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I
nstitutional money managers develop risk models
and optimal portfolios to match a desired risk/reward
profile. Utility functions express risk preferences
and implicitly reflect the views of fund trustees or

directors.
Once a manager determines a target portfolio,

maintaining this balance of assets is non-trivial. A man-
ager must rebalance actively because different asset classes
can exhibit different rates of return. JManagers also must
rebalance if weights in the target portfolio are altered.
This occurs when the model for expected returns of
asset classes changes or the risk profile changes.

Most academic theory ignores frictional costs, and
assumes that a portfolio manager can simply readjust
holdings dynamically without any problems. In prac-
tice, trading costs are non-zero and affect the decision to
rebalance. Transaction costs involve commissions and
market impact as well as cost of personnel and techno-
logical resources. If the transaction costs exceed the
expected benefit fixim rebalancing, no adjustment should
be made, but without any quantitative measure for this
benefit, we cannot accurately determine whether or not
to trade.

Conventional approaches to portfolio rebalancing
include periodic and tolerance band rebalancing (see
Donahue and Yip |20()3] and Masters [2003]). With
periodic rebalancing, the portfolio manager adjusts to the
target weights at a consistent time interval (e.g., monthly
or quarterly). The drawback with this method is that
trading decisions are independent of market behavior.
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Thus, rebalancing may occur even it the portfolio is nearly
optimal.

Tolerance band rebalancing requires managers to
rebalance whenever any asset class moves beyond some
predetermined tolerance band (e.g.. +5%). When this
occurs, the manager fully rebalances to the target portfolio.
While this method reacts to market movements, the
threshold for rebalancing is fixed, and the process of
rebalancing involves trading all the way back to the optimal
porttolio.

Research on dynamic strategies for asset allocation
has established a so-called no-trade region around the
optimal target porttolio weights (see Perold and Sharpe
11995] and Leland [1999|). If the proportions allocated to
each asset at any given time lie within this region, trad-
ing is not necessary. If current asset ratios lie outside the
no-trade region, though, Leland [1999] has shown that
it is optitnal to trade but only to bring the weights back
to the nearest edge ofthe no-trade region rather than to
the target ratios.

The optimal strategy has been shown to reduce
transaction costs by approximately 50%, but the full ana-
lytical solution involves a complicated system ot partial
ditTerential equations in multiple dimensions.

Mulvey and Sinisek [20()2| model the problem of
rebalancing in the tace of transaction costs as a genera-
lized network with side conditions and develop an
algorithm for solving the resulting problem. Mitchell
and Braun [2*.)02] describe a method for tending an
optimal portfolio when proportional transactions costs
have to be paid.

Since then, Donohue and Yip [2003] have confirmed
the results of Leland [1999]. They characterize the shape
and size ofthe no-trade region, and compare the perfor-
mance of different rebalancing strategies.

We present an approach that explicitly weighs
transaction costs and portfolio tracking error. We assume
we are living in a CAPM world, which means that asset
returns are stationary, and mean and variance are the
primary portfolio statistics of interest (see Markowitz
[ 1952]). Utility Rinctions coupled with asset return models
then yield a target portfolio that is a set of optimal weights
for different asset classes. We also assume the portfolios are
either tax-free or tax-deferred, which is the case fbr
endowments, charities, pension funds, and most individual
retirement funds.

The main difficulty with reconciling transaction
costs and tracking error is that they are expressed in dif-
t'erent units. Transaction costs are measured tangibly by

dollars. Tracking error h a more abstract concept. Because
the optimal porttolio is the portfolio that maximizes our
given utility function, we can express tracking error as
the shortfall in utility from our current porttolio to the
optimal portfolio.

Our tirst contribution is applying the concept of
certainty-equivalents to create risk-adjusted returns that allow
us to convert tracking error into a dollar-denoniinated cost
(see Bernoulli ] 1954[). Note that we are not restricted to
quadratic utility but can use arbitrary utility functions.
Once we have a dollar cost, we can directly compare the
transaction costs for rebalancing with the suboptimality
costs for not rebalancing.

Yet this is leaving ont an essential piece of the
puzzle: Our actions this period also atfect outcomes
and decisions in future periods. Our secoiid contribu-
tion is to then apply the method o'i dynamic progranimitig
to minimize a cost function that explicitly models this
point. Thus our optimal policy trades only when the
expected cost of trading is less than the expected cost of
doing nothing, evaluating costs over the next period
and all future periods.

In addition, we search over the rebalancing space
trom 0% (no rebalancing) to 100% rebalancing (full
rebalancing) and the points in between. In most cases,
partial rebalancing can provide nearly the same utility as
full rebalancing while saving on transaction costs.

Our third contribution is a framework to evaluate
rebalancing strategies quantitatively. We show that our
method performs better than traditional methods of
rebalancing and is robust to model error.

OPTIMAL REBALANCING
USING DYNAMIC PROGRAMMING

We consider a multiasset problem where we are
given an optimal portfolio consisting of a set of target port-
folio weights w* = {Wj, w-, " '^- j , where jVis the total
number of assets. The optimal strategy should be to main-
tain a portfolio that tracks the optimal portfolio as closely
as possible while minimizing the transaction costs.

The model allows us to observe the contents of
the portfolio w^ at the end of each month. At this point,
we have the option of rebalancing the portfolio (i.e..
apply our policy, or control, u^). Thus, the portfolio at
the beginning ofthe next month is w^ + u^. Assuming
normal returns in the process noise are subject to n^,
we use a simple multiplicative dynamic model so that
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I'Vi ~ (1 + ",''f"'r + ",J^ although in general n'̂ _̂ | can be
an arbitrary function of iĉ , N̂ , and n^.

The decision to rebalance should be based on a con-
sideration of three costs: the tracking error associated
with any deviation in our portfolio from the optimal
portfolio; the trading costs associated with buying or
selling any assets during rebalancing; and the expected
future cost from next month onward, given our actions
in the current month. The optimal strategy; determined
through dynamic programming, minimizes the sum of
these three costs.

Dynamic programming is an optimization tech-
nique that tuids the policy that minmiizes expected cost,
given a cost function and a dynamic model of state
behavior (see Bellman |1957], Bellman and Dreyfus
[1962], and Bertsekas [2000]). The cost at any given
period is the expected cost from itot + l along with the
expected cost from t + 1 onward.

Assuming convergence, this recursion approaches
a fixed point known as the cost-to-go value. Once these
values are known, the optimal rebalancing decision is to
choose the policy that achieves this mmimum.

To apply dynamic programming, we specify the
cost function as a sum of trading and suboptimality costs
where the trading costs include tangible fl-es such as com-
missions and market impact, but also indirect costs such
as employee labor, while the suboptimality cost represents
the cost of not having an optimal portfolio.

Note diat the cost-to-go values, and hence the optinuil
strategy, will depend on the cost functions chosen. In the
certainty-equivalence approach, we model the investor's
preferences using a utility function (see Luce [2000]).

Because future returns are unknown, we need to use
expected utility to create an optimal portfolio or to decicie
on a rebalancing policy. Lev>' and Markowitz |1979] have
shown that for most relevant utility functions this expected
utility U can be approximated using truncated Taylor
series expansions to be a function of mean and standard
deviation, U(fi, &j.

Exhibit 1 lists the three utility functions and the cor-
responding expected utilities that we use (see Cremers,
Kritzman. and Page |2004]). For each utility, f.(x) for
( - {q, /, p] (where q indicates quadratic, / indicates
logarithmic, and;j indicates power) represents the utility
in Htils given a return .v, which we also refer to as the
empirical utility. (_/(>, oj for i ^ {q, I, p] is the expected
utilit\'. Details and derivations may be found in Sun et al.
[2004].

E X H I B I T 1
Utility Functions with Corresponding
Approximate Expected Utilities

Utility Fund ion Jixpcctcd l.tility_
Quadratic
Log wealth

Power

fq(x)

fp(x)

= X - a/2 (x - Xo) U l̂

= log(l+x) Ui{

- 1 - 1 / ( 1 + x ) U (̂

H.u) = (.i - iilla-

^,a)= 1 - l/(l + Li)-ci^/(l +M)^

For any portfolio with weights w, we observe that
there exists a risk-free rate, which we will denote as
r^j:(u'}, that produces an identical expected utihty. We call
this the certainty-equivalent return for the weights ir.'

One interpretation ofthe certainty-equivalent then
is a risk-adjusted rate ot return, given the risk preferences
embedded in the utihty function.

If we hold a suboptimal portfolio w, the utility of
that portfolio U(u') will be lower than U(u>'), with a cor-
respondingly lower certainty-equivalent return. We can
interpret this as losing a risk-free return (equal to the
difference between the two certainty-equivalents) over one
period, corresponding to the penalty paid for tracking
error. The difference between the certainty-equivalents
of a non-optimal portfolio and the optimal portfolio is
defined as the cost of not being optimal.

We use a certainty-equivalent because the trading
and suboptimality costs must have commensurate values.
We know that the cost will be in terms of dollars or
basis points or some other absolute measure. It is more
straightforward then to convert the portfolio tracking
error into a similar absolute measure using certainty-
equivalents rather than try to express the trading costs in
terms of diminished expected utility (although this can
be done as well).

Assume we have a portfolio ic, and we want to go
to another portfolio u\^. The most basic model for tran-
saction costs is simply to assume a linear cost. This is
just one specitic choice ot transaction cost. Alternative
transaction cost functions can be chosen as appropriate.
For example, price impact models can be used, or a
proportional plus fixed cost model can be used to dis-
courage frequent trading.

EXPERIMENTAL RESULTS

We use tive asset classes: hedge funds, developed
markets equity, emerging markets equity. U.S. equity,
and private equity'. Exhibit 2 shows the mean and stan-
dard deviation of each asset class for historical monthly
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E X H I B I T 2
Annual Mean Returns and Standard Deviations
for Asset Classes

E X H I B I T 3
Correlation Coefficients

Hedge Funds

Developed Markets

Emerging Markets

US Equily

Private Equity

Index as Proxy (Source)

HFR Mkt Neutral (Bloomberg)

MSCI EAFE - Canada (Datastream>

MSCI EM(Datastrcam)

Rus.sell 3000 (Daiastream)

Wilshire LBO (Bloomberg)

Mean Return
(%)
5.28

6.65

7.88

6.84

12.76

Std Dev
(%)

10.16

16.76

23.30

14.99

44.39

returns over the last decade. The correlation matrix is
shown in Exhibit 3.

Ofthe different assets, private equity provides the
highest expected return, but it also has the greatest
amount ofrisk. At the other extreme, hedge tunds have
both the lowest expected return and the least amount
of variability. (The mean returns were provided by
State Street Associates, and the variances and correla-
tions are computed empirically from data acquired
from Datastream and Bloomberg.)

To introduce the problem of portfolio rebalancing,
we first consider an example involving only two asset
classes: developed markets and hedge funds. The benefits
of the two-risky asset model are that: the optimal port-
folio can be computed in closed form (see Brealey and
Myers [1996] for a derivation); we can visually examine
the changes in portfolio weights since a suigle asset's
weight represents the full description ofour portfolio;
and there are few enough parameters that we can easily
perform sensitivity analyses. We later carry out extensive
simulations with a multiasset model.

At first we consider only quadratic utility with risk
aversion parameter a = 1.5. Using this assumption, the
optimal portfolio balance is 51% in developed markets
and 49% in hedge funds. To illustrate the behavior ofour
rebalancing method, we simulate the returns ofthe two
asset classes over a single 20-year realization.

Exhibit 4 shows how the portfolio weight of devel-
oped markets moves over one 240-month sample path.
With no rebalancing (Panel A), the weight drifts from the
optimal amount of 49% to under 25%, resulting in high
suboptimality costs.

The optimal rebalancing strategy rebalances only
when necessary (Panel B). During months 110-120 and
170-215. the portfolio partially rebalances nearly every
month to handle sharp changes in the portfolio, while for
months 120-160, the lack of strong market movements

Hedge Funds

Developed Markets

Emerging Markets

US Equity

Private Equity

Hedge

Funds

1.00

0.09

0.21

0,29

0.36

Developed

Markets

0.09

1.00

0.42

0.46

0.38

Emerging

Markets

0.21

0.42

1.00

0.45

0.40

US

Equity

0.29

0.46

0.45

1.00

0.64

Private

Equity

0.36

0.38

0.40

0.64

1.00

in either direction allows us to avoid any transaction costs.
The market movement during these times can be seen by
exainining the change in portfolio weights in Panel A,
where there is no rebalancing.

We evaluate different rebalancing algorithms using
a Monte Carlo simulation process. Each month is sam-
pled independently from the others, so we do not model
effects such as trends, momentum, or mean reversion. Eor
each sample path, we simulate the various rebalancing
methods by generating a return value for each month that
is net of transaction costs.

Exhibit 5 shows the annualized costs of different
rebalancing strategies. Trading costs are 40 basis points
for buying or selling developed markets and 60 bp for
buying or selling hedge funds.

We show two metrics to evaluate performance. In
both cases, the numbers are in terms of shortfall from an
idealized rebalancing strategy that is allowed to rebalance
to the optimal portfolio for free every month.

The first metric is to aggregate expected cost shown
in the third column. This is simply the sum ofthe trad-
ing costs in the first column and the suboptimality costs
in the second column. The suboptimality cost is computed
at the end of each month as the difference between the
expected risk-adjusted returns for the optimal portfolio
and the current portfolio after the rebalancing policy
has been applied. Note that this is precisely the metric
that our dynamic programming approach is designed to
minimize.

The second metric is what we call empirical utility
shortfall. For each month, we compute the return net of
transaction costs and then compute the utils associated with
that return using our empirical utility function f. (see
Exhibit 1). This metric is similar to aggregate cost, but
works with actual utility rather than the expected utility
used to compute certainty-equivalents. We expect the
sample average and the expected value to converge, which
they do in our case."
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E X H I B I T 4
Developed Market Weights in Two-Asset Example—Different Rebalancing Models

No Rebalancing Opiimal RebalarKing 5% Tolerance Band Rebalancing

so 100 150 200
Annual Rebalancing

50 100 150 200
Monthly Rebalancing

fiO 100 1S0 200 SO 100 150 ZOO 50 100 150 200

Vcrtiiii! lines indicatf rebalaiiciu^ eventi {omiuvd in monthly rvhalimdn^ since it occurs at ci'cr)' time point).

E X H I B I T 5
Annualized Costs and Utility Shortfall—Six Different
Rebalancing Strategies—Two Risky Assets

Ideal
Optimal DP
No Trading
5% Tolerance
Monthly
Quarterly
Annual

Trading Cosi (bps)

0,00
1.57
0.00
3.68

12,92
7.46
3.71

Suboptimality Cost (bps)

0,00
0.46
4.74
0.13
0.00
0,05
0.26

Aggregate Cosi (bps)

0,00
2.03
4.74
3.81

12.92
7,51
3.97

Utility Shonfall (uiils x 10*}

0.00
2,15
4,56
3.65

12.94
7.46
4.05

Rcsutti iirc an average of 10,000

From Exhibit 5 we observe that our method
minimizes the aggregate cost. Assuming a portfolio of
SI billion, the aggregate annual cost by our algorithm
is $203,000. The cost tor rebalancing using 5% tolerance,
the next-least expensive method, is $381,000 annually.

The results for each rebalancing method make
intuitive sense. Monthly rebalancing produces no devia-
tion from optimality, but at the cost ot high trading
fees. Intrequent trading yields lower trading costs, but

higher suboptimality costs. Our
method of rebalancing whenever the
cost of non-optimality exceeds the
trading costs allows us to adequately
trade off the cost of non-optimality
with that of trading.

So far we have assumed that the
model for each asset is known. In
practice, the mean and variance of
each assets returns as well as the cor-
relation between the assets must be
estimated (using historical observa-

tions). Errors in the parameter estimate, such as deviation
from the true unknown value, will cause inaccuracies in
the costs-to-go obtained from the dynamic program,
resulting in suboptimal rebalancing.

To investigate the impact of errors in each ot these
parameters on the rebalancing strategy, we consider the
means, standard deviations, and correlation parameters.
For each simulation, only one ofthe three parameters is
varied to isolate the effects of changes to each of these
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E X H I B I T 6
Sensitivity Analysis for Two-Asset Example

15

o 5

Sensitivity for error in mean return Sensitivity tor error in standard deviation

\ "°
5% tol ~^.,

[_-——mon

' • • - ^

My

•*~~ quarterly

annual
-.. no rebalance

,-'

• ' ' /

DP

6 6.5 7 7.5
Annual return for developed markets

14

Sensitivity for error in correlation

15

1
(0
1 5

monthly '

S%tol " ~ .

DP

' • • . ^

quarisriy

• *

no rebalance

-0.4 -0.2 0.2 0.4 0.6
Annual standard deviation for developed markets Correlation between developed markets 8 hedge funds

A. Mean return. B. Standard deviation. C. Corrclatioti coefficient.

I'crtical line indicates actual rate used hy the rehabnciii}; stratei^ics.

factors. We then compute annualized aggregate cost,
while the true value ofthe third parameter varies around
the assumed value. This cost is computed relative to an
idealized portfolio that knows the correct value and
rebalatices tor tree to the true optimal portfolio every
month.

Most rebalancing strategies are inherently model-
based because tiie target portfolio is determined by the
model. When the target portfolio is determined with
incorrect parameters, the target portfolio is itself subop-
tuiial. Therefore we would expect all the rebalancing
methods to be sensitive to model error. The exception to
this among the rebalancing methods we examine is the
strategy of no-rebalancing.

For our testing methodology, the assumed model
plays no role except in determining the initial portfolio.
Theretore we would expect no rebalancing to be least
sensitive to model error. Our algorithtn should be eveti
tnore strongly influenced by the model because incorrect
assumptions can also result in suboptimal rebalancing
decisions from the dynamic program. Other methods such
as calendar and tolerance band strategies are heuristic,
and do not directly rely on the model when fortning the
rebalancing policy.

The results for mean sensitivity are shown in Exhibit 6,
Panel A. For each point, 10,000 sequences of 20 years
of monthly returns are generated, and the performance of
each rebalancing strategy is averaged over each sequence.

Our dynamic rebalancing strategy is as robust as
tolerance band and calendar rebalancing. We perform
better than no-rebalancing until the annual return exceeds
7.6%.

This is because the annual return for developed
markets is higher than the return for hedge funds. So,
without rebalancing, as the annual return for developed
markets increases, the average weight tor developed mar-
kets tends to increase as well. At the same time, it becomes
more advantageous to hold developed markets due to the
higher return, so the true optimal portfolio will include
a higher percentage of developed markets. Thus, in this
case, a passive strategy' will typically let the portfoHo move
inadvertently toward the optimal portfolio.

In Exhibit 6, Panel B, we see that the dynamic pro-
gramming approach again outperforms the other approaches
despite large errors in estimating the standard deviation—
it still outperforms the other methods even for inaccura-
cies in the standard deviation of several percentage points
per year. In this instance, the strategy of no-rebalancing
performs better for lower standard deviations.

As in the mean sensitivity case, because developed
markets have a higher average return than hedge funds,
their weight tends to increase with tmie. So as the stan-
dard deviation for developed markets falls, the true opti-
mal portfolio will again have a higher weight in developed
markets, and the portfolio will again tend to drift toward
the optimal portfolio.

Finally, in Exhibit 6, Panel C, we observe that the
dynamic programming approach is relatively insensitive
to errors in estimation ofthe correlations between the
assets. As the cost does not change much for ditTerent
true correlations, we conclude that correlations need
not be accurately estimated for the purposes of our
approach.
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E X H I B I T 7
Efficient Frontier and Optimal Portfolios
for Different Utility Functions Discussed

10 124 6 8
Annual Standard Deviation (%)

fo) indicates optiiiuil portfolio lor pouvr utilily. (+) iiitiicalcs oplimal
portfolio for quadratic utility with a - 1.5. (') indicates optimal port-
folio for /o '̂ wealth utilily.

In the general case of Nrisky assets, we examine five
risky assets, and assert that another choice ot N > 2 would
proceed similarly; the main difference is computation
time. According to Cremers, Kritzman, and Page [2()03|,
standard mean-variance portfolio optimization produces
optimal portfolios only if returns are normally distributed
or if quadratic utility is assumed. Otherwise, full-scale
optimization must be performed to compute optimal
portfolios when one is using more advanced utility func-
tions such as log wealth or power utility.

Later work by Cremers. Kritzman, and Page [20()4|
indicates that except when returns are highly non-normal,
it is sufficient to perform mean-variance optimization
on a Markowitz-st^'le approximate expected utility func-
tion in terms ofjust the mean and standard deviation. They
show that the resulting portfolios and portfoHos generated

from tiiU-scale optimization do not perform significantly
differently.

Under this approximate mean-variance optimiza-
tion, the optimal portfolio lies on the etEcient frontier (see
Markowitz [1952]).^ Therefore, to construct optima!
portfolios for different utility' functions, we first compute
the etTicient frontier by solving a quadratic programming
problem and then search those portfolios to find the one
with the highest expected utiHty.

Exhibit 7 displays the efficient frontier for the five
asset classes when short sales are not allowed. Searching
over this frontier for each ofthe utility functions results
in the optimal portfolios with the weights shown in
Exhibit 8. These weights are the optimal weights we
use throughout the analysis. Note that power utility is
the most risk-averse utility, and log wealth is the risk-
seeking Lit

Monte Carlo Simulations

Exhibit 9 shows the results of various rebalancing
algorithms for the tive-asset case. The results are generated
in a manner analogous to the two-asset case with Monte
Carlo simulations over 20 years for 10,000 sample paths.
Trading costs are 60 bp for hedge funds, emerging mar-
kets, and private equity; 40 bp for developed markets; and
30 bp for U.S. equity.

For the quadratic utility case, we see that our optimal
dynamic programming (DP) method performs approxi-
mately 30% better than the next-best method, which is
5% tolerance bands. If we examine the costs, we see, as
expected, that monthly trading incurs no suboptimaHty
at the expense of high trading costs. The other extreme
of no-trading incurs an extremely high suboptimality
cost because over a 20-year period assets can become
quite unbalanced if unadjusted.

For power utility, our expected loss is 24% less than
the runner-up. 5% tolerance band rebalancing. The

E X H I B I T 8
Optimal Portfolio Weights for Different Utility Functions

Hedge Funds

Developed Markets

Emerging Markets
US Equity

Private Equity

Quadratic (a = 1.5)

0.243

0.222

0.185
0.194

0.156

Logarithmic

0.033

0.240
0.275

0.160

0.292

Power

0.341

0.213
0.143

0.210

0.093
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E X H I B I T 9
Quadratic, Power, and Log Wealth Utility Costs and Shortfall—
Six Different Trading Strategies—Five Risky Assets

Quadratic
a= 1.5

Power

Log wealth

Ideal
Optimal DP
No Trading
5% Tolerance
Monthly
Quarterly
Annual
Ideal
Optimal DP
No Trading
5% Tolerance
Monthly
Quarterly
Annual
Ideal
Optimal DP
Mo Trading
5% Tolerance
Monthly
Quarterly
Annual

Trading
Cost (bps)

0.00
3.97
0.00
7.29

23.67
13.69
6.84
0.00
3.39
0.00
5.19

20.05
!l.59
5.81
0.00
4.80
0.00

11.95
28.15
16.27
8.05

Suboptimalily
Cost (bps)

0.00
1.49

30,18
0.70
0.00
0.28
1.55
0.00
1.15

25.99
0.82
0.00
0.18
1.02
0.00
1.93

30.52
0.43
0.00
0.40
2.17

Aggregate
Cost (bps)

0.00
5.47

30.18
7.99

23.67
13.96
8.39
0.00
4.54

25.99
6.01

20.05
11,78
6.84
0.00
6.72

30.52
12.38
28.15
16.67
10.22

Utility Shortfall
(utiisx 10̂ )

0.00
5.23

32.89
7.88

23.73
14.21
8.43
0.00
4.32

26.04
5.95

19.96
11.87
6.80
0.00
6.57

32.01
12.72
28.19
16,80
10.65

Simulated over a 20-year period 10,000 liines.

benefits for this method are reduced from the quadratic
utility case primarily because power utility is more risk-
averse, so the optimal portfolio has a lower variance.
Therefore less rebalancing is needed overall, because the
portfolio simply does not move as much. This can be
seen in the quarterly and annual rebalancing methods,
which trade less and thus suffer lower suboptimality
costs.

For the log wealth utilitv" case, our algorithm results
in an expected loss that is 35% less than the best alterna-
tive, annual rebalancing in this case. The 5% tolerance
method tails short in this case simply because the log
wealth portfoho is a high-variance portfoho. In the
quadratic case, the trading costs are only marginally
higher than the annual rebalancing method. But in the log
wealth case, they are 48% higher because the tolerance
bands are breached more often.

As a general rule, we see it is more important to get
the rebalancing right when dealing with higher-variance
portfolios simply because many more rebalancing oppor-
tunities arise.

Note that even though tolerance bands do better
than annual rebalancing for quadratic utility and power

utility and worse tor log wealth utility,
it is not a valid conclusion that toler-
ance band methods perform better for
low-variance portfohos and calendar
rebalancing methods perform better for
high-variance portfolios. There is a
degree of freedom in each algorithm.

For tolerance bands, the bands
can be loosened or tightened, depend-
ing on the variance ofthe optimal port-
folio. For example, in the log wealth
case, it is clear that the tolerance bands
are too tight because of the sheer
imbalance between trading costs and
suboptimality costs.

For calendar algorithms, the period
between rebalancing can be adjusted.
For instance, setting the rebalancing time
to two years tor the power utility case
results in an expected loss of 6.32 bp
per year, a savings of 0.52 bp over the
annual strategy. This is achieved by
accruing more than twice as much
expected tracking error (2.21 bp versus
1.02 bp) but also reducing trading costs

— by 29% (4.11 bp versus 5.81 bp). A more
exhaustive search of possible fixed-

interval rebalancing strategies could presumably yield an
even better result.

Optimal Heuristic Algorithms

Our 5% tolerance and periodic rebalancing periods
of monthly, quarterly, and annually are a subset of
general tolerance band and calendar-based rebalancing
algorithms. We make no claims that the parameters chosen
are optimal but rather that the settings seem to be conunon
in the literature.

Our work can be thought of in two ways. First,
we show that our method is superior to any tolerance
band or calendar-based rebalancing method. It should
be noted that our method may be thought of as a dynamic
tolerance band approach. Fixed-tolerance methods are
a subset ofthe controls available to our algorithm, so they
can never do better.

Second, the tull dynamic programming algorithm
is computationally intensive, especially with many assets.
If we instead confine the search to a smaller subset of
acceptable policies, we have a strategy that is not neces-
sarily optimal, but perhaps good enough.
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E X H I B I T 1 0
Annualized Strategy Costs for Different Calendar-Based and Tolerance Band Settings—Quadratic Utility
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Exhibit 10 graphs the results for the quadratic
utility case. Each point is obtained by performing Monte
Carlo simulations over 20 years for 10,000 realizations.
In Panel A. we plot the total costs as a function of
the number of months between rebalancing. The lack
of smoothness in the curve, particularly between less
frequent rebalancing, arises because the amount of
rebalancing in a 240-month period must necessarily
change in discrete steps.

We see that the best performance occurs for 18-month
periods at a cost of 7.53 bp. Note this is still over 2 bp
worse than our algorithms performance {shown as the
horizontal dashed line) but nearly 1 basis point better than
annual rebalancing.

In Panel B, we vary the tolerance setting that trig-
gers rebalancing. We fmd that the best setting occurs for
a tolerance band of 9% and results in a cost of 6.25 bp,
again worse than the 5.47 bp obtained by our algorithm.

Computational Complexity

To provide some information regarding the com-
putational complexity of our approach, note we allow on
the order of 15 possible weights for each asset. For five
assets, we have an observation space of approximately
750,000 points m which we must develop the optimal
policy. Our current implementation processes around
600,000 points per hour on a single PC, although value
iteration can be easily parallelized, so the total processmg
time also depends on the number of machines available.

For a non-parallelized implementation, the run-
time estimate for five assets is 75 minutes. If we assume
the possibility of M ditFerent weights for an additional asset.

addition of this asset to our N-asset model would increase
computation time by a factor oi'M. Memory requirements
increase by a similar amount.

Note this includes detailing the computation for
learning the optimal policy. Once that is done, actually
applying the policy is very fast.

Alternative Cost Functions

Some may wonder whether the results would be
difFerent for alternative trading costs. Exhibit 11 shows
the results when we cut the trading costs in half and
apply this to the quadratic utility strategy. 5% tolerance
bands remain the next-best strategy, but our advantage has
narrowed from 30% to 20%. The reason is that the other
algorithms trade too much, and now they are penalized
less tor it.

Transaction costs for the other methods are cut in
half, while suboptimality remains the same. This pro-
duces reductions m aggregate cost ranging from 41%
for annual rebalancing to 50% for monthly rebalancing
(ignoring no-rebalancing, which obviously does not
benefit).

Our algorithm actually reduces trading costs by less
than half This means that we are sensibly trading more,
now that transaction costs have been lowered—so our
algorithm automatically trades otFa little extra trading to
reduce the suboptimahty costs by a greater amount.

CONCLUSION

The ad hoc methods of periodic and tolerance
band rebalancing provide simple but suboptimal ways to
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E X H I B I T 1 1
Quadratic Utility Costs and Shortfall—Transaction Costs Halved

Ideal
Opiimal DP
No Trading
5% Tolerance
Monthly
Quarterly
Annual

Trading Cost (bps)
0.00
2.60
0.00
3.64

11.83
6.84
3.42

Suboptimality Cost (bps)
0.00
0.85

30.18
0.70
0.00
0.28
1.55

Aggrepate Cost {bps)
0.00
3.45

30.18
4.34

11.83
7.12
4.97

Utility Shortfall (utils X lO')
0.00
3.75

32.89
4.53

11.86

7.18
5.15

rebalance portfolios. Calendar-based approaches rely on

the fact that, on average, we expect a portfolio to become

less and less optimal as time goes on, but they do not use

any knowledge about the actual state of tbe portfolio. The

tolerance band approach uses the current portfolio to

make a decision, but tbis method has no sense of tbe

proper tolerance band setting, or even how wide this

band should be.

We have shown that by formulating tbe rebalanc-

ing problem as an optimization problem and solving it

using dynamic programming, we reduce the overall costs

of portfol io rebalancing. T b e reduced costs bold for

different investor risk preferences, wbetber quadratic, log

wealth, or power utility functions.

The costs of transactions are mucb more tangible

than tbe cost of being suboptimal. Tbrough the use ot

certaint^'-equivalents. however, we have provided a method

tbat quantifies tbe cost of being suboptimal. O u r simula-

tions confirm that this optimal method provides gains over

the best of tbe traditional techniques of rebalancing.

Note that the analysis assumes returns are indepen-

dent across different intervals. T b e literature observes that

mean reversion may exist. Unde r sucb circumstances, we

expect our metbod to perform even better than periodic

rebalancing, because our algorithm would likely rebalance

even less often.

Tbere are several possible extensions o f o u r work.

First, one may want to consider proportional plus fixed

transaction costs. This model is appropriate if one believes

there is a fixed cost in making each and every transaction.

Such an adjustment would likely favor dynamic trading

methods over periodic rebalancing.

Next , we might want to examine rebalancing over

taxable portfolios. Asset managers of such funds have tbe

additional consideration of tax consequences when they

decide to transact.

Tbe relaxation ofthe short sales constraint is anotber

possible extension. Although many tax-deferred funds

do not allow short sales, several either explicitly allow

short-selling or implicitly participate in short sales tbrough

investments m hedge hinds.

We also assume an instantaneous rebalancing at tbe

end of each montb . O n e could incorporate more general

trading models that consider tbe effects of price impact.

Finally, for the multiasset case, we search a o n e -

dimensional policy space representing portfolios tbat are

a Imear combina t ion of the current portfolio and tbe

target portfolio. We ideally want to search over the entire

space of possible portfolios around tbe optimal portfolio.

Tbis would be particularly usefiil when trading costs have

a fixed component . In tbis case, it may be better to trade

on only a subset of assets rather than a portion of all asset

classes.

ENDNOTES

The authon thank Sebastien Page and Mark Kritznian for
their guidance and advice and Edward Freyfogle and Joshua
Grover for their input. This article originated in a course pro-
ject at the Massachusetts Institute of Technology's Sloan School
of Management.

'The condition for this is U{r^.,j,, 0) = U(^Ju', w'^'Aw). The
certaint\'-equivalents for the three expected utility functions that
we are using are:

Quadratic: r^jrfu'j = U (^^w, u''^Au')
Log wealth: r^^M = expfU,f/x^[i', w'Aw))- 1
Power: v^^Jw) = 1/(1 - U^^i^'^w,w^Au>)) - 1
-The units on mils multiplied by 10'' in the last column

of Exhibit 5 are similar to the basis points in che first three
columns. This is clear for the quadratic case where the certainty-
equivalent is equal to che empirical ucility. For the other two
cases, caking a linear approximacion around .v = i) shows
that the ucilitics are proportional Co .x. So utih times 10"' is
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reasonably commensurate with basis points and explains why
the numbers in the bsc cwo columns are similar.

'Risk-averse expected ucility functions increase mono-
tonically in tenns of retum and decline monotonically in Cerms
of risk. Hence, if a portfolio is not on the efficient frontier, there
is a portfolio with equivalent retum and less risk or more retum
and the same risk; therefore, this portfolio cannot be optimal.

iq. Princeton. NJ: Princeton
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