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Problem Statement

Moment Matching. Concerns a regular expo-

nential family of models for a random variable x

having exponential parameters θ, minimal set

of sufficient statistics t(x) and base measure

q(x) > 0 with pdf

f(x; θ) = q(x) exp{θ · t(x) − ϕ(θ)}

A dual parameterization of this family is given

by the moment coordinates

η = Eθ{t(x)}
which are in one-to-one correspondence with

exponential coordinates.

The moment-matching problem is to to re-

cover θ given η.

Solve η(θ) = η∗.

2



The Exponential Family∗

Specified by a base measure q(x) > 0 and a set

of sufficient statistics t(x) both defined over

some specified state-space X. We take X =

Rn so that model is specified by pdf of the

form

f(x; θ) = q(x) exp{θ · t(x) − ϕ(θ)}
where the cumulant function ϕ(θ) is the nor-

malization constant

ϕ(θ) = log
∫
q(x) exp{θ · t(x)}dx

Only consider admissable parameters Θ s.t.

pdf is normalizable ϕ(θ) < ∞. The family

is regular if Θ has non-empty interior. The

statistics are minimal if the t(x) are linearly-

independent. Then, dual parameterization pro-

vided by moment coordinates η = Eθ{t(x)}
over the set of achievable moments η(Θ).

∗Efron, 78; Barndorff-Nielsen, 1978.
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• Maximum Entropy Principle.∗ The probabil-
ity density function p(x) which has maximum
entropy

h[p] = − ∫
p(x) log p(x)dx

subject to moment constraints
∫
p(x)t(x)dx = η∗

is an exponential family family with q(x) = 1
and statistics t(x) where θ∗ is determined by
condition η(θ∗) = η∗.

• Minimum Relative-Entropy Principle.† Given
a reference model q(x), the density p(x) so as
to minimize the Kullback-Leibler divergence‡

D(p||q) =
∫
p(x) log

p(x)

q(x)
dx

again subject to moment constraints Ep{t(x)} =
η∗ is an exponential family model with base
measure q(x) and statistics t(x) where θ∗ is
determined by η(θ∗) = η∗.
∗Jaynes, 58; and Good,63.
†Kullback and Leibler, 51.
‡aka relative or cross entropy as is invariant form of
entropy.
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Relation to Maximum Likelihood (ML)

Latter “KL-projection”∗ arises in ML param-

eter estimation. Given x(1), . . . , x(N) ∼ p(x),

the member of a given exponential family which

maximizes the joint log-likelihood of the data

θ̂ML = argmax
θ

N∑
k=1

log f(x(k); θ)

is determined by KL-projection as it minimizes

D(p̃||f(·; θ)) where p̃(x) is the empirical distri-

bution

p̃(x) =
N∑
k=1

δ(x − x(k))

having the same moments as the data

Ep̃t(x) = η̃ =
1

N

N∑
k=1

t(x(k))

The maximum-likelihood parameters may then

be determined by moment-matching η(θ) = η̃.

∗Csiszár, 75; Amari, 01.
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Graphical Models∗

Consider an undirected graph G = (V, E) with

V denoting the set of vertices of the graph and

E denoted the set of edges. Let V index ele-

ments of x. Then, x is said to be Markov w.r.t

G if for each vertex i the state xi is condition-

ally independent of all non-neighbors given the

state of just the neighbors j ∈ V : 〈ij〉 ∈ E.

The Hammersley-Clifford theorem states that

x is Markov w.r.t. G if and only if pdf factors

according to G as

p(x) =
1

Z(ψ)

∏
c∈C

ψc(xc)

where potentials are positive compatibility func-

tions and Z(ψ) is just a normalization con-

stant.

Markov structure of random process x allows

for compact specification of p(x) as graphical

models.
∗Lauritzen, 96; Jordan, 99.
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Exponential Family Graphical Models

Restrict statistics t(x) to consist solely of “lo-

cal” statistics on cliques of vertices tc(xc) then

the exponential family pdf given earlier factors

as above with potential functions

ψc(xc) = exp{θc · tc(xc)}
and normalization constant

Z(ψ) = exp{ϕ(θ)}
and is thus Markov w.r.t. G.

Includes all G-Markov processes which may be

parameterized s.t. log-potentials vary linearly

in the parameters.
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Gaussian Processes

Consider Gaussian process x ∼ N (µ,Σ) with

mean vector µ = E{x} and covariance matrix

Σ = E{xx′} − µµ′.

Information Filter Form. Say that x ∼ N −1(h, J)

if

h = Σ−1µ

J = Σ−1

s.t. density function is parameterized as

p(x) = exp{−1

2
x′Jx+ h′x − ϕ(h, J)}

where

ϕ(h, J) =
1

2
{h′J−1h − log |J | + n log 2π}.

This is an exponential family model with

θ = (h,−J/2)
t(x) = (x, xx′)
η = (µ,Σ + µµ′)

ϕ(θ) = ϕ(h, J)
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Gaussian Hammersley-Clifford

Suppose x ∼ N −1(h, J) is G-Markov.

The partial correlation coefficients∗

ρ(xi, xj|xcij) =
cov(xi, xj|xcij)√

cov(xi|xcij)cov(xj|xcij)
related to conditional mutual information

I(xi; xj|xcij) = −1

2
log(1 − ρ2(xi, xj|xcij))

readily evaluated as

ρ(xi, xj|xcij) = − Jij√
JiiJjj

G-Markov property satisfied if and only if PCC

and MI are zero for non-edges s.t. J has same

sparsity structure as G = (V, E).

Jij �= 0 ⇔ 〈ij〉 ∈ E
Information filter form (h, J) provides compact

graphical model with J sparse.

∗Lauritzen, 96.
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Gauss-Markov Process Exponential
Description

• Statistics of x on G = (V, E)

tγ(x) =



(xi, x

2
i ), γ = i ∈ V

xixj, γ = 〈ij〉 ∈ E

• Parameters θ ⇔ (h, J)

θγ =



(hi,−Jii/2), γ = i ∈ V
−Jij, γ = 〈ij〉 ∈ E

• Moments (µ,Σ) ⇒ η

ηγ =



(µi,Σii + µ2

i ), γ = i ∈ V
Σij + µiµj, γ = 〈ij〉 ∈ E

• “Brute force” inference of η(θ) performs (h, J) ⇒
(µ,Σ) by

µ = J−1h

Σ = J−1

so that θ ⇒ (h, J) ⇒ (µ,Σ) ⇒ η. Note
that (µ,Σ) not fully specified by η such that
moment-matching is nontrivial.
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Iterative Methods for M-Projection

Pose moment-matching as “m-projection” KL-

projection to exponential family F .

(P) minimize D(η∗||θ)
s.t. θ ∈ Θ

where η∗ ∈ η(Θ), D(η∗||θ) is KL-divergence

between (unknown) density f∗ ∈ F with mo-

ments η∗ and f(·; θ). KL-divergence may be

expressed as

D(η∗||θ) = ϕ∗(η∗) + ϕ(θ) − η∗ · θ
where the cumulant function ϕ(θ) and its con-

vex conjugate ϕ∗(η) = supθ{ϕ(θ)−θ ·η} (neg-

ative entropy) are strictly∗ convex functions

such that D(η∗||θ) is convex in either argu-

ment. Admissable parameter set Θ is con-

vex. Convex programming problem, equivalent

to minimizing g(θ) = ϕ(θ) − η∗ · θ. Related

to “barrier” method of semi-definite program-

ming problem for Gaussian family.
∗under regularity and minimality assumptions

11



Gradient and Hessian of KL-divergence.

Gradient of the cumulant function generates

the moments.

∇θϕ(θ) = η(θ)

Hessian of the cumulant function generates the

Fisher information matrix defined as the co-

variance of the sufficient statistics.

∇2
θϕ(θ) = G(θ)

= covθ(t(x))

= Eθ{t(x)t(x)′} − ηη′

Consequently, the gradient of KL is just differ-

ence in moments

∇θD(η∗||θ) = η(θ) − η∗

while the Hessian is the Fisher information

∇2
θD(η∗||θ) = G(θ)

Evaluate the gradient using “brute force” in-

ference described earlier.
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Evaluation of Fisher Information

For zero-mean Gaussian x̃ ≡ x − µ 3rd order
moments are zero

E{x̃ix̃jx̃k} = 0

while the 4th order moments are given by 2nd
order moments

E{x̃ix̃jx̃kx̃l} = ΣijΣkl + ΣikΣjl + ΣilΣjk

Consequently, we arrive at the following for-
mulas for the elements of G(θ).

Gi;j ≡ cov(xi; xj)

= Σij
Gij;k ≡ cov(xixj; xk)

= Σikµj + Σjkµi
Gij;kl ≡ cov(xixj; xkxl)

= ΣikΣjl + ΣilΣjk + Σikµjµl
+Σilµjµk + Σjkµiµl + Σjlµiµk

Evaluate sparse subset, e.g. G〈ij〉;k,Gii;k.

Also requires “inference” computation

θ ⇒ (h, J) ⇒ (µ,Σ)
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Optimization Techniques

We perform minimization of ϕ(θ) − η∗ · θ em-

ploying earlier gradient g(θ) and Hessian G(θ)

evaluators and the following standard∗ meth-

ods. All methods are initialized by m-projection

of η∗ to “fully factorized” (disconnected) fam-

ily.

θ(0)γ =



(µi/Σii, 1/Σii), γ = i ∈ V
0, γ = 〈ij〉 ∈ E

Gradient Descent. line-minimization implemented by
seeking zero of gradient along search direction (exploit-
ing strict convexity). This is m-projection to e-geodesic.

Conjugate Gradients. uses “non-jamming” direction up-
date and performs conjugacy test for early “restarts”
with threshold 0.05.

Preconditioned Conjugate Gradients. as above with pre-
conditioning matrix M chosen as either the inverse di-
agonal M = Diag(G(θ))−1 or as “full” inverse M =
G(θ)−1.

Newton’s Method. without line-minimization.

∗Bertsekas, 95.
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Application to ML Estimation

Experiments examine performance of these meth-

ods for ML estimation of parameters of Gauss-

Markov process from observed sample paths.

1. Construct “truth” model (G, θtrue).

2. Generate sample-paths x(1), . . . , x(N) ∼ p(x)

by Monte-Carlo simulation.

3. Sample-average statistics η̃ = 1
N

∑
k t(x

(k)).

4. Given (G, η̃), iteratively solve η(θ) = η̃.

Then, solution θ∗ is ML-estimate of θtrue.

We generate truth models for testing with a

variety of graphical structures (k-th order chains

and loops, 2d nearest-neighbor grids, and ran-

dom graphs) and generate random model (h, J).
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M-Projections for Structure Estimation

Here we consider the case where the Markov
structure G is unknown and we wish to provide
a compact yet faithful model for the data by
also estimating G.

Employ either AIC∗ or BIC† to resolve trade-
off between fitting the data and minimizing the
complexity of the model KG = 2 ∗ |VG| + |EG|.

minimize D(η̃∗F||θG) + δKG
w.r.t (G, θG)

where δ is specified threshold and F denotes
the “full” graph so that η̃∗F = (µ̃, Σ̃). For a
trial G (having edges removed) the best θG is
given by m-projection θ∗G solving ηG(θG) = η̃∗G
maintaining a subset of moment constraints.

Pythagorean theorem‡ If G1 ⊂ G2 ⊂ F then
KL-divergence decomposes as

D(θF||θG1) = D(θF||θ∗G2) +D(θ∗G2||θG1)

∗Akaike, 74.
†Schwarz, 78.
‡Amari, 01.
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Greedy Algorithm

Pythagorean theorem suggests successive pro-

jections to embedded graphs having 1 less edge

until KL-divergence exceeds δ. Avoids combi-

natorial search over G but not necessarily op-

timal.

May greatly reduce search over embedded graphs

by employing lower-bound

I〈ij〉 ≡ I(xi;xj|xcij) ≤ D(θG||θ∗G\〈ij〉)
to eliminate strong interactions from consid-

eration for projection. Lower-bound is easily

calculated as,

I〈ij〉 = −1

2
log


1 − J2

ij

JiiJjj
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Outline. Starting with (F , η̃), performs suc-

cessive m-projections to lower-order embedded

graph having one less edge. Select edge to

prune as follows:

1. Identify candidate edges with I〈ij〉 < δ.

2. For lowest I〈ij〉 candidate, project to G \
〈ij〉.

3. If improvement, update (G, θ∗G) and elim-

inate any candidates worst then observed

KL-divergence.

4. While untried candidates remain, goto (1).

When all candidates have been checked or elim-

inated, the best candidate is accepted if KL-

divergence less than δ. Otherwise, terminates

with current estimate.
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AIC Estimate, N=10000 BIC Estimate, N=10000
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Conclusions

• Moment-matching/M-Projection is well-posed

convex problem.

• Standard optimization techniques work quite

well and are robust.

• Outperforms standard Iterative Proportional

Fitting (coordinate descent) approach.

• Newton’s method most efficient for small

graphs.

• Conjugate Gradients and Diagonal PCG more

appropriate for larger problems provided ef-

ficient inference is available.

• Enables structure estimation with AIC/BIC.
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