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Problem Statement

Moment Matching. Concerns a regular expo-
nential family of models for a random variable x
having exponential parameters 68, minimal set
of sufficient statistics t(x) and base measure
q(x) > 0 with pdf

f(x;0) = q(x) exp{6 - t(x) — ¢(0)}

A dual parameterization of this family is given
by the moment coordinates

n = Eg{t(x)}
which are in one-to-one correspondence with
exponential coordinates.

The moment-matching problem is to to re-
cover 0 given 7.

Solve n(0) = n*.



The Exponential Family*

Specified by a base measure g(x) > 0 and a set
of sufficient statistics t(x) both defined over
some specified state-space X. We take X =
R™ so that model is specified by pdf of the
form

f(x;0) = q(x) exp{6 - t(x) — ¢(0)}
where the cumulant function ¢(0) is the nor-
malization constant

¢(0) = log | g(x) exp{6 - t(x) }dw

Only consider admissable parameters © s.t.
pdf is normalizable ¢(0) < oo. The family
is regular if ® has non-empty interior. The
statistics are minimal if the t(x) are linearly-
independent. Then, dual parameterization pro-
vided by moment coordinates nn = Eg{t(x)}
over the set of achievable moments n(®).

*Efron, 78; Barndorff-Nielsen, 1978.



e Maximum Entropy Principle.* The probabil-
ity density function p(x) which has maximum
entropy

hlp] = — [ p(x) log p(x)dx
subject to moment constraints

[ p(z)t(z)dx = n*
is an exponential family family with g(x) = 1
and statistics t(x) where 8* is determined by
condition n(0*) = n*.

e Minimum Relative-Entropy Princip/e.T Given

a reference model q(x), the density p(x) so as

to minimize the Kullback-Leibler divergencei
p(x)

D(pllq) = |/ p(z) log~"dx
q(x)

again subject to moment constraints Ep{t(x)} =
n* is an exponential family model with base
measure q(x) and statistics t(x) where 6* is
determined by n(68*) = n*.

*Jaynes, 58; and Good,63.
TKullback and Leibler, 51.

taka relative or cross entropy as is invariant form of
entropy.



Relation to Maximum Likelihood (ML)

Latter “KL-projection”* arises in ML param-
eter estimation. Given (1), ..., z(V) ~ p(x),
the member of a given exponential family which
maximizes the joint log-likelihood of the data

A N
Opr;1 = arg max kZ log f(a:(k); 0)
=1

is determined by KL-projection as it minimizes
D(pl||f(-;0)) where p(x) is the empirical distri-
bution

N
=(p) — _ (k)
p(x) k21 O(x — x\™)

having the same moments as the data

1 N
E~tX - n = — Z tﬂj(k)
pt(x) =1 N k=1 ()
The maximum-likelihood parameters may then

be determined by moment-matching n(0) = 7.

*Csiszar, 75; Amari, O1.



Graphical Models*

Consider an undirected graph G = (V, ) with
VY denoting the set of vertices of the graph and
€ denoted the set of edges. Let V index ele-
ments of x. Then, x is said to be Markov w.r.t
G if for each vertex 7 the state x; is condition-
ally independent of all non-neighbors given the
state of just the neighbors 53 € V : (ij) € £.

The Hammersley-Clifford theorem states that
x is Markov w.r.t. G if and only if pdf factors
according to G as

1
p(x) = mcgc Ye(Tc)

where potentials are positive compatibility func-
tions and Z(v) is just a normalization con-
stant.

Markov structure of random process x allows
for compact specification of p(x) as graphical
models.

*Lauritzen, 96; Jordan, 99.



Exponential Family Graphical Models

Restrict statistics t(x) to consist solely of “lo-
cal” statistics on cliques of vertices t.(x¢) then
the exponential family pdf given earlier factors
as above with potential functions

wc(wc) — eXP{OC ) tC(mC)}

and normalization constant

Z(¢) = exp{p(0)}

and is thus Markov w.r.t. G.

Includes all G-Markov processes which may be
parameterized s.t. log-potentials vary linearly
in the parameters.



Gaussian Processes

Consider Gaussian process x ~ N (u,X) with
mean vector p = E{x} and covariance matrix
Y = E{xx'} — pp'.

Information Filter Form. Say that x ~ N ~1(h, J)
if

h = X1y

J = x»1
S.t. density function is parameterized as

1
p(z) = exp{—zw’Jw + h'x — p(h, J)}
where
1
p(h,J) = 2{h’J_lh — log |J| + nlog27}.

This is an exponential family model with

0 = (h,—J/2)

t(x) = (x,zx))
n = (u, 2+ pp')
p(0) = o(h,J)



Gaussian Hammersley-Clifford
Suppose x ~ N ~1(h, J) is G-Markov.

The partial correlation coefficients™

cov(x;, Xj|x7;

C
Xiy X7 |X5:) =
plxi, ;13 ¢cov(xz|x Jcov (x;(x7;

related to conditional mutual information

I(x;;x 3|XC = _ilog(l_p (x4, x le )
readily evaluated as

C —_
P(XuXJ'ng) m
G-Markov property satisfied if and only if PCC
and MI are zero for non-edges s.t. J has same
sparsity structure as G = (V, £).

Jij;é()(i)(ij)eg

Information filter form (h, J) provides compact
graphical model with J sparse.

*Lauritzen, 96.



Gauss-Markov Process Exponential
Description

e Statistics of x on G = (V, €)

e Parameters 0 < (h,J)

0. — (hiy —J33/2), y=1€V
7 _Jigv v={(ij) €E

e Moments (u,¥) = n

(“zazzz_'_l/’ )7 y=1€V

7”:{Em+ump v =(ij) € E

e “Brute force” inference of (@) performs (h,J) =
(Ma Z) by

L J1h
> = g1
so that 8 = (h,J) = (p#,¥) = m. Note

that (u,X) not fully specified by n such that
moment-matching is nontrivial.
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Iterative Methods for M-Projection

Pose moment-matching as “m-projection” KL-
projection to exponential family F.

(P) minimize D(n*||0)
s.t. 0coO

where n* € n(®), D(n*||0) is KL-divergence
between (unknown) density f* € F with mo-
ments n* and f(:;0). KL-divergence may be
expressed as

D(n*||0) = ¢*(n") + ¢(8) —n* - 0
where the cumulant function ¢(0) and its con-
vex conjugate ¢*(n) = supg{p(0) —0-1n} (neg-
ative entropy) are strictly* convex functions
such that D(n*||@) is convex in either argu-
ment. Admissable parameter set ® is con-
vex. Convex programming problem, equivalent
to minimizing g(0) = (@) — n* - 6. Related
to “barrier” method of semi-definite program-
ming problem for Gaussian family.

*under regularity and minimality assumptions
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Gradient and Hessian of KL-divergence.

Gradient of the cumulant function generates
the moments.

Vop(0) = n(0)
Hessian of the cumulant function generates the

Fisher information matrix defined as the co-
variance of the sufficient statistics.

Vie(6) = G(6)
= covp(t(x))
= Ep{t(x)t(x)'} — nn’

Consequently, the gradient of KL is just differ-
ence in moments

VoD(n*||0) = n(8) —n"
while the Hessian is the Fisher information
V3D (n*||0) = G(6)

Evaluate the gradient using “brute force” in-
ference described earlier.

12



Evaluation of Fisher Information

For zero-mean Gaussian x = x — u 3rd order
moments are zero

E{%;%;%} = 0

while the 4th order moments are given by 2nd
order moments

E{x;xjXpX} = 330 + i + Za Xk

Consequently, we arrive at the following for-
mulas for the elements of G(8).

G;; = cov(x;x; )
= >
Gij:k = COV(XZ-XJ-;Xk)
= Mphj + Bkl
Gijki = cov(XiXj;XgXy)

k21 + 21258 + 2k

+2 50k + Xy + Xk
Evaluate sparse subset, e.g. G<ij>;k,Gii;k,.
Also requires “inference” computation

0 = (h,J) = (pn, %)
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Optimization Techniques

We perform minimization of ¢(0) — n™ - 0 em-
ploying earlier gradient g(0) and Hessian G(0)
evaluators and the following standard® meth-
ods. All methods are initialized by m-projection
of n™ to “fully factorized” (disconnected) fam-

iy.

00 _ | (1i/%i431/%545), vy =1€V
v 0, vy=(ig) €E

Gradient Descent. line-minimization implemented by
seeking zero of gradient along search direction (exploit-
ing strict convexity). This is m-projection to e-geodesic.

Conjugate Gradients. uses “non-jamming’ direction up-
date and performs conjugacy test for early ‘“restarts”
with threshold 0.05.

Preconditioned Conjugate Gradients. as above with pre-
conditioning matrix M chosen as either the inverse di-
agonal M = Diag(G(0))™! or as “full” inverse M =
G(H)—l.

Newton’s Method. without line-minimization.

*Bertsekas, 95.
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Application to ML Estimation
Experiments examine performance of these meth-

ods for ML estimation of parameters of Gauss-
Markov process from observed sample paths.

1. Construct “truth” model (G, Otrue)-

2. Generate sample-paths z(1), ..., z(V) ~ p(z)
by Monte-Carlo simulation.

3. Sample-average statistics n = %zk t(x(k)).
4. Given (G, n), iteratively solve n(0) = n.

Then, solution 8* is ML-estimate of O¢rye.

We generate truth models for testing with a
variety of graphical structures (k-th order chains
and loops, 2d nearest-neighbor grids, and ran-
dom graphs) and generate random model (h, J).

15



M-Projections for Structure Estimation

Here we consider the case where the Markov
structure G is unknown and we wish to provide
a compact yet faithful model for the data by
also estimating G.

Employ either AIC* or BICT to resolve trade-
off between fitting the data and minimizing the
complexity of the model Kg = 2 x |Vg| + |Eg|.

minimize D(n%||0g) + 0Kg
w.r.t (G, Hg)

where ¢ is specified threshold and .z-' denotes
the “full” graph so that % = (@,X). For a
trial G (having edges removed) the best Og is
given by m-projection 8¢ solving ng(6g) = ng
maintaining a subset of moment constraints.

Pythagorean theorem* 1If G1 C G2 C F then
KL-divergence decomposes as

D(6£|6g1) = D(0x||0g3) + D(0g,||0g1)

*Akaike, 74.
fSchwarz, 78.
tAmari, O1.
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Greedy Algorithm

Pythagorean theorem suggests successive pro-
jections to embedded graphs having 1 less edge
until KL-divergence exceeds 6. Avoids combi-
natorial search over G but not necessarily op-
timal.

May greatly reduce search over embedded graphs
by employing lower-bound

Iijy = I(zis wjlef;) < D(0gll0g (55)
to eliminate strong interactions from consid-

eration for projection. Lower-bound is easily
calculated as,

2
i
Jiidjj

1
Lijy = —5 log

17



Outline. Starting with (F,n), performs suc-
cessive m-projections to lower-order embedded
graph having one less edge. Select edge to
prune as follows:

1. Identify candidate edges with I,y < 0.

2. For lowest I<,L~j> candidate, project to G\

(13)-

3. If improvement, update (9,95) and elim-
inate any candidates worst then observed
KL-divergence.

4. While untried candidates remain, goto (1).

When all candidates have been checked or elim-
inated, the best candidate is accepted if KL-
divergence less than 4. Otherwise, terminates

with current estimate.
18



AIC Estimate, N=10000 BIC Estimate, N=1000
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AIC Estimate, N=10000

BIC Estimate, N=10000

Error Measures
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Conclusions

Moment-matching/M-Projection is well-posed
convex problem.

Standard optimization techniques work quite
well and are robust.

Outperforms standard Iterative Proportional
Fitting (coordinate descent) approach.

Newton’'s method most efficient for small
graphs.

Conjugate Gradients and Diagonal PCG more
appropriate for larger problems provided ef-
ficient inference is available.

Enables structure estimation with AIC/BIC.
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