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Basic Formulation

• We have two multiplicative fields with additive 
noise:

• We wish to estimate both f1 and f2 using statistical 
knowledge of the noise as well as prior 
information on the fields
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MR Problem Statement
• The bias field is a systematic intensity 

inhomogeneity that corrupts magnetic 
resonance (MR) images.

• Correcting for the bias field makes both 
human analysis (e.g., tumor detection, 
cartilage damage assessment) and 
computer analysis easier (e.g., 
segmentation, registration).

• General assumptions:
– The bias field is slowly varying in 

space.
– The bias field is tissue independent.
– Tissue intensities are piecewise 

constant.
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Illumination and Reflectance
• We want to try to separate the 

image into illumination and 
reflectance components as best 
as possible

• Reflectance map will contain 
albedo and texture

• Multiplicative model breaks 
down with non-Lambertian 
reflectance models (e.g., when 
there are specularities)

• Both maps will have edges
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MR Imaging
• We would ideally want an image that is solely dependent on tissue-

dependent parameters and user controlled parameters, e.g.,

• We can target ρ, T1, and T2 measurements through appropriate 
selection of TE and TR.

• Received MR data is in k-space (frequency domain) with Gaussian 
noise.  Use IFFT and take absolute value to obtain reconstructed
image.  This results in Rician noise.

• Maximizing SNR is a major goal.  We can increase SNR by spatial 
averaging, time averaging, filtering, increasing signal reception, and 
increasing the strength of the applied magnetic field.
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Bias Field
• The body coil is a large coil usually wrapped around the main cavity

– Typically transmit RF pulse sequence with body coil due to good spatial 
homogeneity.  Transmitted power density limited by FDA.

• Surface coils are coils placed near the object of interest.
– In order to increase signal level, increase the induced magnetic field 

strength through coil design.
– Surface coils have good signal strength near the coil, and the strength 

rapidly diminishes with distance.  Thus we can get good SNR in the ROI.
• The signal observed at the receiver is then:

• The severity of the bias field is determined by the spatial homogeneity 
of the surface coil reception profile.

β(x) is the magnetic field induced by the receiving coil.
(x) is the ideal MR signal
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Measurement Model
• Brey and Narayana (1988) proposed capturing images from both the 

body coil and the surface coil. The measurement model is then:

• IB is homogeneous but noisy.  IS has high SNR in the region of interest, 
but a potentially severe bias artifact.

• Note that gain in SNR from using a surface coil does not come from 
reduction of noise, but from increased signal gain from the bias field.
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Example Data

Surface coil images (top) and body coil images (bottom)
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Previous BC/SC Work
• Brey-Narayana filter the two observation images to denoise them and 

divide the results to estimate the bias field:

• Lai and Fang (1998) take IS/IB and select a sparse set of reliable control 
points and fit splines to the bias field.

• Pruessmann et al (2001) who fit local polynomials to the bias field.
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ML Formulation
• We model the noise as Gaussian and IID.

– This is a good approximation in medium-to-high SNR regions except the Rician
noise adds a bias of 2-5%.

– Generally low SNR regions correspond to air regions which we do not care about

• We stack the 2D or 3D images into vectors.
– We now want to estimate the vector quantities f and b.
– The discrete measurement model is:

• We can then write the log likelihood as (ignoring constant terms):
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Regularization
• Finding the ML estimate results in trivial estimates:

• We construct an augmented energy function that encourages 
smoothness in b and piecewise smoothness in f:

– We generally choose p <= 1 to help preserve edges
– D and L are matrices chosen to implement differential operators
� λB, λS, α, and γ are all positive constants
– The λ’s can be seen to be related to the inverse noise variances of the observed 

images.
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Optimizing Energy Function
• Overall problem is non-convex.
• Use coordinate descent to alternately optimize b and f

– Minimizing the energy simultaneously with respect to b and f is difficult.  
But given b, f is relatively easy to obtain, and vice versa.

– A stationary point found using coordinate descent is also a stationary point 
of the overall energy functional.

• b-step
– Minimize

F is a diagonal matrix with f along the diagonal

• f-step
– Minimize

B is a diagonal matrix with b along the diagonal
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Solving for b
• With f fixed, the energy is quadratic in terms of b.

– The quadratic matrix is positive definite which means that the energy 
function is strictly convex.

– Hence there is only one local minimum, which is also the global 
minimum, for a given f.

• Setting the gradient to zero leads to a linear equation for 
the solution:

• We can solve by direct matrix inversion, but b is often 
very large (e.g., 65,536 elements for a 256x256 image).

• We use preconditioned conjugate gradient to find a sub-
optimal iterative solution.
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Solution for f (γ=0)
• With no regularization on f, we can minimize the function pointwise:

• This equation can be interpreted as a noise-weighted convex combination 
between yB and yS/b.

– When b[n] is large, we mainly use the surface coil for the reconstruction
– When b[n] is small, we mainly use the body coil

• Increases SNR by 0-3 dB over best image at each point.
– In regions far from the surface coil, there will be a significant advantage to 

incorporating the body coil measurements.
• This is essentially the same fusion equation found by Roemer et al (1990).  

This is the canonical method of combining multiple surface coil images when 
the coil reception profiles are known.
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Half-Quadratic Optimization
• To solve lp regularization problems, we use half-quadratic optimization 

(Geman-Reynolds 1992).
– Fixed-point iterative method where we form a succession of quadratic 

approximations at f(0), f(1), …:

– Choose W(i) so that the relationship holds for f(i-1):

• This makes each f-step quadratic, so we just need to solve this linear 
equation at each half-quadratic iteration:

– This is again a positive definite system, so we can use PCG to solve.
– Results in three sets of nested iterations.
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Multiple Coils & Pulse Sequences
• Many protocols use multiple surface coils to simultaneously receive 

the MR signal.  This allows for better spatial coverage.  
– Generally combine into a single composite image using sum-of-squares.

• We can generalize our energy functional to find the bias field estimate 
for each coil and one composite true image estimate.

• When acquiring multiple pulse sequences, we only need one body coil 
image.  The bias field is largely unchanged (though some minor effects 
may crop up due to, e.g., magnetic susceptibility of the tissue).

• We can use coordinate descent again, but on each b- or f-step we need 
to compute an estimate for each b and each f.
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3D Processing
• Straightforward application of the exact same energy functional.

– Slower than independent processing of slices.
– Enables better coupling across slices than independent processing allows.

• Common clinical practice to capture volumes with different slice
orientations (e.g., axial, sagittal).

– Usually have higher in-plane resolution than inter-plane resolution.
– Only need one body coil image to correct different orientation volumes because the 

bias field is slowly changing in space.  Simply find the bias field for the volume we 
have a body coil image for, and interpolate onto other sampling grids.
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Optimizing Performance
• Multigrid

– Multiresolution technique that can help avoid local minima, and increase 
convergence speed.

– Simple coarse-to-fine implementation.
– This allows us to find the low frequency components on coarser grids and 

propagate the results to the original scale.

• This results in convergence of about 30 sec per slice
• Many other parameters to choose (e.g., tolerances for each f-step and 

b-step).  Need to optimize individually for each particular application.
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MNI Example

(left to right) True 
image (top), B-N 
estimate (bottom), 
body coil image 
(top), our f estimate 
(bottom), surface 
coil images, and bias 
field estimates.
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MNI Scaling

Performance of (a) SNR gain and (b) segmentation errors as a function of image 
acquisition SNR
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Prostate Results

Top: T2W surface coil image, T2W body coil image, T1W surface coil image.
Bottom: Estimated bias field, true T2W image estimate, B-N T2W, true T1W image estimate.
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Coronal and Sagittal Correction

Sagittal (top), coronal (bottom).  Bias field (left), surface coil image (middle), true image (right).
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Heart Example

(left to right) Body coil image, B-N 
estimate, our estimate of f, surface coil 
images, and bias field estimates.
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Heart Movie



Stochastic Systems Group

Brain Example

Body coil image (left) and 
surface coil images (right), 
gradient recalled echo (GRE)
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Brain Results

Body coil image (left), 
estimated image (middle) 
and bias fields (right)
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Brain FLAIR Results

Estimated true image (left), 
surface coil images (right), 
FLAIR pulse sequence
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Natural Image Model
• We model a natural image as the product of 

a reflectance map and an illumination map:

• The noise is Poisson.
• Both r and l have edges.
• These are color images so we have to deal 

with each RGB component.



Stochastic Systems Group

Flash
• We will consider the case of having 

multiple illuminations of the same 
scene.

• The specific setup we will use is a 
picture taken with ambient 
illumination and a picture taken with 
flash illumination:
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Flash Correction
• A simple thing we can consider doing is analogous to what we did in 

the bias correction problem: fuse the two images together to take 
advantage of high SNR close to the flash, and the more homogeneous 
illumination in the ambient light.

• We can make the following relationships and use our previous 
formulation:

• Note: this is really the exact same thing we were doing before except 
we set the bias field of the body coil equal to 1.

• We can use the exact same energy functional as before, except now we 
also need to use lp regularization on the b-field as well (this is also 
imposing a Gaussian noise assumption on our images).
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Fusion Results

Clockwise (from upper right): Corrected 
with black and white map; color 

correction map; estimated ambient image
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Fusion Results (2)

Clockwise 
(from upper 
left): Flash 

image, 
corrected 

image, long 
exposure 

time image, 
ambient 
image
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Intrinsic Image Separation
• Simplifying assumption: illumination has constant hue.  Thus our

model becomes:

• Then with N pixels, we have 6N observations, 5N + 6 unknowns.
• This is a valid assumption if most of the light comes from a single 

source and the amount of reflected light is low.
• Unfortunately it’s still ill-posed!



Stochastic Systems Group

Ill-Posedness

• There is a fundamental problem because we never 
observe the fields in isolation.  So even with enough 
observations, the problem can remain ill-posed.

• E.g., say we have four fields and four observations:

• Note that these functions will produce the exact same 
observations (where c is an arbitrary field):
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Energy Function

• Regularization can be used to make the 
problem better posed if chosen correctly.

• We construct another energy function with 
l2 data fidelity terms and lp regularization:
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Composite Images

Top row: Observed images.  Bottom Row: Reconstructed images.
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Conclusions
• Non-parametric variational formulation of image fusion problem with 

statistical estimation flavor.
• Demonstrably superior results on synthetic examples.
• Simultaneous bias correction and denoising.
• Seamless handling of multiple surface coils and multiple pulse 

sequences.
• Reflectance/illumination separation needs much better regularization 

because the two fields are too similar.
• Efficient solver using coordinate descent, preconditioned CG, 

multigrid.
• Need more investigation into finding more effective regularization so 

that we do not need to use the body coil (body coil image can be
viewed as providing a point-wise prior for f).
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Convergence

• In many ways, our coordinate descent approach can be 
viewed as being similar to Expectation-Maximization.
– Can be viewed as an EM implementation if we believe that the 

regularization terms really are our statistical priors.
– Have the same convergence properties as EM: every f-step and b-

step is guaranteed to decrease the energy.

• In general, we can only hope to find a local minimum.
– In practice, we have found very robust convergence properties, 

even without using multigrid.
– Initialization with random noise will usually find a reasonable 

result, and the results seem to be the same local minimum.
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Too Much Dog!

Upper row: illumination maps; Bottom row: reflectance maps
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Still Having Problems…

Upper row: illumination maps; Bottom row: reflectance maps
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