0), or a local minimum.

2 Procedural Modeling

To create the geometry of our structures, we use procedural model-
ing methods as described by Müller et al. [2006]. Beginning with
a coarse volumetric model, production rules iteratively refine the
geometry with internal structure and façade details. The procedural
system carries semantic information including architectural labels
(e.g. arch, wall, column) and rule parameters (e.g. column diame-
ter).

(a) starting shape (b) repeat along horizontal axis,

split along vertical axis

(c) split middle section into capped

arch and wall

(d) split wall symmetrically into two

columns and scale

Figure 3: Procedural generation of a wall with four windows.

A difference in our approach to procedural geometry is our use of
mass modeling. Müller et al. [2006] consider the building volume
as a single solid object with no interior. In contrast, we model solid
objects as interior columns, walls, and other support structure.

Free Parameters The key feature of our approach is that we
automatically choose rule parameters according to physical con-
straints. The user designates a set of free parameters which will be
optimized to reach a stable structure. Typical examples may be the
wall thickness or the width of a window element. We can also place
bounds on the parameters – these limits are set by the user to define
the family of design variations.

Library of Primitives In generating procedural models, we use
a set of basic shapes that emphasize internal structure. In addi-
tion to the primitives proposed by Müller et al. [2006], we add a
set of template objects that are typical to the intended style of ar-
chitecture. For masonry structures, these include flying buttresses,
domes, arches, groin vaults, and capped arches, in both gothic and
romanesque styles (pointed arch versus circular profile). All of

these shapes can be manipulated with a set of mesh parameters:
{tessellation, radial thickness} in addition to the scope parameters.

arch (romanesque) arch (gothic) !ying buttress

groin vault dome capped arch

Figure 4: Template shapes specific to masonry architecture. Each
has parameters to alter tessellation and block thickness.

We chose interface orientations to mimic typical masonry construc-
tion. For example, the blocks in walls and columns are laid in
horizontal courses, while the blocks in arches and flying buttresses
are cut radially. A poorly-chosen interface orientation can make a
structure unstable. The effect of interface orientation on the solu-
tion space is an open area for future research.

Nonstructural Shapes Procedural methods afford the ability to
tag shapes for differing material properties and appearance. We
extend this capability to tag shapes as “nonstructural.” For example,
the roof of a cathedral is often constructed from wood frames which
have little mass compared to the density of stone. We exclude these
shapes from the analysis stage. This allows for decorative elements
without adding unnecessary complexity to the constraint equations.

Adjacencies Once the geometry of the building model has been
generated, we compute contact surfaces between adjacent blocks as
shown in Figure 2. These interfaces are used later in the analysis
step. We assume neighboring blocks have coplanar faces and do not
interpenetrate. We apply simple spatial acceleration for computing
adjacencies based on bounding boxes.

3 Analysis

The analysis stage solves a forward statics problem: given the ge-
ometry of a structure, we compute the interaction forces between
blocks and determine whether it is in static equilibrium. This sec-
tion first reviews the feasibility conditions for a structurally sound
model. Next, for structures that do not satisfy these conditions, we
introduce a measure of infeasibility that determines how far a struc-
ture is from a stable configuration. This will be used later in the
parameter search.

3.1 Background: Static Analysis

To be physically feasible, the forces in a structure must satisfy static
equilibrium, friction constraints, and additional constraints depen-
dent on the material.

Contact Forces We model structures as an assemblage of rigid
blocks, and analyze the force distributions at the interfaces between
adjacent elements. Figure 5 illustrates the contact surface dis-
cretization. A three-dimensional force fi is positioned at each ver-
tex of the interface, modeling a linear force distribution across the
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surface. Although three contact points could model the force distri-
bution, we chose this representation for simpler constraint specifi-
cation.
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Figure 5: Model of contact forces at interfaces between blocks.

We represent fi in the local coordinate system of the interface: one
axial component f i

n perpendicular to the face, and two orthogonal
in-plane friction components, f i

t1
and f i

t2
. The direction of in-plane

friction forces is determined independently at each block interface,
with t1 aligned to an (arbitrary) edge of the block face. Friction
forces on shared faces have opposite orientation.

Static Equilibrium Static equilibrium conditions require that net
force and net torque for each block equal zero, accounting for self
weight of the structure and external applied loads. Combining equi-
librium constraints for each block gives a linear system of equations
[Livesley 1978]:

Aeq · f + w = 0 (1)

where w is a vector containing the weights of each block, f is the
vector of interface forces, and Aeq is the matrix of coefficients for
the equilibrium equations (see Appendix). The system has 6 rows
per building block, 3 for the 3 components of the net force, and 3 for
the net torque. In general, structures have a sparse Aeq matrix due
to the small number of interactions between blocks: each interface
force in f affects only the two blocks adjacent to that interface, and
a column of Aeq only has two non-zero coefficients.

Compression Constraint The compressive stresses in tradi-
tional structures are typically low relative to the strength of masonry
and the material can be treated as rigid. Second, according to limit
analysis of masonry as summarized by Heyman [1995], the mate-
rial can be assumed to have zero tensile strength. Although mortar
is used to fill interstices, it is relatively weak and is not assumed to
add strength to the construction. This condition is expressed as a
non-negativity constraint on the axial forces:

f i
n ≥ 0, ∀ i ∈ interface vertices (2)

Friction Constraints A friction constraint is applied at all ver-
tices of the block interfaces. For each triplet of forces {f i

n, f i
t1

, f i
t2
}

the two in-plane forces are constrained within the friction cone of
the normal force fn. To linearize, we approximate as a friction
pyramid:

|f i
t1
|, |f i

t2
| ≤ αf i

n, ∀ i ∈ interface vertices (3)

where α is the coefficient of static friction with a typical value of
0.7. As long as the per vertex friction forces satisfy the friction cone
constraint, the resultant friction force over the interface is guaran-
teed to satisfy the constraint. The approximation is made conser-

vative by using a reduced friction coefficient (1/
√

2) such that the
cone circumscribes the pyramid. Alternatively, one could use an
octagonal pyramid that more closely approximates the cone; how-
ever this would double the number of constraints which increases
computation time.

Combining friction constraints over the entire assemblage of blocks
in the structure gives a sparse linear system of inequalities:

Afr · f ≤ 0

The friction constraint may not ensure feasibility in all cases, see
the limitations section for details.

In summary, for a structure to stand in equilibrium, a force solution
f must exist that satisfies the described linear constraints:

Aeq · f = −w \\equilibrium

Afr · f ≤ 0 \\friction

f i
n ≥ 0, ∀ i ∈ interface vertices

\\compression-only

(4)

3.2 Measure of Infeasibility

We introduce a new formulation to analyze a model’s geometry and
measure its closeness to a feasible structure. The core problem we
solve is that the constraints in (4) provide only a yes/no answer on
stability. The unknowns, f, can be solved using linear programming
[Livesley 1978], provided that a feasible solution exists. However,
if the structure is infeasible, no solution exists and no information
is given on how far the structure is from a stable configuration.

We introduce a method to measure a structure’s infeasibility by
translating (4) into a penalty form. Our penalty formulation soft-
ens the compression constraint, which allows tension forces to act
as “glue” at block interfaces to hold the structure together (e.g. Fig-
ure 6). We penalize the tension forces, and use their magnitude to
measure the distance to a feasible solution. The first step is to ex-
press axial forces in terms of compression and tension using a vari-
able transformation. The axial force at each vertex is written as the
difference of two nonnegative variables [Bertsimas and Tsitsiklis
1997]:

f i
n = f i+

n − f i−
n (5)

f i+
n , f i−

n ≥ 0

where f i+
n , f

i−
n are the positive and negative parts of f i

n. The force
f i

n can take on any real value by choosing appropriate values for
f i+

n and f i−
n . f i−

n represent tension forces, and f i+
n compression.

Our penalty formulation of (4) is then a quadratic program:

y(θ) = minf

n
X

i=0

(f i−
n )2 (6)

s.t. Aeq · f = −w
Afr · f ≤ 0
f i+

n , f i−
n ≥ 0, ∀i

where the objective function is the squared norm of the tensile
forces, and y(θ) is the measure of distance to a feasible structure.
We choose a quadratic objective for smoothness of the resulting
energy landscape when we vary the parameters of the procedural
model in the structure optimization.

From a structural mechanics viewpoint, the constraints in (6) de-
scribe a statically indeterminate structure. Static equilibrium con-
ditions do not specify a unique set of forces, rather, there are many
possible solutions. We make the system well-posed by searching
for the solution that is closest to satisfying material compression
constraints.

Figure 8 illustrates the infeasibility measure for a two parameter
system consisting of a semi-circular arch with free thickness, sup-
ported on two columns with free width. The ridge along the column
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width axis illustrates that for arbitrarily large columns (effectively
acting as ground), the arch has local feasibility limits on thickness.

Figure 6: Result of the quadratic program for an infeasibly thin
groin vault. The minimum tension solution places tension forces
(blue arrows) around the base of the vault to counteract the outward
push from accumulated weight of the blocks.

3.3 Validation

We compared our results from the quadratic program to known fea-
sibility limits for semi-circular masonry arches. As shown by Mi-
lankovitch [1907], the minimum feasible thickness of an arch is
0.1075 of the average (centerline) radius. Our results were consis-
tent giving a minimum thickness/radius ratio of 0.10746. We used a
100-block tessellation to approximate a continuous arch. A second
validation test measured the maximum angle of ground tilt before
an arch becomes infeasible. For an arch with 0.20 thickness/radius
ratio, the critical tilt angle is 15.84 degrees [Ochsendorf 2002].
Our results match this value exactly for a 100-block arch. Arches at
varying thicknesses were tested with similar accuracy. Note, how-
ever, that their results were obtained using 2D analysis while our
method handles fully three-dimensional structures.

3.4 Robustness

The constraints in (6) describe the minimum requirements for a
structure to support its own weight. In order to give the structure ro-
bustness to external perturbations, we incorporate a geometric fac-
tor of safety using the concept of the kern. The kern is the central
portion of the interface where, if the resultant axial force lies within
this region, the entire interface will act in compression. For rectan-
gular sections the kern is the middle third [Heyman 1995]. When
the resultant force lies outside of the kern, the compressive force is
concentrated over a smaller effective interface. The structure forms
a hinge when the resultant force reaches the boundary of the inter-
face. We incorporate the kern limit by shrinking the boundaries of
the contact polygon (Figure 7), and applying the interface forces at
the modified vertex positions, which provides a margin of safety.

f 
i

f 
i+1

f 
i+2

f 
i+3

f resultant

Figure 7: The resultant force (right) has the equivalent net force
and torque contribution to all vertex forces. For compression-only
solutions the resultant must lie inside the interface boundaries. The
geometric factor of safety shrinks the effective interface (orange) to
tighten the compression constraint.

Another criterion for robustness is to incorporate live loads, which
are typically more critical for e.g. bridges, but less important for
buildings such as cathedrals where the self-weight governs stability.

The live load criterion is straightforward to use in our approach by
modifying the external forces at any block of the building, which
simply translates to adding the load to w in eq. (1).

arch

thickness

column
widthcolumn widtharch thickness

y(θ)

Figure 8: Energy landscape for a two-parameter structure: cir-
cular arch supported on columns. The feasible region is the zero
plane highlighted in red.

4 Parameter Search

The parameter search determines parameter adjustments that reduce
the instability of the building. We apply an iterative optimization
technique, with progress measured by the energy y(θ) from the
previous analysis step.

There can be a nonlinear relationship between the free rule param-
eters θ, and the measure of infeasibility. In order to search over
the parameter space we use gradient-based nonlinear optimization
in conventional form:

argminθ y(θ) (7)

s.t. lb ≤ θ ≤ ub

where y(θ) is the infeasibility metric from expression (6). Figure
8 shows the energy landscape for a two-parameter structure and
the corresponding optimization path. The energy function is C1

continuous due to the quadratic objective function, but may have
a discontinuity of the second derivative when penalty forces, f i−

n ,
become inactive.

At each iteration of the optimization, the geometry of the procedural
model is updated according to parameter values θi, we then use
forward analysis to measure progress towards a feasible structure
as described in section 3.

In contrast to forward statics where forces are determined based
on fixed geometry, this step determines new geometry that satisfies
constraints on the forces.

5 Results

Implementation We use the BPMPD interior point solver for
quadratic programming [Mészáros 1996]. For nonlinear optimiza-
tion, we use Matlab’s active-set algorithm, based on a sequential
quadratic programming method [Gill et al. 1981]. Gradients are
estimated using forward finite differences.

Modeling stable buildings Figure 1 depicts a building model in-
spired by Cluny Abbey in France. The user has set up a grammar
describing the placement of structural elements, and overall look of
the building. The user then selects a set of free parameters, includ-
ing the wall and buttress thickness, and the width of the windows.
Our approach automatically finds the parameter values that satisfy
structural stability constraints.
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(a) initial parameter values (b) tension forces before

optimization

(c) 4-parameter optimization (d) 10-parameter optimization

Figure 9: In this model inspired by the Sainte Chapelle in Paris,
France, four parameters were optimized in (c) for column depth,
corner thickness of the main hall and entranceway, and overall
height of the building. By freeing additional parameters (d), a fea-
sible model is possible without decreasing the height.

The user controls which parameters are free variables and can affect
the structural tradeoffs that yield a sound shape. The optimization
in Figure 9(c) automatically adjusts 4 parameters (column dimen-
sions) and reduces the overall height of the building to reach sta-
bility. In comparison, the 10-parameter optimization (Figure 9(d))
finds a feasible solution at the original building height in exchange
for smaller windows and thicker walls. Figure 10 shows a vari-
ety of structural models achieved by making modifications to the
grammar. The optimized model in Figure 10(d) has small windows
to support the domed ceiling. Extending the grammar to include
flying buttresses (Figure 10(c)) transfers the load away from the
walls, allowing for larger windows for increased natural light in the
interior.

The tower in Figure 11 is an example structure where it may be
difficult to judge stability by intuition alone. A feasible structure
was generated with a 32-parameter optimization that adjusted the
horizontal position of each level individually.

In Figure 12 the shape of the arches is optimized. We use a cubic
Bezier curve: the first and last control points are fixed at the base,
while the two inner control points (red dots) are variable. The z-
coordinate of the arch is scaled to maintain a constant height and
to maintain contact between adjacent shapes. The free parameters
control the horizontal position of the two inner control points. In
the original configuration (Figure 12, left) the arches are too thin

(a) (b)

(c) (d)

Figure 10: Image (a) shows a mosque generated with procedural
rules, and optimized for feasibility. Image (b) was generated by ex-
tending the grammar. In (c) radial flying buttresses are optimized,
while (d) shows that smaller windows are required when the but-
tresses are removed from the grammar.

to stand. The parameter search generates arches resembling cate-
naries (Figure 12, right) which provides feasibility without increas-
ing block thicknesses. Note that the two lower arches are slightly
skewed to account for outward forces transferred from the top arch.

Performance Table 1 shows performance and convergence re-
sults for a few representative examples. The most expensive step
in the pipeline is the quadratic program which evaluates the energy
function. The total cost is nitnθ complexity(BPMPD solver),
where nit is the number of iterations in the parameter search, and
nθ is the number of free parameters. The linearity in the number
of parameters is due to our use of finite differences for gradient
computations.

Table 1: Performance

model blocks parameters iterations time/iter.

Cluny
(Fig.1)

986

4 10 45.7 s
5 5 57.3 s
7 4 70.0 s
9 9 106.6 s

arch (Fig.8) 10 2 6 0.1 s

Sainte
Chapelle
(Fig.9)

486

3 4 12.5 s
5 9 26.5 s
7 6 29.3 s
10 8 40.1 s

tower
(Fig.11)

96 32 6 12.5 s

barrel vault
(Fig.13)

140 1 8 0.6 s
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(a) infeasible

     stacking

(b) 32-parameter

     optimization

(c) geometric

     factor of safety

(d) modified

      grammar

Figure 11: From the original tower input (a), 32 parameters were
optimized to create a feasible stacking arrangement (b). The po-
sition of each level was controlled by two separate parameters for
translations in x and y. Variations can be found using different ini-
tial positions. In (c) the interfaces were shrunk by 0.5 along each
edge as a geometric factor of safety. In (d), modifying the grammar
provides further variation.

Figure 12: The arch profiles are defined using Bezier curves. A 6-
parameter optimization controls the horizontal position of the two
inner control points (red dots) for each arch. (Left) In the initial
configuration the circular shape is infeasible. (Right) The feasible
result. The bottom arches are slightly asymmetrical to account for
horizontal forces transferred from the top arch.

Editing Parameters Interactive editing of parameters is another
valuable usage scenario when speed permits. The user may man-
ually edit a model while our system automatically updates the free
parameters to maintain structural feasibility. For example, in Figure
13, as the user increases the span of the vaulted ceiling, the angle
of the buttresses is modified to account for increasing horizontal
forces. In our prototype, the result updates under five seconds for
this model. Changes in a design can alter the loads on many other
parts of the structure. Traditionally, a change in one element re-
quires tweaks to many other dependent elements of the model. We
simplify the task of exploring design variations by automatically
identifying and updating dependent design parameters.

Dynamic simulations Physically feasible models make it possi-
ble to run dynamic simulations in interactive environments. Under
no external forces, feasible models will stand in static equilibrium.
Users may then apply effects such as earthquakes and collisions
and the model will exhibit realistic dynamic behavior. As a proof
of concept for dynamics applications, we generated simulations us-
ing the Bullet open-source rigid-body dynamics library [Coumans
2008]. Figure 14(a) shows a structure reacting to perturbations of
the ground plane. The perturbation was generated by applying a lat-

Figure 13: Interactive editing of parameters. As the user increases
the span of the barrel vault roof, our system automatically selects
the angle of the flying buttresses required to maintain stability. Red
lines highlight the original structure.

eral impulse to the centroid of the ground plane, causing a change
in ground velocity of 4 m/s over a time step of 1/60 s. The model is
approximately 10m wide. In Bullet, the restitution value (bounci-
ness) was set to the default value of 0.0, and the friction coefficient
was set to 0.895.

(a) (b)

Figure 14: Structurally sound models can be manipulated in phys-
ically simulated environments. (a) The Cluny model collapses after
a ground shake is applied; (b) the Sainte Chapelle model collapses
after a central column is broken (see supplementary video).

Friction Cone Approximation To test the effect of the friction
pyramid parameterization on feasibility, we performed parameter
searches on the Sainte Chapelle model (Figure 9) with the friction
pyramid rotated 45 degrees. In a 3-parameter search we found that
the corner columns of the main hall were 10.5% thinner than with
original friction pyramid. In a 4-parameter search, the thickness of
the arches in the windows was 4.3% smaller with the 45 degree ro-
tated pyramid. Alternatively, the columns underneath the windows
were only 1% thinner.

Block Size The number of blocks should match that used in the
final simulation. Using fewer (i.e. larger) blocks as an approxima-
tion may over-estimate the stability of the final structure in some
cases, e.g. for arches, vaults and flying buttresses, where hinging
failure mechanisms may occur. The tradeoff between accuracy and
computation speed is an area for future investigation.

We tested the Sainte Chapelle model (Figure 9) by choosing pa-
rameters that were “just stable” (small variations make the struc-
ture unstable), then varied the number of blocks. The chapel re-
mained stable when we increased the block count from 486 to 876
by subdividing the columns, arched windows, and circular window.
The chapel became unstable when we further subdivided the groin
vaulted ceiling.

Local Minima MATLAB’s active-set algorithm does not guaran-
tee convergence to the global minimum. If local minima exist, it is
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possible a local minimum will be the result of the parameter search.
We have not encountered this problem in the provided examples –
all models converged to the global minimum (zero tension) solution
without any aids, e.g. multiple starting points. We tested the tower
model in Figure 11 by running the 32-parameter search from ran-
domly generated starting points and all converged to a zero-tension
solution.

Limitations A feasible structure does not always exist within the
given set of rules and free parameters. Under these circumstances,
we return the structure within minimum infeasibility, and the user
is required to manually add new structural elements. For experi-
enced users, visualization of the tension forces provides guidance
for altering the design specifications.

We do not consider the “sawtooth” friction case described by
Gilbert et al. [2006]; we assume idealized interfaces where only
tangential displacement would occur. Our method identifies struc-
tures where a feasible equilibrium solution exists. However, the
resulting structure may still be unstable if alternative equilibrium
states exist where friction constraints are violated.

Our approach applies to masonry buildings which are rigid block
compression-only structures. We can trivially handle structures
where pairs of blocks interact in tension-only by flipping the sign
of the compression constraint.

6 Discussion

We have introduced structural soundness as a key objective in pro-
cedural modeling of buildings. To achieve this, we have addressed
the limitations of current engineering analysis tools based on elastic
theory and have instead relied on a quadratic programming formu-
lation of the equilibrium equations. Comparisons with available
data validates the accuracy of the technique. We have introduced
a penalty form that allows us to measure the degree of infeasibility
of a structure, which can be used in a search procedure to yield a
stable building. A variety of stable structures can be created and the
user can decide which parameters are fixed in order to control the
structural tradeoffs.

Feasible models are valuable for virtual environments to allow users
to interact physically with built surroundings, and simulate realistic
dynamics such as collapse under collision or earthquakes. These
interactions are not possible unless a structure is capable of stand-
ing under self-weight. Our method makes it easy for users to create
feasible buildings, letting the optimization take care of the complex
equilibrium conditions. We believe that inverse statics techniques
such as the one we developed have tremendous potential beyond
interactive virtual environments. We are excited about applications
in historical education and architectural design. Procedural gram-
mars can encapsulate families of buildings, such as the Romanesque
churches of a particular region, creating a useful interface for ana-
lyzing existing historic architecture. Furthermore, our approach can
be applied to designing buildings with other materials, as shapes
which act predominantly in axial stress rather than bending are less
prone to deformation.
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Appendix

We detail the matrix equation for static equilibrium (1). We use
an example construction for an arch consisting of n blocks. Note
that the f vector has n + 1 contact surfaces because there are n− 1
shared interfaces between blocks in the arch, and two interfaces in
contact with the ground plane.

Aeq · f + w = 0
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= 0

wj : 6×1 vector containing the 3D weight and net torque for block
j. Typically the only non-zero element is the z-component of
weight. For any external loads acting on block j, the force and
torque contributions are added here.

rk: Contains the unknown force vectors f
i, for vertices i on inter-

face k. height(rk) is 3vk, where vk is the number of vertices on
interface k and each vertex contributes a 3D force. Note that af-
ter decomposing the axial forces into positive and negative parts
(eq. 5), the dimension of fi increases to 4×1 which changes the
height(rk) to 4vk.

Aj,k: Submatrices Aj,k contain coefficients for net force and net
torque contributions from interface k acting on block j. Each Aj,k

has dimension 6×height(rk). Rows 1-3 are coefficients for net

force contributions in x, y, z and rows 4-6 are coefficients for net
torque contributions about the x, y, z axes.
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where fi = [f i
n f i

t1
f i

t2
]T , akx

= [n̂kx
t̂k1x

t̂k2x
]

and bi,j,k
x

= [(n̂k × v̂i,j)x (t̂k1
× v̂i,j)x (t̂k2

× v̂i,j)x].

n̂k, t̂k1
and t̂k2

are the normal vector and friction basis vectors
for interface k (see Figure 15). The subscript x refers to the x-
component of the vector.

The number of submatrices Aj,k in row j of Aeq is equal to the
number of neighbors incident on block j. There are two submatri-
ces in each column k, since rk represents the interaction between
surfaces of two adjacent blocks.

wj

f  i
nk
^

vi, j
^

tk
2

^

tk
1

^

f  i+1

interface k

}block j

vertex i

Figure 15: Indexing for equations of static equilibrium. Vector n̂k

is the unit normal for interface k, and t̂k1
and t̂k2

are the directions
of in-plane friction forces. Unit vector v̂i,j is the relative position
of vertex i w.r.t. the centroid of block j. wj is the 3D weight vector
for block j.

Size Complexity The sizes of the constraint matrices for static
equilibrium and friction are as follows:

f: length =
P

k
vk(#forces per vertex), over all interfaces k in

the structure. vk is the number of vertices on interface k.

Aeq: size = 6(#blocks) × length(f). The number of non-zero
elements in Aeq is 12 per column, since there are 6 equilibrium
equations and 2 interacting blocks per interface. The number of
non-zero elements in each row j is

P

k
vk(#forces per vertex),

over all interfaces k on block j.

Afr: square with dimension = length(f). The number of non-zero
elements in Afr is

P

k
8vk over all interfaces k in the structure,

assuming a 4-sided friction pyramid.
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