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A Variational Approach to MR Bias Correction
Ayres Fan

Abstract

We propose a novel bias correction method for magnetic resonance (MR) imaging that uses com-
plementary body coil and surface coil images. The former are spatially homogeneous but have low
signal intensity; the latter provide excellent signal response but have large bias fields. We present
a variational framework where we optimize an energy functional to estimate the bias field and the
underlying image using both observed images. The framework is applicable to both 2D and 3D images.
The energy functional contains smoothness-enforcing regularization for both the image and the bias
field. We present extensions of our basic framework to a variety of imaging protocols. We solve the
optimization problem using a computationally efficient numerical algorithm based on coordinate descent,
preconditioned conjugate gradient, half-quadratic regularization, and multigrid techniques. We show
qualitative and quantitative results demonstrating the effectiveness of the proposed method in producing
debiased and denoised MR images.

I. I NTRODUCTION

I N magnetic resonance (MR) image acquisition, there is a fundamental trade-off between noise and

spatially-homogeneous signal response. An uncorrupted image (which we refer to as the true image or

the intrinsic image) would depend solely on the underlying tissue properties (ρ, T1, T2) and the imaging

parameters (TE , TR). Intensity inhomogeneities can occur for a number of reasons, but we will only

focus on one of the largest artifacts: the inhomogeneity caused by the spatially-dependent response of

the receiving coil. Receiving with a body coil results in low signal-to-noise ratio (SNR) but good spatial

homogeneity. Surface coils have strong signal response near the coil, but the intensity rapidly diminishes

with distance [1]. This variable response allows better visualization of the region of interest (ROI) but

results in a systematic intensity inhomogeneity known as thebias field. Surface coils are widely used

in practice, and most users find the superior SNR outweighs the negative effects of the bias field. The

intensity distortions caused by the bias field can significantly impair both visual inspection and image

processing tasks. Separating the bias field from the true underlying image is an underconstrained and

ill-posed problem—there are half the number of observations as there are free variables.

In order to build tractable bias correction techniques, simplifying assumptions of the true physical

process are imposed. Most existing bias correction methods assume that the bias field is multiplicative,

slowly varying, and tissue independent. Additionally, many techniques ignore the noise and apply a log

transform to make the bias field additive. The earliest bias correction techniques relied on phantoms [2]

or homomorphic unsharp filtering [3], [4], but both methods have severe limitations. For the former,
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it is difficult to register the phantom image with subsequent patient scans (especially in multiple coil

imaging setups). For the latter, homomorphic filtering can ameliorate the worst effects of the bias field,

but generally is not very accurate.

Sledet al. [5] sharpen the histogram of the observed image using deconvolution and use the resulting

a priori density to do Bayes least-squares estimation of the true image. Many recent techniques simplify

the problem by using parametric representations for the bias field. Dawantet al. [6] fit thin-plate splines

to the bias field using a least-squares penalty. Likaret al. [7] compute a parameterized bias field estimate

that minimizes the entropy of the reconstructed image. Some methods couple segmentation and bias

correction. Wellset al. [8] use the expectation-maximization (EM) algorithm [9] to estimate the bias

field on the expectation step and perform a statistical segmentation of the brain on the maximization

step. Many people have improved on this framework including Guillemaud and Brady [10] who adopt a

better model for the tissue intensities; and Zhanget al. [11] who use a Markov random field to model

the bias field.

Some people acquire extra information during the imaging process to aid in removing the bias field.

Singh and NessAiver [12] use a tube filled with oil to mark the coil location and compute the sensitivity

profile using the Biot-Savart Law. Moyheret al. [13] employ a similar technique. A few methods capture

a body coil image to help correct the surface coil image. Brey and Narayana [14] low-pass filter the two

observation images to minimize the noise and estimate the bias field as the ratio of the two images. Lai

and Fang [15] divide the surface coil image by the body coil image and select a sparse set of reliable

control points. They then estimate the bias field by fitting a membrane model to the control points.

Pruessmannet al. [16] take a similar approach by fitting local polynomials at every point in the image.

Our method is related to the imaging framework proposed by Brey and Narayana. While there is

additional time and expense associated with acquiring the body coil scan, very reliable bias correction

results may be obtained1. Our algorithm exploits the homogeneity of the body coil and the high SNR

of the surface coil to create a composite image that has higher SNR than either observation image and

a minimal bias field. We construct a general variational framework which can be adapted to a number

of different imaging setups. We introduce a computationally efficient approach to solve the variational

problem, and we demonstrate our algorithm on a variety of MR imaging applications.

In Sec. II, we describe our imaging model and construct an energy functional which we wish to

minimize in order to produce estimates of the true image and the bias field. We generalize the energy

functional to handle the cases with multiple surface coils and multiple pulse sequences. In Sec. III, we

detail our algorithm to compute the solution to our variational problem. In Sec. IV we apply our algorithm

to synthetic brain images and real prostate, heart, and brain images. We summarize our results in Sec.

V.

1Note that we acquire the body coil and surface coil images sequentially. It is technically feasible to receive from both coils

simultaneously, but the mutual induction between the coils would cause the bias field from the surface coil to enter into the

body coil image.
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II. PROBLEM FORMULATION

A. Observation Model

We formulate our observation model in a discrete manner. The body coil and surface coil observation

image pixels are placed into column vectorsyB andyS respectively and are described by the following

pair of equations:

yB = f∗ + nB (1)

yS = b∗◦ f∗ + nS . (2)

In the above equation,◦ represents the Hadamard product [17] (or Schür product or entrywise product).

We force both observations to have the same intrinsic imagef∗, and we assume that the surface coil has

a bias fieldb∗ and the body coil has a constant gain field. Without loss of generality, we set the gain of

the body coil to be unity2. Each element of the noise vectorsnB andnS is assumed to be independent

and identically distributed (IID). This is justified by the thermal nature of the noise. Thus the surface coil

image has a higher SNR in the ROI due to the fact thatb∗ tends to be significantly larger than 1 there.

An implicit assumption in (1) and (2) is thatyB andyS are properly registered. This will generally be

true if the images are captured in rapid succession.

We introduce two diagonal matricesB∗ andF ∗ which haveb∗ andf∗ respectively as their diagonal

entries. We can then rewrite (2) as

yS = B∗f∗ + nS = F ∗b∗ + nS . (3)

The noise in magnitude MR images is accurately modeled by a Rician distribution [18]. Rician random

variables are generated by taking the norm of a Gaussian random vector with arbitrary mean [19]. As

the SNR increases, the Rician probability density function (PDF) approaches the Gaussian PDF. The

Rician PDF is unwieldy to work with, so we treat the noise as Gaussian and zero-mean in our algorithm.

Rician noise has a positive mean, so this assumption results in a biased estimator. In most applications,

the SNR in tissue regions is high enough so that our Gaussian noise assumption is reasonable, and only

a moderate upward bias is imparted.

B. Variational Formulation

In this section, we formulate a variational problem with a statistical interpretation which results in

an energy functional that we seek to minimize. Unlike some other bias correction schemes, we do not

take the log transform of our observations, but instead pose our energy functional directly in the original

2We can only specifyf∗ andb∗ up to a multiplicative constant. In most medical image processing applications, only relative

intensity values are important—f∗ and kf∗ are equivalent. Note that if the body coil image actually has a spatially-varying

bias fieldbB rather than a constant gain, then our algorithm actually estimatesbB ◦ f∗ rather than justf∗.
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multiplicative form. This leads to a cleaner formalism but imposes the need to do nonlinear estimation.

We define our energy functional as

E(f , b) = λB‖yB − f‖2 + λS‖yS − b ◦ f‖2 + α‖Lb‖2 + γ‖Df‖p
p (4)

and choose our optimal estimatesf̂ and b̂ as the vectors that minimizeE(f , b):

f̂ , b̂ = arg min
f ,b

E(f , b) . (5)

λB, λS, γ, andα are positive weights.‖·‖p represents thèp norm, and‖·‖ represents thè2 norm. We

designL and D to approximate derivative operators (generally either gradient or Laplacian operators)

as finite differences. More generally,L and D can implement arbitrary linear high-pass convolutional

kernel. This ensures that high-frequency components off̂ and b̂ are penalized. Thè2 norms for our

data fidelity terms (the first two terms) in (4) correspond to a Gaussian noise assumption if the problem

is formulated as a maximuma posteriori (MAP) estimation problem. From this perspective, we see that

the scalar weightsλB andλS should be proportional to the inverse noise variances for each observation

image.

We use Tikhonov-type regularization [20] to make our intrinsic image and bias field estimates conform

to our prior knowledge of the signals. Specifically, we ensure that our bias field estimate is smooth and

our intrinsic image estimate is piecewise constant. Without regularization onf̂ or b̂ (i.e.,α = γ = 0), the

minimization is a well-posed problem (in the sense the solution is attainable and unique), but it produces

a trivial result. In this case, the minimum ofE is 0 and is achieved for̂f = yB and b̂ = yS®yB (where

® indicates element-by-element division). The`p regularization on̂f is similar to putting an anisotropic

edge-preserving filter into our method [21]. It is well known that`2 norms tend to overpenalize large

derivative values associated with edges. Hence, using`2 regularization in image reconstruction tends to

oversmooth edges, and̀p norms with p < 2 are said to be edge preserving. The main advantage of

fully integrating the denoising operation into our algorithm is that the amount of filtering applied varies

depending on the SNR at each pixel. This will be discussed more fully in Sec. III-B.2.

C. Extension to Multiple Surface Coils

Multiple surface coil images can be simultaneously captured using carefully crafted coil arrays without

requiring additional image acquisition time [22]. Multiple coils are used due to the typically sharp drop-off

in sensitivity far away from surface coils. By distributing the coils spatially, better signal coverage can be

achieved. One way to process multiple surface coil images is to combine them into one composite surface

coil image using a method such as Roemer’s sum-of-squares technique [22] and then use our formulation

in (4). However, there are advantages to processing the surface coil measurements individually. We

introduce a new measurement model where we receive one body coil image andK surface coil images:

yB = f∗ + nB (6)

yS,k = b∗k ◦ f∗ + nS,k, k ∈ {1, 2, . . . ,K} . (7)
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We can extend (4) to handle this more general case:

E(f , b1, . . . , bK) = λB‖yB− f‖2 +
K∑

k=1

λS,k‖yS,k− bk◦ f‖2 +
K∑

k=1

αk‖Lkbk‖2 + γ‖Df‖p
p . (8)

We obtain superior results minimizing (8) because we can optimally combine the surface coil observa-

tions by waiting until we have eacĥbk. The sum-of-squares method implicitly usesyS,k as an estimate of

b̂k when combining the images. Additionally, processing the surface coil images individually allows us to

chooseαk andLk to tune the regularization for each coil. With a composite surface coil image, if some

of the surface coils have very different reception profiles, a single choice ofα and L will oversmooth

or undersmooth in some regions of the image.

D. Extension to Multiple Pulse Sequences

Multiple scans of the same location using different pulse sequences (e.g., T1-weightedandT2-weighted)

are commonly acquired. One possibility would be to acquire a body coil image and a surface coil image

for each pulse sequence and perform each bias correction independently. But the bias fields in all of the

surface coil images should be nearly identical, so we can achieve satisfactory results using only one body

coil image. Our measurement model for this case again involves one body coil image andK surface coil

images, but this time each surface coil image has the same bias field but different intrinsic images:

yB = f∗1 + nB (9)

yS,k = b∗◦ f∗k + nS,k, k ∈ {1, 2, . . . , K} . (10)

Without loss of generality, we have assignedf∗1 to correspond to the intrinsic image in the body coil

image. We can again generalize (4) to handle this case:

E(f1, . . . , fK , b) = λB‖yB− f1‖2 +
K∑

k=1

λS,k‖yS,k− b ◦ fk‖2 + α‖Lb‖2 +
K∑

k=1

γk‖Dkfk‖p
p . (11)

E. General Imaging Setups

More complex permutations beyond the two extensions we have presented can also be handled in a

straightforward manner. Assume we haveNo observation images,Nf intrinsic images, andNb surface

coils:

yi = b∗mi
◦ f∗ni

+ ni, i ∈ {1, 2, . . . , No} . (12)

For a body coil image, we letmi = 0 and defineb∗0 = 1 (this is the bias field of the body coil). Thus

mi ∈ {0, 1, . . . , Nb} and ni ∈ {1, 2, . . . , Nf}. For any given set of observation images, the choice of

mi and ni is not unique because we may place the observation images in any order. For notational

simplicity, define setsF = {f∗1, f∗2, . . . ,f∗Nf
} andB = {b∗1, b∗2, . . . , b∗Nb

}. The energy functional then
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consists of à 2 error term for each observation image, a`2 regularizing term for each surface coil, and

a `p regularizing term for each intrinsic image:

E(F ,B) =
No∑

i=1

λi‖yi − bmi
◦ fni

‖2 +
Nb∑

m=1

αm‖Lmbm‖2 +
Nf∑

n=1

γn‖Dnfn‖p
p . (13)

For a discussion of the conditions necessary for a well-posed problem, see the Appendix.

III. SOLUTION OF THE OPTIMIZATION PROBLEM

This section details the solution to the optimization problem defined in Sec. II. We will begin by

describing the solution to (4) and then extend the result for (13). A closed-form solution for any form

of our optimization problem does not exist, and gradient descent on the full energy functional is slow

and cumbersome. Therefore, we minimize our energy functional using coordinate descent. This is an

iterative technique that minimizes the energy by alternating betweenf andb minimizations. This results

in estimateŝf (i) and b̂(i) at each iterationi. Coordinate descent is useful in problems where computing

solutions over all of the variables is difficult, but computing solutions over a subset is relatively easy. A

stationary point obtained through coordinate descent is also a stationary point of the overall minimization

problem. In order for coordinate descent to terminate, the derivative for each coordinate must be zero.

Thus the gradient of the complete energy functional is zero.

At each iteration, we refer to the computation off̂ (i) and b̂(i) as a f-step and a b-step respectively.

Note that for the more general case (e.g., (8), (11), or (13)), each f- or b-step may involve updating

multiple f̂
(i)
k or b̂

(i)
k . It is easy to show that within each f- or b-step, the updates of eachf̂

(i)
k or b̂

(i)
k can

be done independently. Given all of thêb(i)
k , the f̂

(i)
k are conditionally independent of each other and

vice versa.

A. Bias Field Solution

For a givenf , (4) is quadratic in terms ofb. Thus setting the gradient ofE with respect tob equal

to zero results in a simple linear equation:

(λSF
2 + αLTL)b̂(i) = λSFyS (14)

Although we could solve (14) by direct matrix inversion, we note that(λSF
2 + αLT

b Lb) ≥ 0, so the

subproblem is convex. Hence we can use an iterative algorithm such as preconditioned conjugate gradient

[24] to efficiently compute approximate solutions. For unconstrained quadratic optimization, line mini-

mizations can be easily computed in closed form, and conjugate gradient has a superlinear convergence

rate. Additionally, because we use coordinate descent, finding the exact solution to (14) may actually

overshoot the minimum of the global energy functional. For our conjugate gradient implementation, we use

as a preconditioner the tridiagonal matrix composed of the main diagonal and the adjacent subdiagonals

of (λSF
2 + αLT

b Lb). We chose this preconditioner because it is extremely fast to construct and apply.
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We find that this preconditioner doubles our convergence rate while increasing our time per conjugate

gradient iteration by 5%. This technique is effective because a large percentage of the non-zero entries

are located in our preconditioning matrix.

For the general form in (13), we obtain the following linear equation for eachb̂k:

(
∑

i s.t.
mi=k

λiF
2
ni

+ αLT
k Lk)b̂k

(i) =
∑

i s.t.
mi=k

λiF ni
yi . (15)

This can be solved in an identical manner as described above.

B. Intrinsic Image Solution

1) No Regularization on̂f : To provide some insight into the nature of the solution, we begin by

examining the minimization of (4) for a givenb andγ = 0. We take the gradient ofE with respect to

f and set it equal to zero to obtain a pointwise solution at each pixel indexn:

f̂ (i)[n] =
λByB[n] + λSb[n]yS[n]

λB + λSb2[n]
(16)

BecauseλB and λS are related to the inverse noise variances,f̂ (i)[n] is the noise-weighted convex

combination ofyB[n] andyS[n]/b[n]. The weighting factor varies in space depending on the strength of

b[n], so some locations in̂f may take most of their value fromyS while others may take most of their

value fromyB. Note that we primarily think ofb as an intensity artifact, but it can also be thought of

as the gain field of the surface coil.

In contrast to our method, Brey-Narayana [14] only use the data fromyS to constructf̂ . When the

SNR for yS is much larger than the SNR foryB (i.e., b2[n] À λB/λS), f̂ (i)[n] ≈ yS[n]/b[n] which

corresponds to the Brey-Narayana method. But in regions where the surface coil response is weak, using

both observation images in the reconstruction can be advantageous. Reconstructing from both observation

images ensures that every point inf̂ will have SNR ranging from 0 to 3 dB better than the SNR from

either of our observation images. The maximal 3 dB gain comes when the bias field is 1 which results

in the body coil and surface coil images having the same SNR.

For (13) with a given set of{bm}, we have the following solution:

f̂k
(i)[n] =

∑
i s.t.
ni=k

λibmi
[n]yi[n]

∑
i s.t.
ni=k

λib
2
mi

[n]
(17)

This is the same equation obtained by Roemeret al. [22] for the reconstruction that maximizes SNR

when dealing with the magnitude MR images.

2) Half-Quadratic Solution:We now describe the f-step forγ 6= 0. When p 6= 2, the optimization

problem forf with a givenb is non-quadratic, and we obtain a nonlinear condition for the minimum.

The `p norm for p ≤ 1 is non-differentiable at zero, so we use a smoothed approximation:

‖x‖p
p ≈

∑
n

(x2[n] + ξ)p/2 . (18)
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As ξ → 0, the approximation approaches the unsmoothed norm.

Half-quadratic optimization is a fixed-point iterative scheme pioneered by Geman and Reynolds [21]

that constructs a weighted-`2 approximation at each sub-iterationj. It has been demonstrated [25] that

half-quadratic optimization provides superior convergence rates compared with gradient descent. Using

half-quadratic optimization results in a linear condition onf̂ (i,j):
(
λBI + λSB

2 + γDTW (i,j)D
)

f̂ (i,j) = λByB + λSByS (19)

with the weighting matrixW (i,j) being diagonal with the following entries:

W (i,j)[n, n] =
p

2

(
((Df̂ (i,j−1))[n])2 + ξ

)p/2−1
. (20)

This preserves edges by weighting the`2 norm less in regions with large derivatives. Equation (19) is a

positive definite linear system which we can again solve using preconditioned conjugate gradient.

One of the key features of (19) is that the effective amount of regularization is spatially varying—less

smoothing is performed in regions whereB is large. This is superior to applying an anisotropic post-

processing filter to the output of our algorithm. Depending on the regularization strength, post-processing

will either oversmooth in high SNR regions or undersmooth in low SNR regions.

For the general form in (13), we obtain the following linear equation:

(
∑

i s.t.
ni=k

λiB
2
mi

+ γkD
T
k W

(i,j)
k Dk)f̂k

(i,j) =
∑

i s.t.
ni=k

λiBmi
yi . (21)

W
(i,j)
k is defined in an identical manner as in (20).

C. Convergence and Speed

The energy functionalE in (4) is non-convex due to the cross-multiplication betweenb and f .

Our algorithm possesses convergence qualities similar to the EM algorithm [9]. Each f- and b-step

decreases the energy, so our algorithm will at least find a local minimum ofE. In practice, we have

found excellent convergence properties with the algorithm converging to identical reasonable solutions

for random initializations. In fact, initialization with random noise converges to the correct result.

Multigrid techniques [26] can help avoid local minima and improve computation speed for large

problems. We use a basic form of multigrid with a single coarse-to-fine sweep. We downsample our data

to the coarsest level we wish to process. We then run our coordinate descent solver at this level and

upsample the results to the next finest level. This cycle repeats until we have a solution at the original scale.

The key advantage of multigrid is that the low-frequency components of the solution, which typically

converge slowly at the original scale, can be more efficiently computed at the coarser scales. Curiously,

we find that upsampling and downsampling using nearest neighbor interpolation produces superior results

to more complex methods such as bilinear interpolation.
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D. Three Dimensions

Note that nowhere have we made any assumption about the dimensionality of our data. Three dimen-

sions (3D) is just as easy as two dimensions (2D). The only thing that needs to change is the structure

of the D andL matrices which now must implement 3D kernels. 3D processing allows us to couple the

regularization of botĥf and b̂ in the z-direction which can help us in regions where the data does not

guide the solution very well (e.g., in air-filled regions). Because we constrainf̂ to be close toyB and b̂

to be close toyS® f̂ , estimates for̂f andb̂ obtained via 2D or 3D processing do not differ tremendously.

Additionally, in MR imaging, the inter-slice length is much larger than the intra-slice dimensions, so this

also limits the gain from 3D processing. Still, 3D processing does eliminate some discontinuities in the

bias field in the z-direction. The main difficulty with 3D is convergence speed. Our algorithm does not

converge in linear time, so processing a volume in 3D is slower than processing all of the individual

slices in 2D.

In many MR imaging protocols, different planes are used to image the same location (e.g., axial, sagittal,

and coronal). Generally the aspect ratio (the ratio between the slice thickness and pixel dimension) is

much larger than one (for SNR purposes), so acquiring image sequences in orthogonal planes can provide

additional information. Now, assume that we capture a body coil volumeyB for the axial slices, and

surface coil volumes for axial and sagittal slices (yS,a andyS,s respectively). Then we can estimate the

bias fieldb̂a for the axial volume using our standard algorithm. Note that the bias fields for both surface

coil volumes are the exact same, just sampled on different grids. So we can estimate the bias fieldb̂s

for the sagittal volume by simply resamplinĝba on the appropriate grid. We find trilinear interpolation

works sufficiently well, but alternatives can be found in [27].

Now we have a bias field estimate and a surface coil image for the sagittal volume, and we simply

need to perform one f-step to obtain an estimate of the true sagittal imagef̂ s:

f̂ s = arg min
f

[
λS,s‖yS,s − b̂s ◦ f‖2 + γ‖Df‖p

p

]
. (22)

E. Parameter Selection and Initialization

There are a number of parameters that need to be set in our energy functional:{λi}, {αm}, {γn},
and p (for the most general form). We generally usep = 1 because it is the smallest value ofp that

allows the f-step to remain convex. Ideally, we would specify{αm} and {γn} based on training data

(e.g., phantom scans of the surface coil profiles, long acquisition-time body coil images). In practice, we

choose the regularization parameters based on subjective visual assessment of the results. Because we use

an iterative solver, we must specify initial values for bothf̂ (i) and b̂(i). The convergence speed of our

solver can be greatly impacted by these choices. We use the bias correction method of Brey-Narayana

to produce simple and effective initializations.

We stated that theλi should be related to the inverse noise variances of the corresponding observation

images. We can estimate the noise variances directly from the images using the method from Nowak
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[18]. The true signal should be uniformly zero in air-filled regions, so the observed signal should then

be Rayleigh distributed. Let the noise in both the real and imaginary portions of the complex signal be

Gaussian distributed with varianceσ2
i , and letn index into a air-filled region ofyi. Then the second

moment ofyi[n] is

E[y2
i [n]] = E[n2

real + n2
imag] = 2σ2

i . (23)

We can approximate the expected value by taking the sample average over a large air-filled region to

estimate2σ2
i . Note that the bias field has no effect in air-filled regions, so we can perform this technique

for all observation images regardless of coil configuration.

When using a multigrid solver, we choose{λi}, {αm}, and{γn} at the original scale. We must also

choose these parameters at each scales so that the solutions at the coarser and original scales are similar.

Theλi’s should scale by4s (or 8s in 3D) due to noise reduction from spatial averaging. For wavelet-based

reconstruction, others have found that multiplicative scaling of the regularization parameters is effective

[28], [29]. Hence we multiplyαm andγn at each scales by experimentally determined positive scalars

ζs
m andηs

n respectively:

αm
[s] = (ζm)sα (24)

γn
[s] = (ηn)sγ (25)

Note the [s] on the left-hand side of the equations indexes scale while thes on the right-hand side

indicates exponentiation.

IV. RESULTS

In this section, we demonstrate results on real and synthetic data, along with comparisons with Brey-

Narayana bias correction3. All real data in this section were captured on General Electric Signa 1.5-T

machines. We computed results on a Pentium 4 1.8 GHz workstation using our 2D multigrid solver and

stopped the algorithm when the energy changed by less than 0.01%. For all results, we use Laplacian

regularization on̂b and gradient regularization on̂f . The numerical values ofα presented in this section

provide an indication of relative smoothness across examples because the bias field is a ratio between

the body coil image and a surface coil image. Thus the bias field is unchanged ifyB and yS are both

scaled equally. On the other hand, the numerical values ofγ are not very informative because of scaling

variations in the examples.

3Even though Brey-Narayana is an older technique, we have found that its performance is superior to that of newer body

coil/surface coil correction methods such as Lai-Fang. Additionally, we do not compare with other bias correction techniques

that only have access to the surface coil image. The goal of our algorithm and Brey-Narayana is to produce an intrinsic image

estimate that is as close to the true intrinsic image as possible, and we can ensure this closeness because we have access to

the body coil image which is a noisy, bias-free version of the true image. Bias correction techniques that do not have access

to the body coil image may in fact reliably increase the intensity homogeneity within regions, but the corrected image may not

correspond well in a mean-squared error sense with the true image.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 1. Synthetic axialT1-weightedbrain images. (a) True image (f∗). (b) Body coil image (yB). Estimated intrinsic image

(f̂ ) computed with (c) Brey-Narayana and (d) proposed method usingγ = 0.014. (e)–(h) Surface coil images (yS,1–yS,4).

(i)–(l) Estimated bias fields (̂b1–b̂4). αk = 2000.
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Fig. 2. Performance provided by Brey-Narayana and proposed correction method with varying SNR levels. (a) SNR gain over

the body coil image (yB). (b) Total GM and WM segmentation errors. Averaged over 10 Monte Carlo trials.
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yB B-N f̂ , γ = 0 f̂ , post-filtered f̂ , γ = 0.014

MSE (tissue) 196,542 20,820 20,428 15,853 10,901

MAE (tissue) 353.91 113.59 112.64 98.41 81.99

GM errors 64.4% 14.6% 14.3% 12.4% 9.9%

WM errors 24.7% 3.6% 3.3% 2.8% 2.4%

TABLE I

QUANTITATIVE COMPARISONS USING THEMNI BRAIN PHANTOM. CORRECTED IMAGES ARE GENERATED USING

BREY-NARAYANA AND THE PROPOSED METHOD WITHγ = 0 (WITH AND WITHOUT POST-PROCESSING USING ANISOTROPIC

FILTERING) AND γ = 0.014. ALL METHODS HAD PARAMETERS ADJUSTED TO PRODUCE OPTIMAL RESULTS. THE FIRST TWO

LINES ARE THE MEAN SQUARED ERROR AND MEAN ABSOLUTE ERROR(BASED ON THE TRUE IMAGEf∗) COMPUTED ONLY

IN TISSUE REGIONS. THE LAST TWO LINES ARE THE PERCENTAGE OF MISCLASSIFIED POINTS INGM AND WM REGIONS.

RESULTS AVERAGED OVER20 RANDOM TRIALS.

We begin with synthetic results using the Montreal Neurological Institute (MNI) [30], [31] BrainWeb

simulator. We used theT1-weightedimages with 1 mm slice thickness and constructed synthetic bias

fields that simulate a four-coil phased array. We then added Rician noise to obtain our body coil and

surface coil images. For tissue regions ofyB, we set the SNR at 13 dB. Rician noise at this level imparts

an upward bias, increasing the mean signal level by 2-3%. We computed bias field and intrinsic image

estimates by minimizing (8), our multiple surface coil framework.

We present the observed and corrected images in Fig. 1. The bias field estimates are largely independent

of the tissue, and our method produces af̂ with noticeably superior noise properties than Brey-Narayana.

These visual impressions are confirmed with our quantitative results in Table I with mean squared error

in tissue regions 48% lower than Brey-Narayana. Segmentation accuracy is another way to quantify the

quality of the bias correction. We generated gray matter (GM) and white matter (WM) segmentation

results using a simple thresholding scheme with manual skull peeling. Ground truth was determined

usingf∗. Compared with Brey-Narayana, we reduce overall segmentation errors by 33%.

Most of the gain from our method comes from the integrated denoising rather than from superior bias

field estimates. But the integrated denoising provides superior results to simple post-processing using a

anisotropic edge-preserving filter. To obtain the post-processing results, we first computed an intrinsic

image estimatêf0 with γ = 0. We then chosêf as

f̂ = arg min
f

[
‖f̂0 − f‖2 + ζ‖Df‖p

p

]
. (26)

Table I shows that post-processing is able to improve upon theγ = 0 results, but is inferior to our

integrated denoising method. This is because integrating the denoising allows us to spatially vary the

amount of regularization based on the local signal level.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3. Gated cardiac MR images. (a) Body coil image (yB). Estimates of the intrinsic image (f̂ ) using (b) Brey-Narayana

and proposed method with (c)γ = 0 and (d)γ = 1800. (e)–(h) Surface coil images (yS,1–yS,4). (i)–(l) Estimated bias fields

(b̂1–b̂4). αk = 3000.

In Fig. 2, we show how the different bias correction schemes function as the SNR is varied. Our

method withγ = 0 consistently outperforms Brey-Narayana due to better bias field estimates. In high

SNR regions, all methods provide similar results. As the SNR is decreased, our method with regularization

on f̂ builds up a significant advantage over the other methods. At 0 dB SNR, Brey-Narayana and our

method withγ = 0 produce segmentation error rates of 51% (which is approximately equivalent to

random guessing), while using regularization onf̂ reduces the error to 27%.

Next, we apply our algorithm to one time step from a gated cardiac MR sequence in Fig. 3. The heart

is the object in the upper-middle portion of the image. For the surface coil images, a four-element phased

array was used. The images have a field of view (FOV) of 32 cm× 32 cm, resolution of160× 192, and

slice thickness of 8 mm. To obtain our results, we applied our multiple surface coil correction framework

and minimized (8). The main differences between the Brey-Narayana estimate in Fig. 3(b) and our result

in Fig. 3(c) are in regions where none of the surface coils have good response such as the middle and the

right-hand side of the image. Our method results in higher SNR because we use the body coil information

while Brey-Narayana does not. Fig. 3(d) (usingf̂ regularization) is moderately better than Fig. 3(c), but

the high SNR inyB andyS,k limit the benefits of filtering.

In Fig. 4, we display the results of our algorithm on a real prostate image. The rectum is the black

circular object, and the prostate is directly above it. The surface coils used were an endorectal coil along

with a four element pelvic phased-array coil. We capturedT2-weightedimages using the body coil and

surface coils andT1-weightedimages using just the surface coils. The FOV is 12 cm× 12 cm, resolution
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Axial mid-gland prostate images.T2-weighted(a) body coil (yB) and (b) composite surface coil (yS,1) images. (c)

Composite surface coilT1-weighted image (yS,2). (d) Estimated bias field (̂b). T2-weighted intrinsic image estimates (f̂1)

using (e) Brey-Narayana and (f) proposed method withγ1 = 0.018. T1-weighted intrinsic image estimates (f̂2) using (g)

Brey-Narayana and (h) proposed method withγ2 = 0.010. α = 125.

is 256×256, and slice thickness is 3 mm. Estimates were computed by minimizing (11) using composite

surface coil images because individual surface coil data were not available to us.

The prostate is the most challenging example we consider here. The FOV is small soyB has very low

SNR (about 7 dB in the prostate). To compensate, the endorectal coil produces a strong local response

profile which results in a severe intensity artifact. Because the reception profile of the endorectal coil is

much less homogeneous than that of the pelvic phased-array coil, the prostate would probably benefit

significantly from processing each coil separately. Fig. 4(d) shows that using a composite surface coil

image causeŝb to be under-regularized in regions where the endorectal coil does not dominate. Figs.

4(e)–(h) (when viewed under sufficiently high resolution) demonstrate that our method preserves edges

while resulting in lower noise than Brey-Narayana. Fig. 4(h) shows that even without a body coil image,

we can obtain reasonable intrinsic image estimates for theT1-weightedsequence simply by minimizing

(11). This largely confirms our assumption thatf∗ and b∗ are independent. If there was dependence,

we would not be able to correct theT1-weightedimage using a bias field largely estimated from the

T2-weightedimages.

Fig. 5 shows an example of using the axial-plane bias field estimates obtained in Fig. 4 to process
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Sagittal and coronalT2-weightedprostate images corrected using bias field estimates obtained from axial body coil

and surface coil images. Spatial regions where there is overlap with the axial volume are enclosed within the white boxes. The

top row (a-c) contains sagittal images, the bottom row (d-f) contains coronal images. The left column (a,d) contains composite

surface coil images, middle column (b,e) contains interpolated bias field estimate, and the right column (c,f) contains intrinsic

image estimates.

sagittal and coronal volumes of the same patient. Because the bias field is largely a low-frequency

phenomenon, the lack of resolution in the z-axis for the axial images does not severely impact the

quality of the interpolated bias fields. One of the issues with this type of correction is that the volumes

of space imaged for each plane do not perfectly coincide. Hence there are some points in each sagittal

and coronal image where we do not have any body coil information. This is generally acceptable because

these locations should be on the boundary of the image and should not involve the main object of interest.

We fill in the missing data in the interpolated bias fields using harmonic interpolation.

The sagittal image exhibits a fairly large bias field, but the coronal image is not affected as much. The

intersection between an axial image and a coronal image is a horizontal line in the axial image, and the

intersection between a sagittal image and a coronal image is a vertical line in the sagittal image. The

distance between points in the coronal image and the endorectal coil tends to be fairly constant throughout

the plane. Because the main source of the bias field in these images is caused by the endorectal coil, the

bias field tends to be more homogeneous. Hence, correcting the sagittal images is much more beneficial

than correcting the coronal images for this particular example. Of course, this kind of characterization
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Axial brain images. (a) GRE body coil image (yB). (b) GRE surface coil images (yS,1–yS,4). (c) FLAIR surface coil

images (yS,5–yS,8). (d) Estimated bias fields (b̂1–b̂4). Estimated GRE intrinsic images (f̂1) using (e) Brey-Narayana and (f)

proposed method withγ1 = 1000. Estimated FLAIR intrinsic images (f̂2) using (g) Brey-Narayana and (h) proposed method

with γ2 = 1200. αk = 1000.

will vary from application to application due to coil geometry.

We show axial brain images in Fig. 6. The surface coils are a four-element phased array. We captured

gradient-recalled echo (GRE) images using both the body coil and surface coils and fluid-attenuated

FLAIR images using the surface coils. FOV is 24 cm× 24 cm, resolution is192 × 256, and slice

thickness is 3 mm. We minimize (13) using 8 surface coil images, 1 body coil image, 2 intrinsic images,

and 4 bias fields. All of the surface coils have weak signal strength in the middle of the brain, so our final

estimate of the FLAIR image in Fig. 6(h) is still noisy in the middle, even with the`p reconstruction. This

artifact is not present in our GRE estimate in Fig. 6(f) because the body coil image ensures a minimum

SNR level.

V. CONCLUSION

The main contribution of this paper is a fully-automatic non-parametric approach to MR bias correc-

tion. We presented a unified approach that simultaneously debiases and denoises the MR images. We

constructed an energy functional that ensured our estimates were consistent both with the observed data

and with prior knowledge about the signals. We produced our corrected images by iteratively minimizing
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Fig. 7. Bayesian network illustrating the graph structure of an acquisition scenario with one intrinsic image and four surface

coils resulting in one body coil image and four surface coil images. White nodes indicate unknown variables, and shaded nodes

indicate observations.

the energy functional using coordinate descent, conjugate gradient, half-quadratic regularization, and

multigrid. In practice, we have found our algorithm to have nice convergence properties.

We presented results on a number of examples. We found that the`p regularization helped reduce

the noise on relatively high SNR images such as cardiac and brain images, but the largest gains came

on lower SNR examples such as the prostate. We demonstrated the advantage quantitatively using the

MNI brain phantom. We feel that the quality of the reconstructed true images justifies the extra time and

expense associated with capturing the additional body coil scan, especially for certain applications such

as the prostate which have severe intensity inhomogeneities.

APPENDIX

Obviously with our most general framework described in Sec. II-E, not every choice of parameters will

produce a well-posed minimization problem. As a trivial example, look at the case with one surface coil

and one pulse sequence. This is the standard bias correction framework with twice as many unknowns

as observations. We can describe the relationships between our observations and our unknowns using

graphical models [23]. Graphical models specify the dependencies of random variables by representing the

random variables as nodes and dependencies as edges connecting two nodes. We use Bayesian networks

(i.e., directed graphs) which explicitly contain causality information. In Fig. 7, we show one possible

representation for the example covered in Sec. II-C of one intrinsic image and four surface coils. Here

the direction of the arrows shows that the observation images are causally dependent on the intrinsic

image and bias fields. This perspective makes sense from a physical interpretation.

In order to have a well-posed optimization problem, we have three conditions:
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1) There must be at least as many observation images as intrinsic images and bias fields to estimate

(i.e., No ≥ Nf + Nb).

2) There must be at least one body coil image.

3) The graph describing the problem must be connected.

A graph is connected if, regardless of the initial node, it is possible to reach any node in the graph solely

by traversing along the edges of the graph. This condition is necessary to ensure that there is not an

independent sub-problem contained in the overall problem that does not satisfy the first two conditions4.

The first two conditions are necessary to ensure that an infinite subspace of the solution space are not all

minimums of the energy functional. The second condition may not seem necessary, but can be illustrated

by the case of two intrinsic images (f1 andf2) and two bias fields (b1 andb2) for each one, resulting in

four observation images. Then condition one is satisfied, as is condition three. For simplicity, we consider

the case where there is no additive noise (though this argument generalizes), andα = γ = 0:

y1 = b1 ◦ f1, y2 = b1 ◦ f2, y3 = b2 ◦ f1, y4 = b2 ◦ f2 .

The energy functional is

E(F ,B) = ‖y1 − b1 ◦ f1‖2 + ‖y2 − b2 ◦ f1‖2 + ‖y3 − b1 ◦ f2‖2 + ‖y4 − b2 ◦ f2‖2 .

Then a minimum of the energy functional is the true intrinsic images and bias fields:

f̂1 = f1, f̂2 = f2, b̂1 = b1, b̂2 = b2 .

But we can take any vectora and have the following also produce the minimum value:

f̂1 = a ◦ f1, f̂2 = a ◦ f2, b̂1 = b1 ® a, b̂2 = b2 ® a .

The modifying vectora cancels out when computing the energy, and this solution also results in an

energy of zero.
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