

RF-Compass: Robot Object Manipulation Using RFIDs

Jue Wang

Fadel Adib, Ross Knepper, Dina Katabi, Daniela Rus

Limitation of Today's Robotic Automation

Fixed-position, single-task robot

- Limited to large-volume production line
- Inability to change manufacturing process

Toyota has been slowly backing away from heavy automation. The labor saved by robots was **wasted most of all by reprogramming robots**.

The potential for much broader industrial acceptance is tied to the development of robots that can **absorb data, recognize objects, and respond to information and objects in their environment with greater accuracy**.

This is the **future**. A new wave of robots, far **more adept** than those now commonly used by automakers and other heavy manufacturers.

Mobile Manipulation

Fetching, grasping, and manipulating objects

- Extend automation to small/medium factories
- Easy to reconfigure manufacturing process

Requirements for Mobile Manipulation

- Centimeter-scale localization, e.g., 2cm
- Minimal instrumentation \rightarrow portable

Current Approaches

- Motion capture system, e.g., VICON
 - Sub-centimeter accuracy
 - Heavy instrumentation & Expensive

Current Approaches

- Motion capture system, e.g., VICON
 - Sub-centimeter accuracy
 - Heavy instrumentation & Expensive
- Imaging (e.g., optical camera, Kinect, LIDAR)
 Needs prior training

Current Approaches

 Motion capture system, e.g., VICON <u>centimeter</u> accuracy Do not work in NLOS/occlusion • Imaging (e.g., Needs prior training or

Can RF localization help?

Current RF localization schemes are too coarse

- State-of-the-art WiFi localization: 23cm
 [ArrayTrack]
- State-of-the-art RFID localization: 11cm [*Pinlt*] BUT requires a dense grid of reference tags

How to get a few cm accuracy without environment instrumentation?

RF-Compass

- Place RFID tags on both robot and objects
- No reference tags in the environment

Identifying the Object

- RFID: a passive sticker no battery, low cost
- Reader shines RF signal on tags
- \rightarrow Each tag replies with its unique ID
- \rightarrow Works for up to 10 meters

How to get centimeter-scale accuracy?

Building block: RF pairwise comparison

• Compare distances between RFIDs

Distance ordering based on signal similarity [SIGCOMM'13]

Basic building block

2cm accuracy

Is the red tag closer to Tag 1 or Tag 2?

Tag 1 is closer than Tag 2

Tag 3 is closer than Tag 4

Tag 4 is closer than Tag 1

But not yet centimeter accuracy

• Partitions can be iteratively refined

• Leveraging robot's consecutive moves

• Every robot move gives a new set of partitions

• Lay new partitions over old partitions to refine

• Keep refining until reaching centimeter accuracy

• Keep refining until reaching centimeter accuracy

Formulation as an Optimization

$$\left[2(x_2 - x_1) \ 2(y_2 - y_1)\right] \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \le x_2^2 + y_2^2 - x_1^2 - y_1^2$$

Formulation as an Optimization

$$\begin{bmatrix} 2(x_2 - x_1) & 2(y_2 - y_1) \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \le \begin{bmatrix} x_2^2 + y_2^2 - x_1^2 - y_1^2 \\ \vdots \end{bmatrix}$$

Formulation as an Optimization

- A feasibility problem with linear constraints
- Efficiently solved via convex optimization
- Over-constrained system

 ↓
 Robustness to errors & outliers

Works correctly even if randomly flipping 10% of pairwise comparisons, shown in paper

Orientation

Problem: also need orientation for grasping

Solution:

- Multiple RFIDs on object
- Naïve approach: localize each RFID independently and find orientation
- Our approach: joint optimization using knowledge of their relative location

Evaluation

- Used a robot to fetch IKEA furniture parts
- 9 tags on robot, 1 4 tags on object

Baseline

- VICON motion capture system
- Sub-centimeter accuracy
- Infrared cameras + infrared-reflective markers

Navigation Performance

RF-Compass enables effective navigation in NLOS

Center Position Accuracy

Orientation Accuracy

Conclusion

- RF-Compass: accuracy of a few cm and degrees
- Iterative refining by leveraging robot's navigation
- Opens up opportunities for bridging robot object manipulation with RF localization

