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Hard Segmentation Problems

• Segmentation: Process of dividing an image into 
coherent regions

• Can be hard for a number of reasons:
– Occlusions
– Missing data
– Poor contrast
– Missing edges
– Poor image models
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Extra Information

• Training examples
• Partial segmentations (e.g., slices)
• Relative objects 

– Use easy to segment objects to help locate hard 
to segment objects

• Can view all of these in a probabilistic 
framework
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Previous Work

• Cootes and Taylor (PCA on marker points)
– Simple and fast
– Need correspondence (very hard in 3D)

• Leventon et al (PCA on SDF)
– No correspondence problem
– Linear operation on nonlinear manifold

• Tsai et al (multiple objects)
– Problems with limited example space

• Paragios (mean SDF plus random field)
• Srivastava et al (geodesics on manifolds)
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General MAP Model

• Γ is a segmentation (can be a curve, 
indicator function, etc.)

• y is the observed image (can be vector)
• S is a shape model
• Data model usually IID given Γ
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Traditional Curve Evolution

• Chan-Vese energy functional:

• If we discretize the data term, equivalent to:
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Shape Representations
• Parameterized curves 

(marker points)
• Implicit surfaces

– signed distance functions
• Space conditioned 

probabilities (PERPS)
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Shape Spaces

• A manifold embedded in an infinite 
dimensional Hilbert space (e.g., Lp)

• Oftentimes infinite codimension (e.g., for 
SDF, |∇Ψ|=1 for a.e. x)

• Mainly interested in local regions
• Curvature induced by metric, representation
• Generally large equivalence classes (pose)



Stochastic Systems Group

Desired Characteristics
• Want to view probability as being related to 

shape distance
• Want locally-flat manifolds (adjust 

representation, distance metric)
• Capture co-variation (intra- and inter-

object)
• Computationally feasible
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Parzen Methods

• Lp exponential kernels

• Similar to a smoothed 
histogram
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Distance Functions

• Now with this framework, we can view the 
problem of constructing pdfs on shape as 
choosing an appropriate distance function

• Ideally, this distance would be computed 
along the manifold, but this is easier said 
than done

• Most use distance function for Hilbert space 
(e.g., L2)
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Monge-Kantorovich

• Two densities, µ0 and µ1.  Want to reshape 
µ0 using a mass-preserving diffeomorphism
(bijective, differentiable) u.

• Define optimal MK map as:
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Fundamental Result

• Brenier 1987, 1991
– u* is curl free (and hence u* is the gradient of a 

[convex] potential function)
– for any mass preserving u, we can write as:

• Polar factorization (s is the inefficiency)
• Intuition: curl is just wasted rotational 

energy
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Quick Example

• Infinitely many choices 
(flexibility in zero areas)

• Only two possible 
diffeomorphisms if we 
add epsilon

• Note convexity of optimal 
solution implies u is 
monotonically increasing
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Features

• Not a metric in embedding space
• Topology changes are straightforward
• Well behaved with respect to translation and 

scaling (L2 is not)
• Gives a nice physical intuition behind shape 

distance
• Also gives dense correspondence
• With time formulation (viewing mass movement 

as a time evolution) on PERPS, intermediate steps 
should also lie on manifold
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Feasible Gradient Descent
• Haker et al
• Simple initialization (composition)
• Stay in functions that are MP

• Remove the curl (Helmholtz decomposition, 
u = ∇v + χ, div χ = 0)
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Source and target
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Deformation field
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Hard to get gradient

• Computing is tough because set MP 
changes with µ1

• Consider an unbalanced method:

• Can view first term as mass movement, 
second term as mass creation

• Why not use a simpler distance function?
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Sampling methods
• Only need to be able to evaluate pdf
• Attractive empirical convergence results
• Explores configuration space
• Metropolis algorithm:

1. Start with x0
2. Generate candidate yt+1 (given xt)
3. Set xt+1=yt+1 with probability min(1,p(yt+1)/p(xt)), 

otherwise xt+1=xt
4. Go back to 2
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Sampling Algorithm

• Model:
– L2 on data
– Parzen windows using Lp kernels on 

PERPS

• Sample by adding smooth 
random fields

• Gradually-sloped edges are 
more likely to be moved than 
steeply-sloped edges
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Initial Results

• Problems—way too few training examples
• Sampling method isn’t very good (too smooth)
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Better Sampling Method

• Can do partially deterministic (mean), 
partially random

• This may allow faster convergence speed
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Fast(er) MK Computation
• For these sampling methods, we are dealing with 

perturbations. Have map from µ0 to µt+1, µt is close to µt+1, 
want to compute map from µ0 to µt+1.

• Very inefficient:  for every sampling step, we compute an 
optimal diffeomorphism.  In that computation, for every 
iteration, we solve Poisson’s equation.

• Using gradient descent, so initialization matters.
• Note that ut is close to ut+1, but they are not in the same MP 

set.
• Compute v, any MP map between µt and µt+1.
• Then ut+1 is close to v(ut(x)).
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Mixture Model

• Take convex combinations of PERPS

• View function values as prior space-conditioned 
marginal probabilities on labels

• We then have a parameterized prior model with 
unknown parameters

• Data term is L2
• Prior term...
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EM Algorithm

• x observed, y missing/hidden/auxillary
• E-step:
• M-step:

• Useful when the complete data likelihood is much 
easier to maximize than the observed data 
likelihood

• In mixture models, the E step often takes the form 
of expected weights (class probabilities)
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Very Bad Assumption
• Our E-step looks like

• We need to convert our marginal prior 
probabilities into a joint density

• We use an IID assumption

• Still should capture global features
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Low SNR Data

• 0 dB (but “effective” SNR much higher)
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Missing Data

• 3 dB, missing data on part of the wing
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Future Directions

• Make MK faster (multiresolution)
• Spatially varying sigma (encodes certainty 

of boundaries)
• Get MK flow for shape segmentation
• Better sampling methods
• Better sampling algorithm (use information 

from all samples)
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