
Conclusion
§Results are visually appealing, but not dramatically superior to older methods such as filtering and dividing.

§Good convergence properties.

§No problems with converging to poor local minima, even when initializing with random noise.

§Guaranteed convergence to saddle point or local minimum, and every b- and f-step decreases the energy.

§Contributions
nNon-parametric variational formulation of image fusion problem with statistical estimation flavor.

nDemonstrably superior results on synthetic examples.

nSimultaneous bias correction and denoising.

nSeamless handling of multiple surface coils and multiple pulse sequences.

nEfficient solver using coordinate descent, preconditioned CG, multigrid.
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Abstract
We propose a novel bias correction method for magnetic resonance (MR) imaging that uses complementary body coil and surface coil images. The former are spatially 
homogeneous but have low signal intensity; the latter provide excellent signal response but have large bias fields. We present a variational framework where we 
optimize an energy functional to estimate the bias field and the underlying image using both observed images. The energy functional contains smoothness-enforcing 
regularization for both the image and the bias field. We present extensions of our basic framework to a variety of imaging protocols. We solve the optimization problem 
using a computationally efficient numerical algorithm based on coordinate descent, preconditioned conjugate gradient, half-quadratic regularization, and multigrid
techniques. We show qualitative and quantitative results demonstrating the effectiveness of the proposed method in producing debiased and denoised MR images.

Results

Previous Work
nMost previous methods make the following general assumptions:

nThe bias field is slowly varying in space.

nThe bias field is tissue independent.

nTissue intensities are piecewise constant.

nEarliest work in mid-80’s: Haselgrove and Prammer (1986), Lufkin et al (1986) 
with homomorphic unsharp filtering, Axel et al (1987) with phantom correction.

nWindow/level adequate for human vision tasks, but not for computer-based 
processing.

nMore modern approaches include Dawant et al (1993) with spline fitting, Singh 
and NessAiver (1993) with embedded coil markers, Likar et al (2000) with 
entropy minimization.

nVarious simultaneous bias correction and segmentation approaches such as 
Meyer et al (1995) using adaptive clustering and Wells et al (1996) using 
Expectation-Maximization.

Problem Statement
nThe bias field is a systematic intensity inhomogeneity that corrupts magnetic 
resonance (MR) images.

nFundamental trade-off between SNR and spatially-homogeneous signal response.
nUncorrupted image ϕ(x) would depend solely on the underlying tissue (e.g., T1, 
T2, ρ) and the imaging parameters (e.g., TE, TR).
nThe resulting MR signal at the receiver is then the true MR signal ϕ(x) multiplied 
by the reception profile of the receiving coil β(x) plus additive thermal noise:

n Receiving with a body coil results in low signal-to-noise ratio (SNR) but good 
spatial homogeneity.
nSurface coils have a signal response that rapidly diminishes with distance.  By 
placing the receiving coil close to the object being imaged, this variable response 
allows better visualization of the region of interest (ROI) but also causes the bias 
field. 

nRemoving the bias field makes both human and computer analysis easier.
nSeparating the bias field from the true underlying image is an
underconstrained and ill-posed problem—there are half the number of 
observations as there are free variables.

Imaging Model
nBrey and Narayana (1988) proposed capturing images from both the body coil 
and the surface coil. The measurement model is then:

nIB is homogeneous but noisy.  IS has high SNR in the region of interest, but a 
potentially severe bias artifact.

nThe noise in the acquisition process is thermal which results in complex 
independent and identically-distributed (IID) Gaussian noise.

nWorking with the absolute value images results in Rician noise.

nThe gain in SNR from using a surface coil does not come from reduction of noise, 
but from increased signal gain from the bias field. Thus the more severe the bias 
field, the better the local signal strength.

nOther similar approaches:
nBrey-Narayana filter IB and IS and divide the results to estimate the bias field.

nLai and Fang (1998) fit splines to the bias field.

nPruessmann et al (2001) fit local polynomials to the bias field.

Variational Formulation
nWe model the noise as Gaussian and IID. This is a good approximation in medium-to-high SNR regions.

nWe stack the 2D or 3D images into vectors.  We now want to estimate the vector quantities f and b.  The discrete 
measurement model is:

nWe can then write the log likelihood as (ignoring constant terms):

nFinding the ML estimate results in trivial estimates, so we construct an augmented energy function that encourages 
smoothness in b and piecewise smoothness in f:

nD and L are matrices chosen to implement differential operators.  Generally choose p <= 1 to help preserve edges.

nλB, λS, α, and γ are all positive constants, and the λ’s are related to the inverse noise variances of the observed images.

nEasy to generalize formulation for multiple surface coils/multiple imaging parameters.
nOne error term for each observed image, one smoothing term for each coil, and one regularizing term for each true image.

Minimizing the Energy Function
nThe overall problem is non-convex, so we use coordinate descent to alternately optimize b and f.

nMinimizing the energy simultaneously with respect to b and f is difficult.  But given b, f is relatively easy to obtain, and vice versa.

nA stationary point found using coordinate descent is also a stationary point of the overall energy functional.

f-step
nWith no regularization on f, we can minimize the function pointwise:

nThis equation can be interpreted as a noise-weighted convex combination between yB and yS./b.

nWhen b[n] is large, we mainly use the surface coil for the reconstruction.  When b[n] is small, we mainly use the body coil.

nIn regions far from the surface coil, there will be a significant advantage to incorporating the body coil measurements.

nThis is essentially the same fusion equation found by Roemer et al (1990).

§For the general minimization problem with lp regularization, we use half-quadratic optimization (Geman-Reynolds 1992).
nFixed-point iterative method where we form a succession of quadratic approximations to the lp norm at f(0), f(1), …:

nChoose the diagonal matrix W(i) so that the relationship holds for f(i-1):

nThis makes each f-step quadratic, so we just need to solve this linear equation at each half-quadratic iteration:

nThis is again a positive definite system, so we can use PCG to solve.  This results in three sets of nested iterations.

nWe use multigrid, a multiresolution technique that can help avoid local minima and increase convergence speed.
nSimple coarse-to-fine implementation finds the low frequency components on coarser grids and propagates the results to the 
original scale.

nFor the generalized case (multiple surface coils/multiple pulse sequences), we can use coordinate descent again, but on 
each b-step we need to compute an estimate for every b, and similarly on each f-step.

n3D implementation is a straightforward application of the exact same energy functional (structure of D and L changes).
nSlower than independent processing of slices, but enables better coupling across slices than independent processing allows.

nCan also interpolate one bias field estimate to correct volumes obtained with other slice orientations (e.g., axial to correct sagittal).

b-step
nWith f fixed, the energy is quadratic and strictly convex in 
terms of b. 

nSetting the gradient to zero leads to a linear equation for the 
solution:

nDirect matrix inversion possible, but slow.

nWe use preconditioned conjugate gradient to find a sub-
optimal iterative solution.

nConjugate gradient exhibits a superlinear convergence rate 
for convex quadratic optimization problems.

nWe find that using a tridiagonal preconditioner constructed 
from the three main diagonals of the matrix increases 
convergence speed by 2x-3x, while increasing computation 
time by 10-15% per iteration.

Overview of algorithm
I. Downsample to finest desired grid and find estimates at 

that scale.

II. Solve problem at scale s (using input from scale s+1)
A. b-step: minimize

(F is a diagonal matrix with f along the diagonal)

1. PCG iterations

A. f-step: minimize

(B is a diagonal matrix with b along the diagonal)

1. Half-quadratic iterations

a. PCG iterations

A. Repeat A and B until convergence.

III. Repeat II until we reach scale 0 (the original scale).

MNI Brain Phantom Heart Data

Prostate Example

Fig. 1: (a) Ground truth. (b) Body coil image. (c) Surface coil images.  (d) Estimated 
true image (γ=0). (e-h) Estimated true image (γ=0.014). (i-l) Estimated bias fields.

Fig. 6: White box indicates overlap with axial volume.  Top row contains 
sagittal images, bottom row contains coronal images.  (a,d) Interpolated 
bias fields. (b,e) Surface coil images. (c,f) Corrected images.
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Fig. 2: (a) SNR gain from fusing images for various input noise levels. 
(b) Thresholding segmentation performance with varying SNR.

Fig. 3: (a) Body coil image. (b) True image estimate (γ=0).  (c) True image 
estimate (γ=1800). (d-g) Surface coil images. (h-k) Estimated bias fields.

Brain Example

Fig. 4: (a) Body coil GRE image. (b) Estimated true GRE image (γ=0). (c) 
Estimated true GRE image (γ=1000). (d) Estimated true FLAIR image. (e) Surface 
coil GRE images. (f) Surface coil FLAIR images. (g) Estimated bias fields.

Fig. 5: (a) Surface coil T2-weighted image. (b) Body coil T2-weighted image. 
(c) Surface coil T1-weighted image. (d) Estimated bias field. (e) Estimated 
intrinsic T2-weighted image. (f) Estimated true T1-weighted image.
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