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Magnetic Resonance
• Nuclear magnetic resonance (NMR) effect: nuclei resonate 

due to applied magnetic field.  They emit radio frequency 
(RF) pulses at the resonant frequency.

• Larmour equation: resonant frequency proportional to the 
applied magnetic field strength

• Spatially varying field strength encodes spatial location in 
the frequency domain



MR Imaging
• The image generation is controlled by three intrinsic tissue 

properties and two user definable parameters.  For 
example, for fast-spin echo (FSE) pulse sequences, the MR 
signal is given by this equation:

• Target T1 and T2 through appropriate selection of TE and 
TR

TE: time echo (time we measure signal)

TR: time repeat (time between pulse sequences)

T1: spin-lattice relaxation (recovery of z-magnetization)

T2: spin-spin relaxation (loss of xy-magnetization)

ρ: proton density



Image Reconstruction
Received MR signal is converted from the frequency 
domain using inverse Fourier transform
Due to imperfections in acquisition process, the result 
of the IFFT will be complex.  Generally, the final 
reconstructed image is the absolute value of the 
complex image (to eliminate phase effects)
Noise in acquisition is Gaussian, so reconstruction 
results in Rician noise.  Rician noise is similar to 
Rayleigh at low SNR, Gaussian at high SNR



Bias Field
Typically transmit RF pulses with body coil due to good 
spatial homogeneity.  Receive with surface coil due to high 
local SNR (bird cage coils also sometimes used)
The signal observed at the receiver is then:

The severity of the bias field is determined by the spatial 
homogeneity of the surface coil reception profile

b(x) is the magnetic field induced by the receiving coil.

f(x) is the ideal MR signal



Previous Work
Earliest work in mid-80’s: Axel et al (1984) with 
homomorphic unsharp filtering, Axel et al (1987) with 
phantom correction
More modern approaches include Dawant et al 
(1993) with spline fitting, Haselgrove-Prammer 
(1986) with embedded coil markers
Various simultaneous bias correction and 
segmentation approaches such as Meyer et al (1995) 
and Wells et al (1996) using Expectation-
Maximization



Measurement Model
Brey and Narayana (1988) proposed capturing images 
from both the body coil and the surface coil.  One image is 
noisy, other has large bias field.
The measurement model is then:

IB is homogeneous but noisy.  IS has high SNR in the 
region of interest, but severe bias artifact



Example Data

Surface coil (left) and body coil (right) prostate images



Previous Work (2)
Brey-Narayana filter the two observation images to 
denoise them and divide the results to estimate the 
bias field:

Other body coil/surface coil approaches include Lai-
Fang (1998) who fit splines using both images, 
Pruessmann et al (2001) who fit local polynomials



ML Formulation
We model the noise as Gaussian and IID.  This is 
approximately true in high SNR regions.  Generally 
low SNR regions correspond to air regions which we 
do not care about
Stack the 2D or 3D images into vectors.  We can 
then write the log likelihood as (ignoring constant 
terms):



Regularization
Maximizing that function results in useless estimates:

We construct augmented energy function that 
encourages smoothness in b and piecewise 
smoothness in f:

Generally choose p < 2 to help preserve edges



Optimizing Energy Function
D and L in previous equation are high-pass linear 
operators.  Thus we penalize high frequency 
components
Difficult to minimize with respect to b and f 
simultaneously.  But given b, f is relatively easy to 
obtain, and vice versa.  So use coordinate descent to 
alternately optimize b and f
Also use multigrid to increase convergence speed.  
This entails finding low frequency components on a 
coarser grid and propagating the results to the finest 
grid



Solving for b
With f fixed, the energy is quadratic in terms of b.  
The quadratic matrix is positive definite which means 
that the energy function is convex
Setting the gradient to zero leads to a linear equation 
for the solution (F is a diagonal matrix formed from 
f):

We can solve by inverting or using a suboptimal
iterative scheme.  We use conjugate gradient with a 
tridiagonal preconditioner



Solution for f (γ=0)
With no regularization on f, we can minimize the 
function pointwise:

This equation can be interpreted as a noise-weighted 
convex combination between IB/k and IS/b.  
Essentially the same fusion equation found by 
Roemer et al (1990)



Half-Quadratic Optimization
To solve lp regularization problems, use half-
quadratic optimization (Geman-Reynolds 92).  Begin 
with an initial guess.  Form a quadratic 
approximation at that point:

Solve this problem.  Continue iterating in this way 
until convergence



Multiple Coils, Pulse Sequences
Common to use multiple surface coils to 
simultaneously receive the MR signal.  This allows for 
better spatial coverage.  Generally combine into a 
composite image using sum-of-squares.
We can generalize our energy functional to find the 
bias field estimate for each coil and one composite 
true image estimate.
When acquiring multiple pulse sequences, only need 
one body coil image.  Bias field largely unchanged 
(though some minor effects may crop up due to, 
e.g., magnetic susceptibility of the tissue).



MNI Example

Body coil image (left) and 
surface coil images (right)



MNI Results

Estimated image (left) and 
bias fields (right)



MNI Scaling

Performance of (a) SNR gain and (b) segmentation errors as a function of image 
acquisition SNR



Prostate Results

Estimated bias field (left) and true MR image (right), T2-weighted image



Applying correction to T1

T1 surface coil image (left), result from applying 
bias field estimate from T2 image (right)



Image Gradients

Original surface coil T1-weighted image (left), corrected image (right).  
Smaller gradients signify greater homogeneity



Heart Example

Body coil image (left) and 
surface coil images (right)



Heart Results

Estimated image (left) and 
bias fields (right)



Brain Example

Body coil image (left) and 
surface coil images (right), 
gradient recalled echo (GRE)



Brain Results

Estimated image (left) and 
bias fields (right)



Brain FLAIR Results

Estimated true image (left), 
surface coil images (right), 
FLAIR pulse sequence



Contributions
Non-parametric variational formulation of image 
fusion problem with statistical estimation flavor
Demonstrably superior results on synthetic examples
Simultaneous bias correction and denoising
Seamless handling of multiple surface coils and 
multiple pulse sequences
Efficient solver using coordinate descent, 
preconditioned CG, multigrid
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