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Problem Statement
The bias field is a systematic 
intensity inhomogeneity that 
corrupts magnetic resonance 
(MR) images.
Correcting for the bias field 
makes both human analysis 
(e.g., tumor detection, cartilage 
damage assessment) and 
computer analysis easier (e.g., 
segmentation, registration).
General assumptions:

The bias field is slowly varying in 
space.
The bias field is tissue independent.
Tissue intensities are piecewise 
constant.
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Magnetic Resonance
Nuclear magnetic resonance (NMR) effect

Spins of nuclei become aligned either with or against an applied magnetic 
field.  Nuclei precess around axis of rotation like a top.

Larmour equation for the frequency of precession

Resonant frequency proportional to the applied magnetic field strength.
γ is the magnetogyric ratio.  Value varies depending upon element.
For hydrogen, γ = 42.57 MHz/T.

Spatial Encoding
By varying the applied field strength in space, spatial location can be 
encoded in the frequency domain.



MR Imaging
A pulse sequence is applied to tip the net magnetization vector 
into the transverse plane.  The nuclei return to steady state with 
exponential decay while precessing at the Larmour frequency.
The image generation is controlled by three intrinsic tissue 
properties and two user definable parameters.

e.g., for fast-spin echo (FSE) pulse sequences, the MR signal is given by:

We can target ρ, T1, and T2 measurements through appropriate 
selection of TE and TR.

e.g., by selecting a small TE and a large TR, we can minimize the effect of 
T1.  This type of imaging is known as T2-weighted

TE: time echo (time we measure signal)
TR: time repeat (time between pulse sequences)
T1: spin-lattice relaxation (recovery of z-magnetization)
T2: spin-spin relaxation (loss of xy-magnetization)
ρ: proton density



Image Reconstruction
A common approach is to encode location using gradient fields 
and convert the received MR signal from the frequency domain 
using the inverse Fourier transform.

Due to imperfections in the acquisition process (e.g., non-linear gradients, 
spatially varying B0), the result of the IFFT will be complex.
Generally, the final reconstructed image is taken to be the absolute value of 
the complex image.
The noise in the acquisition process is thermal and Gaussian, so 
reconstruction results in Rician noise.  Rician noise is similar to Rayleigh at 
low SNR, Gaussian at high SNR.

Maximizing SNR is a major goal
Signal level tends to be fairly low.  Vast majority of atoms cancel each other 
out resulting in a small net magnetization.  Increasing B0 increases net 
magnetization strength.
Increase SNR by spatial averaging, time averaging, filtering, increasing 
signal reception, and increasing B0.



Bias Field
The body coil is a large coil usually wrapped around the main 
cavity

Typically transmit RF pulse sequence with body coil due to good spatial 
homogeneity.  Transmitted power density limited by FDA.

Surface coils are coils placed near the object of interest.
In order to increase signal level, increase the induced magnetic field 
strength through coil design.
Surface coils have good signal strength near the coil, and the strength 
rapidly diminishes with distance.  Thus we can get good SNR in the ROI.

The signal observed at the receiver is then:

The severity of the bias field is determined by the spatial 
homogeneity of the surface coil reception profile.

β(x) is the magnetic field induced by the receiving coil.
(x) is the ideal MR signal



Previous Work
Earliest work in mid-80’s: Haselgrove and Prammer (1986), 
Lufkin et al (1986) with homomorphic unsharp filtering, Axel et 
al (1987) with phantom correction.
Window/level adequate for human vision tasks, but not for 
computer-based processing.
More modern approaches include Dawant et al (1993) with 
spline fitting, Singh and NessAiver (1993) with embedded coil 
markers, Likar et al (2000) with entropy minimization.
Various simultaneous bias correction and segmentation 
approaches such as Meyer et al (1995) using adaptive clustering 
and Wells et al (1996) using Expectation-Maximization.
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Measurement Model
Brey and Narayana (1988) proposed capturing images from 
both the body coil and the surface coil. The measurement 
model is then:

IB is homogeneous but noisy.  IS has high SNR in the region of 
interest, but a potentially severe bias artifact.
Note that gain in SNR from using a surface coil does not come 
from reduction of noise, but from increased signal gain from the
bias field.



Example Data

Surface coil images (top) and body coil images (bottom)



Previous BC/SC Work
Brey-Narayana filter the two observation images to denoise
them and divide the results to estimate the bias field:

Lai and Fang (1998) take IS/IB and select a sparse set of reliable 
control points and fit splines to the bias field.
Pruessmann et al (2001) who fit local polynomials to the bias 
field.



ML Formulation
We model the noise as Gaussian and IID.

This is a good approximation in medium-to-high SNR regions except the
Rician noise adds a bias of 2-5%.
Generally low SNR regions correspond to air regions which we do not care 
about

We stack the 2D or 3D images into vectors.
We now want to estimate the vector quantities f and b.
The discrete measurement model is:

We can then write the log likelihood as (ignoring constant 
terms):



Regularization
Finding the ML estimate results in trivial estimates:

We construct an augmented energy function that encourages 
smoothness in b and piecewise smoothness in f:

We generally choose p <= 1 to help preserve edges
D and L are matrices chosen to implement differential operators
λB, λS, α, and γ are all positive constants
The λ’s can be seen to be related to the inverse noise variances of the 
observed images.
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Optimizing Energy Function
Overall problem is non-convex.
Use coordinate descent to alternately optimize b and f

Minimizing the energy simultaneously with respect to b and f is difficult.  
But given b, f is relatively easy to obtain, and vice versa.
A stationary point found using coordinate descent is also a stationary point 
of the overall energy functional.

b-step
Minimize

F is a diagonal matrix with f along the diagonal

f-step
Minimize

B is a diagonal matrix with b along the diagonal



Solving for b
With f fixed, the energy is quadratic in terms of b.

The quadratic matrix is positive definite which means that the energy 
function is strictly convex.
Hence there is only one local minimum, which is also the global minimum, 
for a given f.

Setting the gradient to zero leads to a linear equation for the 
solution:

We can solve by direct matrix inversion, but b is often very 
large (e.g., 65,536 elements for a 256x256 image).
We use conjugate gradient to find a sub-optimal iterative 
solution.



Conjugate Gradient
Conjugate gradient exhibits a superlinear convergence rate for 
convex quadratic optimization problems.

Want to minimize

Updates of the form:

For quadratic problems, we can find the exact line minimization in closed 
form:



Preconditioning
Convergence rate of conjugate gradient depends on the 
condition number of the matrix.
Do change of variables
Then the energy functional becomes

In order to be effective, S-1QS-1 needs to have a smaller condition number 
than Q, and S-1 must be easy to apply.
Can write updates directly in terms of x.

We find that using a tridiagonal preconditioner using the three 
main diagonals of Q increases convergence speed by 2x-3x, 
while increasing computation time by 10-15% per iteration.



Solution for f (γ=0)
With no regularization on f, we can minimize the function pointwise:

This equation can be interpreted as a noise-weighted convex 
combination between yB and yS/b.

When b[n] is large, we mainly use the surface coil for the reconstruction
When b[n] is small, we mainly use the body coil

Increases SNR by 0-3 dB over best image at each point.
In regions far from the surface coil, there will be a significant advantage to 
incorporating the body coil measurements.

This is essentially the same fusion equation found by Roemer et al 
(1990).  This is the canonical method of combining multiple surface coil 
images when the coil reception profiles are known.



Half-Quadratic Optimization
To solve lp regularization problems, we use half-quadratic 
optimization (Geman-Reynolds 1992).

Fixed-point iterative method where we form a succession of quadratic 
approximations f(0), f(1), …:

Choose W(i) so that the relationship holds for f(i-1):

This makes each f-step quadratic, so we just need to solve this 
linear equation at each half-quadratic iteration:

This is again a positive definite system, so we can use PCG to solve.
Results in three sets of nested iterations.



Multiple Coils & Pulse Sequences
Many protocols use multiple surface coils to simultaneously 
receive the MR signal.  This allows for better spatial coverage.

Generally combine into a single composite image using sum-of-squares.

We can generalize our energy functional to find the bias field 
estimate for each coil and one composite true image estimate.
When acquiring multiple pulse sequences, we only need one 
body coil image.  The bias field is largely unchanged (though 
some minor effects may crop up due to, e.g., magnetic 
susceptibility of the tissue).
We can create a generalized energy functional that handles a 
combination of multiple surface coils and pulse sequences:

We can use coordinate descent again, but on each b- or f-step 
we need to compute an estimate for each b and each f.



3D Processing
Straightforward application of the exact same energy functional.

Slower than independent processing of slices.
Enables better coupling across slices than independent processing allows.

Common clinical practice to capture volumes with different slice
orientations (e.g., axial, sagittal).

Usually have higher in-plane resolution than inter-plane resolution.
Only need one body coil image to correct different orientation volumes 
because the bias field is slowly changing in space.  Simply find the bias field 
for the volume we have a body coil image for, and interpolate onto other 
sampling grids.



Optimizing Performance
Multigrid

Multiresolution technique that can help avoid local minima, and increase 
convergence speed.
Simple coarse-to-fine implementation.
This allows us to find the low frequency components on coarser grids and 
propagate the results to the original scale.

Many other parameters to choose (e.g., tolerances for each f-
step and b-step).  Need to optimize individually for each 
particular application.



Overview of Algorithm
I. Downsample to finest desired grid.
II. Solve problem at scale s (using input from scale 

s+1)
A. b-step: minimize energy with respect to b

1. PCG iterations
B. f-step: minimize energy with respect to f

1. Half-quadratic iterations
a. PCG iterations

C. Repeat A and B until convergence.
III. Repeat II until we reach scale 0.
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MNI Example

(left to right) True 
image (top), B-N 
estimate (bottom), 
body coil image 
(top), our f estimate 
(bottom), surface 
coil images, and bias 
field estimates.



MNI Scaling

Performance of (a) SNR gain and (b) segmentation errors as a function of image 
acquisition SNR



Prostate Results

Top: T2W surface coil image, T2W body coil image, T1W surface coil image.
Bottom: Estimated bias field, true T2W image estimate, B-N T2W, true T1W image estimate.



Coronal and Sagittal Correction

Sagittal (top), coronal (bottom).  Bias field (left), surface coil image (middle), true image (right).



Heart Example

(left to right) Body coil image, B-N 
estimate, our estimate of f, surface coil 
images, and bias field estimates.



Heart Movie



Brain Example

Body coil image (left) and 
surface coil images (right), 
gradient recalled echo (GRE)



Brain Results

Body coil image (left), 
estimated image (middle) 
and bias fields (right)



Brain FLAIR Results

Estimated true image (left), 
surface coil images (right), 
FLAIR pulse sequence



Contributions
Non-parametric variational formulation of image 
fusion problem with statistical estimation flavor.
Demonstrably superior results on synthetic examples.
Simultaneous bias correction and denoising.
Seamless handling of multiple surface coils and 
multiple pulse sequences.
Efficient solver using coordinate descent, 
preconditioned CG, multigrid.



Convergence
In many ways, our coordinate descent approach can be viewed 
as being similar to Expectation-Maximization.

Can be viewed as an EM implementation if we believe that the 
regularization terms really are our statistical priors.
Have the same convergence properties as EM: every f-step and b-
step is guaranteed to decrease the energy.

In general, we can only hope to find a local minimum.
In practice, we have found very robust convergence properties, 
even without using multigrid.
Initialization with random noise will usually find a reasonable result, 
and the results seem to be the same local minimum.



Initialization/Parameter Choice
Choose initial b based on method of Brey-Narayana.
Then choose initial f by doing a f-step without regularization.

Choose λ’s based on measured noise variances in images.
Choose α’s and γ’s based on empirical visual observations.
Across scales, use simple multiplicative scaling for parameters:



PCG Update Equations
Update equations directly in terms of x
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