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Abstract. We propose a novel bias correction method for magnetic res-
onance (MR) imaging that uses complementary body coil and surface
coil images. The former are spatially homogeneous but have low signal
intensity; the latter provide excellent signal response but have large bias
fields. We present a variational framework where we optimize an energy
functional to estimate the bias field and the underlying image using both
observed images. The energy functional contains smoothness-enforcing
regularization for both the image and the bias field. We present exten-
sions of our basic framework to a variety of imaging protocols. We solve
the optimization problem using a computationally efficient numerical al-
gorithm based on coordinate descent, preconditioned conjugate gradient,
half-quadratic regularization, and multigrid techniques. We show qual-
itative and quantitative results demonstrating the effectiveness of the
proposed method in producing debiased and denoised MR images.

1 Introduction

In magnetic resonance (MR) image acquisition, there is a fundamental trade-off
between noise and spatially-homogeneous signal response. An uncorrupted image
(which we refer to as the true image or the intrinsic image) would depend solely
on the underlying tissue and the imaging parameters. Receiving with a body coil
(BC) results in low signal-to-noise ratio (SNR) but good spatial homogeneity.
Surface coils (SCs) have strong signal response near the coil, but the intensity
rapidly diminishes with distance [1]. This variable response allows better visu-
alization of the region of interest (ROI) but results in a systematic intensity
inhomogeneity known as the bias field. The intensity distortions caused by the
bias field can significantly impair both visual inspection and image processing
tasks, and separating the bias field from the true underlying image is an under-
constrained and ill-posed problem—there are half the number of observations as
there are free variables.

The earliest bias correction techniques relied on phantoms [2] or homomor-
phic unsharp filtering [11], but both methods have severe limitations. Dawant et



al. [8] fit thin-plate splines to the bias field using a least-squares penalty. Likar et
al. [15] compute a parameterized bias field estimate that minimizes the entropy
of the reconstructed image. Wells et al. [21] exploit the duality behind the seg-
mentation and bias correction problems by using the expectation-maximization
(EM) algorithm [9] to alternately segment and debias brain images. Many have
improved on this framework including Zhang et al. [22] who use a Markov ran-
dom field to model the bias field. Sled et al. [19] sharpen the histogram of the
observed image using deconvolution and use the resulting a priori density to do
Bayes least-squares estimation of the true image.

A few techniques capture a BC image to help correct the SC image. Brey
and Narayana [5] estimate the bias field as the ratio of the two low-pass filtered
observation images. Lai and Fang [14] estimate the bias field by fitting a mem-
brane model to the ratio of the SC and BC images. Pruessmann et al. [17] fit
local polynomials at every point in the image.

Our method is related to the imaging framework proposed by Brey and
Narayana. We exploit the homogeneity of the BC and the high SNR of the
SC to create a composite image that has higher SNR than either observation
image and a minimal bias field. We construct a general variational framework
which can be adapted to a number of different imaging setups. We introduce
a computationally efficient approach to solve the variational problem, and we
demonstrate our algorithm on a variety of MR imaging applications.

2 Problem Formulation

2.1 Observation Model

We formulate our observation model in a discrete manner. We place the BC and
SC observation image pixels into column vectors yB and yS respectively. We
assume the SC has a bias field b∗, and the BC has a constant gain field4. We
stipulate that both observations have the same intrinsic image f∗:

yB = f∗ + nB (1)
yS = b∗◦ f∗ + nS . (2)

In the above equation, ◦ represents the Hadamard product [12] (or Schür product
or entrywise product). Each element of the noise vectors nB and nS is assumed to
be independent and identically distributed (IID). This is justified by the thermal
nature of the noise. In the ROI, b∗ tends to be significantly larger than 1 which
results in higher SNR for yS than yB.

We introduce two diagonal matrices B∗ and F ∗ which have b∗ and f∗ re-
spectively as their diagonal entries. We can then rewrite (2) as

yS = B∗f∗ + nS = F ∗b∗ + nS . (3)

4 We can only specify f∗ and b∗ up to a multiplicative constant. Generally, f∗ and
2f∗ are equivalent. Without loss of generality, we set the gain of the BC to be 1.



The noise in magnitude MR images is accurately modeled by a Rician dis-
tribution [16]. Rician random variables are generated by taking the norm of a
Gaussian random vector with arbitrary mean. As the SNR increases, the Rician
probability density function (PDF) approaches the Gaussian PDF. The Rician
PDF is unwieldy to work with, so we treat the noise as Gaussian and zero-
mean in our algorithm. Rician noise has a positive mean, so this assumption
results in a biased estimator. In most applications, the SNR in tissue regions is
high enough so that our Gaussian noise assumption is reasonable, and only a
moderate upward bias is imparted.

2.2 Variational Formulation

We formulate a variational problem with a statistical interpretation. This results
in an energy functional which we seek to minimize. We do not take the log
transform of our observations, but instead pose our energy functional directly in
the original multiplicative form. This leads to a cleaner formalism but imposes
the need to do nonlinear estimation. We define an energy functional:

E(f , b) = λB‖yB − f‖2 + λS‖yS − b ◦ f‖2 + α‖Lb‖2 + γ‖Df‖p
p (4)

and choose our optimal estimates f̂ and b̂ as the vectors that minimize E(f , b):

f̂ , b̂ = arg min
f ,b

E(f , b) . (5)

λB, λS, γ, and α are positive weights. ‖·‖p represents the `p norm, and ‖·‖
represents the `2 norm. We design L and D to approximate derivative operators
(generally either gradient or Laplacian operators) as finite differences.

The `2 norms for our data fidelity terms (the first two terms) in (4) imply a
Gaussian noise assumption if the problem is formulated as a maximum a poste-
riori (MAP) estimation problem. From this perspective, we see that the scalar
weights λB and λS should be proportional to the inverse noise variances for each
observation image. We use Tikhonov-type regularization to make our intrinsic
image and bias field estimates conform to our prior knowledge of the signals [10].
Specifically, we ensure that our bias field estimate is smooth and our intrinsic im-
age estimate is piecewise constant. The regularization on f̂ is similar to putting
an anisotropic edge-preserving filter into our method. It is well known that `2
norms tend to overpenalize large derivative values associated with edges. Hence,
using `2 regularization in image reconstruction tends to oversmooth edges, and
`p norms with p < 2 are said to be edge preserving.

2.3 Extension to Multiple SCs

Multiple SC images can be simultaneously captured using carefully crafted coil
arrays without requiring additional image acquisition time [18]. Multiple coils
are used due to the typically sharp drop-off in sensitivity far away from SCs.
By distributing the coils spatially, we achieve better signal coverage. One way
to process multiple SC images is to combine them into one composite SC image



using a method such as Roemer’s sum-of-squares technique [18] and then use
our formulation in (4). However, there are advantages to processing the SC
measurements individually. We introduce a new measurement model where we
receive one BC image and K SC images:

yB = f∗ + nB (6)
yS,k = b∗k ◦ f∗ + nS,k (1 ≤ k ≤ K) . (7)

We can extend (4) to handle this more general case:

E = λB‖yB− f‖2 +
K∑

k=1

λS,k‖yS,k− bk◦ f‖2 +
K∑

k=1

αk‖Lkbk‖2 + γ‖Df‖p
p . (8)

We obtain superior results minimizing (8) because we can optimally combine
the SC observations by waiting until we have each b̂k. Additionally, with the
composite SC image, α and L are determined by the least homogeneous coil
response. Processing the SC images individually allows us to choose αk and Lk

to individually tune the regularization for each coil.

2.4 Extension to Multiple Pulse Sequences

Multiple scans of the same location using different pulse sequences (e.g., T1-
weighted and T2-weighted) are commonly acquired. The bias fields in all of the
SC images are nearly identical, so we can achieve satisfactory results using only
one BC image. Our measurement model for this case again involves one BC
image and K SC images, but this time each SC image has the same bias field
but different intrinsic images:

yB = f∗1 + nB (9)
yS,k = b∗◦ f∗k + nS,k (1 ≤ k ≤ K) . (10)

Without loss of generality, we have assigned f∗1 to correspond to the intrinsic
image in the BC image. We can again generalize (4) to handle this case:

E = λB‖yB−f1‖2 +
K∑

k=1

λS,k‖yS,k−b◦fk‖2 +α‖Lb‖2 +
K∑

k=1

γk‖Dkfk‖p
p . (11)

Additionally, more complex permutations beyond the two extensions we have
presented can also be handled (e.g., M pulse sequences captured with N SCs).

3 Solution of the Optimization Problem

This section details the solution to the optimization problem defined in Sec. 2.
We will only describe the solution to (4). Extensions for (8) and (11) as well as 3D
volumes are straightforward. A closed-form solution for (4) does not exist, and
gradient descent on the full energy functional is slow and cumbersome. Therefore,
we minimize (4) using coordinate descent. This is an iterative technique that



alternately minimizes the energy for f and b. This results in estimates f̂ (i)

and b̂(i) at each iteration i. Coordinate descent is useful in problems where
computing solutions over all of the variables is difficult, but computing solutions
over a subset is relatively easy. At each iteration, we refer to the computation of
f̂ (i) and b̂(i) as a f-step and a b-step respectively. A stationary point obtained
through coordinate descent is also a stationary point of the overall minimization
problem. In order for coordinate descent to terminate, the derivative for each
coordinate must be zero. Thus the gradient of the complete energy functional is
zero.

3.1 Bias Field Solution

For a given f , (4) is quadratic in terms of b. Thus setting the gradient of E with
respect to b equal to zero results in a simple linear equation:

(λSF 2 + αLT
b Lb)b̂(i) = λSFyS (12)

Although we could solve (12) by direct matrix inversion, we note that (λSF 2 +
αLT

b Lb) ≥ 0, so the subproblem is convex. Hence we can use an iterative al-
gorithm such as preconditioned conjugate gradient [3] to efficiently compute
solutions. We use as a preconditioner the tridiagonal matrix composed of the
main diagonal and the adjacent subdiagonals of (λSF 2 + αLT

b Lb) in order to
make our preconditioners easy to construct and apply.

3.2 Intrinsic Image Solution

No Regularization on f̂ To provide some insight, we examine the minimiza-
tion of (4) for a given b and γ = 0. We take the gradient of E with respect to f
and set it equal to zero to obtain a pointwise solution at each pixel index n:

f̂ (i)[n] =
λByB[n] + λSb[n]yS[n]

λB + λSb2[n]
(13)

Because λB and λS are related to the inverse noise variances, f̂ (i)[n] is the noise-
weighted convex combination of yB[n] and yS[n]/b[n] with a spatially varying
weighting factor. In contrast, Brey and Narayana [5] only use the data from yS

to construct f̂ . This works well when b[n] À 1, but in regions where the SC
response is weak, using both observation images can be advantageous.

Half-Quadratic Solution We now describe the f-step for a general γ. When
p 6= 2, the optimization problem for f with a given b is non-quadratic, and
we obtain a nonlinear condition for the minimum. The `p norm for p ≤ 1 is
non-differentiable at zero, so we use a smoothed approximation:

‖x‖p
p ≈

∑
n

(x2[n] + ξ)p/2 . (14)

As ξ → 0, the approximation approaches the unsmoothed norm.



Half-quadratic optimization is a fixed-point iterative scheme pioneered by
Geman and Reynolds [10] that constructs a weighted-`2 approximation at each
sub-iteration j. It has been demonstrated [20] that half-quadratic optimization
provides superior convergence rates compared with gradient descent. Using half-
quadratic optimization results in a linear condition on f̂ (i,j):

(
λBI + λSB2 + γDTW (i,j)D

)
f̂ (i,j) = λByB + λSByS (15)

with the weighting matrix W (i,j) being diagonal with the following entries:

W (i,j)[n, n] =
p

2

(
((Df̂ (i,j−1))[n])2 + ξ

)p/2−1

. (16)

This preserves edges by weighting the `2 norm less in regions with large deriva-
tives. Equation (15) is a positive definite linear system which we can again solve
using preconditioned conjugate gradient.

One of the key features of (15) is that the effective amount of regularization
is spatially varying—less smoothing is performed in regions where B is large.
This is superior to applying an anisotropic post-processing filter to the output
of our algorithm. Depending on the regularization strength, post-processing will
either oversmooth in high SNR regions or undersmooth in low SNR regions.

3.3 Convergence and Speed

The energy functional E in (4) is non-convex due to the cross-multiplication
between b and f . Our algorithm possesses convergence qualities similar to the
EM algorithm [9]. Each f- and b-step decreases the energy, so our algorithm
will at least find a local minimum of E. In practice, we have found excellent
convergence properties with the algorithm converging to identical reasonable
solutions for random initializations.

Multigrid techniques [6] can help avoid local minima and improve computa-
tion speed for large problems. We use a basic form of multigrid with a single
coarse-to-fine sweep. We downsample our data to the coarsest level we wish to
process. We then run our coordinate descent solver at this level and upsample
the results to the next finest level. This cycle repeats until we have a solution at
the original scale. The key advantage of multigrid is that the low-frequency com-
ponents of the solution can be more efficiently computed at the coarser scales.

3.4 Parameter Selection and Initialization

There are a number of parameters that need to be set in our energy functional:
λB, λS, α, γ, and p. We generally use p = 1 because it is the smallest value of p
that allows the f-step to remain convex. Ideally, we would specify α and γ based
on training data (e.g., phantom scans of the SC profiles, long acquisition-time
BC images). In practice, we choose the parameters based on subjective visual
assessment of the results. Because we use an iterative solver, we must specify
initial values for both f̂ (i) and b̂(i). The convergence speed of our solver can be



(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 1. Synthetic axial T1-weighted brain images. (a) True image (f∗). (b) BC image
(yB). Estimated intrinsic image (f̂) computed with (c) Brey-Narayana and (d) pro-
posed method using γ = 0.014. (e)–(h) SC images (yS,1–yS,4). (i)–(l) Estimated bias

fields (b̂1–b̂4). αk = 2000. Convergence in 63 sec.

greatly impacted by these choices. We use the bias correction method of Brey
and Narayana to produce simple and effective initializations.

We stated that λB and λS should be related to the inverse noise variances of
yB and yS respectively. We can estimate the noise variances directly from the
images using the method from Nowak [16]. The true signal should be uniformly
zero in air-filled regions, so the second moment of yB in these regions should
then equal 2σ2

B. We can approximate the expected value by taking the sample
average over a large air-filled region to obtain σ2

B. Note that the bias field has
no effect in air-filled regions, so we can perform this same technique for yS.

When using a multigrid solver, we fix λB, λS, α, and γ at the original scale.
We must also choose parameters at each scale s so that the solutions at the
coarser and original scales are similar. The λ’s should scale by 4s (or 8s in 3D)
due to noise reduction from spatial averaging. For wavelet-based reconstruction,
others have found that multiplicative scaling of the regularization parameters
is effective [4]. Hence we multiply α and γ at each scale s by experimentally
determined scalars ks

1 and ks
2 respectively.

4 Results

In this section, we demonstrate results on real and synthetic data. All real data
in this section were captured on General Electric Signa 1.5-T machines. We com-
puted results on a Pentium 4 1.8 GHz workstation using our multigrid solver
and stopped the algorithm when the energy changed by less than 0.01%. Conver-
gence times are indicated in the figure captions. For all results, we use Laplacian
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Fig. 2. Performance provided by Brey-Narayana and proposed correction method with
varying SNR levels. (a) SNR gain over the BC image (yB). (b) Total GM and WM
segmentation errors. Averaged over 10 Monte Carlo trials.

yB B-N f̂ , γ = 0 f̂ , γ = 0.014

MSE (tissue) 196,542 20,820 20,428 10,901

MAE (tissue) 353.91 113.59 112.64 81.99

GM errors 64.4% 14.6% 14.3% 9.9%

WM errors 24.7% 3.6% 3.3% 2.4%
Table 1. Quantitative comparisons using the MNI brain phantom. Corrected images

are generated using Brey-Narayana and the proposed method with γ = 0 and γ = 0.014.

The first two lines are the mean squared error and mean absolute error (based on the

true image f∗) computed only in tissue regions. The last two lines are the percentage

of misclassified points in GM and WM regions. Results averaged over 20 random trials.

regularization on b̂ and gradient regularization on f̂ . The numerical values of γ
presented in this section are not very informative because of scaling variations
in the examples. The α values are a measure of relative smoothness because the
bias field is unchanged if yB and yS are both scaled equally.

We begin with synthetic results using the Montreal Neurological Institute
(MNI) [7, 13] BrainWeb simulator. We used the T1-weighted images with 1 mm
slice thickness and constructed synthetic bias fields that simulate a four-coil
phased array. We then added Rician noise to obtain our BC and SC images. For
tissue regions of yB, the noise resulted in SNR of 13 dB and a bias of 2-3%.
Estimates were computed within our multiple SC framework by minimizing (8).

We present the observation and corrected images in Fig. 1. The bias field
estimates are largely independent of the tissue, and our method produces a
f̂ with noticeably superior noise properties than Brey-Narayana. These visual
impressions are confirmed with our quantitative results in Table 1 with mean
squared error 48% lower than Brey-Narayana. Segmentation accuracy is another
way to quantify the quality of the bias correction. We generated gray matter
(GM) and white matter (WM) segmentation results using a thresholding scheme
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(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3. Gated cardiac MR images. (a) BC image (yB). Estimates of the intrinsic image
(f̂) using (b) Brey-Narayana and proposed method with (c) γ = 0 and (d) γ = 1800.
(e)–(h) SC images (yS,1–yS,4). (i)–(l) Estimated bias fields (b̂1–b̂4). αk = 3000. Con-
vergence in 71 sec.

with manual skull peeling on f∗ and the corrected images. Compared with Brey-
Narayana, we reduce overall segmentation error by 33%.

In Fig. 2, we show how the different bias correction schemes function as the
SNR is varied. Our method with γ = 0 consistently outperforms Brey-Narayana
due to better bias field estimates. In high SNR regions, all methods provide simi-
lar results. As the SNR is decreased, our method with regularization on f̂ builds
up a significant advantage over the other methods. At 0 dB, Brey-Narayana
and our method with γ = 0 produce segmentation error rates of 51% (which is
approximately equivalent to random guessing), while using regularization on f̂
reduces the error to 27%.

Next, we apply our algorithm to one time step from a gated cardiac MR
sequence in Fig. 3. For the SC images, a four-element phased array was used.
The images have a field of view (FOV) of 32 cm × 32 cm, resolution of 160×192,
and slice thickness of 8 mm. To obtain our results, we applied our multiple SC
correction framework and minimized (8). The main differences between the Brey-
Narayana estimate in Fig. 3(b) and our result in Fig. 3(c) are in regions where
none of the SCs have good response such as the middle and the right-hand side
of the image. This is because our method uses the BC information while Brey-
Narayana does not. Fig. 3(d) (using f̂ regularization) is moderately better than
Fig. 3(c), but the high SNR in yB and yS,k limit the benefits of filtering.

In Fig. 4, we display the results of our algorithm on a real prostate image. The
SCs used were an endorectal coil along with a four element pelvic phased-array
coil. We captured T2-weighted images using the BC and SCs and T1-weighted
images using just the SCs. The T1-weighted images do not show the internal
structure of the prostate but are useful in finding the borders of the gland; the
T2-weighted images are useful for differentiating regions of the prostate as well
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Fig. 4. Prostate images. T2-weighted (a) BC (yB) and (b) composite SC (yS,1) images.

(c) Composite SC T1-weighted image (yS,2). (d) Estimated bias field (b̂). T2-weighted

intrinsic image estimates (f̂1) using (e) Brey-Narayana and (f) proposed method with
γ1 = 0.018. T1-weighted intrinsic image estimates (f̂2) using (g) Brey-Narayana and
(h) proposed method with γ2 = 0.010. α = 125. Convergence in 24 sec.

as for tumor detection. The FOV is 12 cm × 12 cm, resolution is 256 × 256,
and slice thickness is 3 mm. Estimates were computed by minimizing (11) using
composite SC images because individual SC data were not available to us.

The prostate is the most challenging example we consider here. The FOV is
small so yB has very low SNR (about 7 dB in the prostate). To compensate,
the endorectal coil produces a strong local response profile which results in a
severe intensity artifact. Because the reception profile of the endorectal coil is
much less homogeneous than that of the pelvic phased-array coil, the prostate
would probably benefit significantly from processing each coil separately. Fig.
4(d) shows that using a composite surface coil image causes b̂ to be under-
regularized in regions where the endorectal coil does not dominate. Figs. 4(e)–(h)
(when viewed under sufficiently high resolution) demonstrate that our method
preserves edges while resulting in lower noise than Brey-Narayana. Fig. 4(h)
shows that even without a BC image, we can obtain reasonable intrinsic image
estimates for the T1-weighted sequence.

We show axial brain images in Fig. 5. The SCs were a four-element phased
array. We captured gradient-recalled echo (GRE) images using both the BC and
SCs and fluid attenuated FLAIR images using the SCs. FOV is 24 cm × 24 cm,
resolution is 192 × 256, and slice thickness is 3 mm. We minimize a hybrid of
(8) and (11) to obtain our results. All of the SCs are weak in the middle of the
brain, so our final estimate of the FLAIR image in Fig. 5(h) is still noisy in the



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Axial brain images. (a) GRE BC image (yB). (b) GRE SC images (yS,1–

yS,4). (c) FLAIR SC images (yS,5–yS,8). (d) Estimated bias fields (b̂1–b̂4). Estimated

GRE intrinsic images (f̂1) using (e) Brey-Narayana and (f) proposed method with
γ1 = 1000. Estimated FLAIR intrinsic images (f̂2) using (g) Brey-Narayana and (h)
proposed method with γ2 = 1200. αk = 1000. Convergence in 103 sec.

middle, even with the `p reconstruction. This artifact is not present in our GRE
estimate in Fig. 5(f) because the BC image ensures a minimum SNR level.
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