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Overview

• Curve evolution attempts to find a curve C (or curves Ci) that 
best segment an image (according to some model)

• Goal is to minimize an energy functional E(C) (view as a 
negative log likelihood)

• Find a local minimum using gradient descent
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Sampling instead of optimization

• Draw multiple samples from a probability distribution p (e.g., 
uniform, Gaussian)

• Advantages:
Naturally handles multi-modal distributions
Can get out of local minima
Higher-order statistics (e.g., variances)
Conditional simulation
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Planar curves

• A curve is a function

• We wish to minimize an energy functional with a data fidelity 
term and regularization term:

• This results in a gradient flow:

• We can write any flow in terms of the normal:
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Euclidean curve shortening flow
• Let

• This energy functional is smaller when C is shorter

• Gradient flow is direction that minimizes the curve length the 
fastest

• Use Euler-Lagrange and we see

where κ is curvature, N is the outward normal
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Level-Set Methods

• A curve is a function (infinite dimensional)

• A natural implementation approach is to use marker points on 
the boundary (snakes)

Reinitialization issues
Difficulty handling topological change

• Level set methods instead evolve a surface (one dimension 
higher than our curve) whose zeroth level set is the curve 
(Sethian and Osher)
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Embedding the curve

• Force level set Ψ to be zero 
on the curve

• Chain rule gives us
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Popular energy functionals

• Geodesic active contours (Caselles et al.):

• Separating the means (Yezzi et al.):

• Piecewise constant intensities (Chan and Vese):
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Examples-I
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Examples-II
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General MAP Model

• For segmentation:
x is a curve
y is the observed image (can be vector)
S is a shape model
Data model usually IID given the curve

• We wish to sample from p(x|y;S), but cannot do so directly
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Markov Chain Monte Carlo

• Class of sampling methods that iteratively generate candidates 
based on a previous iterate (forming a Markov chain)

• Instead of sampling from p(x|y;S), sample from a proposal 
distribution q and keep samples according to an acceptance rule 
a

• Examples include Gibbs sampling, Metropolis-Hastings
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Metropolis-Hastings
• Metropolis-Hastings algorithm:

1. Start with x0

2. At time t, generate candidate ϕt (given xt-1)
3. Calculate Hastings ratio:

4. Set xt = ϕt with probability min(1, rt), otherwise xt = xt-1

5. Go back to 2
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Asymptotic Convergence
• We want to form a Markov chain such that its stationary 

distribution is p(x):

• To guarantee asymptotic convergence, sufficient conditions 
are:

1) Ergodicity
2) Detailed balance
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MCMC Curve Sampling
• Generate perturbation on the curve:

• Sample by adding smooth random fields:

• Σ controls the degree of smoothness in field

• Note for portions where f is negative, shocks may develop 
(so called prairie fire model)

• Implement using white noise and circular convolution
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Smoothness issues

• While detailed balance assures asymptotic convergence, may 
need to wait a very long time

• In this case, smooth curves have non-zero probability under q, 
but are very unlikely to occur

• Can view accumulation of perturbations as

(h is the smoothing kernel, ni is white noise)

• Solution: make q more likely to move towards high-probability 
regions of p
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Adding mean force

• We can add deterministic elements to f (i.e., a mean to q):

• The average behavior should then be to move towards higher-
probability areas of p

• In the limit, setting f to be the gradient flow of the energy 
functional results in always accepting the perturbation
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Coverage/Detailed balance

• It is easy to show we can go from any curve C1 to any other 
curve C2 (shrink to a point)

• For detailed balance, we need to compute probability of 
generating C´ from C (and vice versa)

• Probability of going from C to C´ is the probability of 
generating f (which is Gaussian) and the reverse is the 
probability of f ´ (also Gaussian)
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Approximations to q

• Relationship between f and f ´ complicated due to the fact 
that the normal function changes

• f ´ does not always exists (given an f).  Unknown what 
conditions on f are necessary to guarantee existence.

• Various levels of exactness
Assume (then f ´= -f )
Locally-linear approximation

Trace along       (technical issues)

• Unknown how approximations affect convergence
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Synthetic noisy image

• Piecewise-constant observation model:

• Chan-Vese energy functional:

• Probability distribution (T=2σ2):
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Prostate in a Haystack
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Most likely samples
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Least likely samples
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Confidence intervals
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When “best” is not best
• In this example, the most likely samples under the model are 

not the most accurate according to the underlying truth

• 10%/90% “confidence” bands do a good job of enclosing the 
true answer

• Histogram image tells us more uncertainty in upper-right corner

• “Median” curve is quite close to the true curve

• Optimization would result in subpar results
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Bias-corrected prostate
• “Expert” segmentation, add noise (simulate body coil image)
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Learn probability densities

• Use histograms

• Learn pdf inside 
p(y|1) and pdf outside 
p(y|0) and assume iid 
given curve:
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Initialization
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Results
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Prostate-only cluster
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Multimodality and convergence
• Natural multimodal distribution

• When starting near one mode, need a lot of time to traverse 
valley between modes

• Clustering helps with presenting results

• Interesting work to be done in learning dimensionality of 
manifold and local approximations
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User Information

• In many problems, the model admits many reasonable 
solutions

• Currently user input largely limited to initialization

• We can use user information to reduce the number of 
reasonable solutions

Regions of inclusion or exclusion
Partial segmentations

• Can help with both convergence speed and accuracy

• Interactive segmentation
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Conditional simulation
• With conditional simulation, we are given the values on a 

subset of the variables

• We then wish to generate sample paths that fill in the remainder
of the variables (e.g., simulating Brownian motion)
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Simulating curves
• Say we are given Cs, a subset of C (with some uncertainty 

associated with it)

• We wish to sample the unknown part of the curve Cu

• One way to view is as sampling from:

• Difficulty is being able to evaluate the middle term as 
theoretically need to integrate p(C)
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Simplifying Cases
For special cases, evaluation of                    is tractable:

1. When C is low-dimensional (can do analytical integration or 
Monte-Carlo integration)

2. When Cs is assumed to be exact

3. When p(C) has special form (e.g., independent, Markov)

4. When willing to approximate

• When implementing conditional simulation, modify q to be 
compatible with new conditional probability
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Gravity inversion
• Supplement to standard seismic data to segment bottom salt using an array 

of surface gravimeters (~10-15 N accuracy)

• Subtract base effects (geoid, centrifugal force, etc.) to leave salt effects:

• Assume constant density inside and outside:

• Model energy as L2 estimation error (probability as Boltzmann distribution):
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A strange segmentation problem

X- and z-
components of 
gravity profile 

for synthetic salt 
body
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Circle salt
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Most likely samples
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Least likely samples
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Confidence intervals
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Notable features

• Measurement points << image pixels, but we can do a 
reasonable job

• Much higher uncertainty at the bottom than the top (weaker 
measurements)

• Less uncertainty in middle than on sides

• Median of histogram not necessarily related to median of 
distribution
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More complex example

• Same x- and z-
components of 
gravity

• Synthetic image with 
more complex 
geometry
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Initialization
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Most likely samples

Regular Conditionally simulated
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Marginal confidence bounds

Regular Conditionally simulated
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Aggregating samples
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Chan-Vese in 3D
• Energy functional with surface area regularization:

• With a slice-based model, we can write the regularization term as:

where is the surface between ci and ci+1
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Zero-order hold approximation
• Approximate volume as piecewise-constant “cylinders”:

• Then we see that the surface areas are:

• We see terms related to the curve length and the difference 
between neighboring slices

• Upper bound to correct surface area
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Overall regularization term
• Adding everything together results in:

self 
potentials

edge 
potentials
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2.5D Approach

• In 3D world, natural (or built-in) partition of volumes into 
slices

• Assume Markov relationship among slices

• Then have local potentials (e.g., PCA) and edge potentials 
(coupling between slices)

• Naturally lends itself to local Metropolis-Hastings approach 
(iterating over the slices)



58Massachusetts Institute of Technology

Stochastic Systems GroupLaboratory for Information and Decision Systems

2.5D Model

• We can model this as a simple chain 
structure with pairwise interactions

• This admits the following 
factorization:
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Partial segmentations

• Assume that we are given 
segmentations of every other slice

• We now want to sample surfaces 
conditioned on the fact that certain 
slices are fixed

• Markovianity tells us that c2 and c4
are independent conditioned on c3
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Log probability for c2

• We can then construct the probability for c2 conditioned on its 
neighbors using the potential functions defined previously:
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Results

Neighbor 
segmentations

Our result (cyan) 
with expert (green)
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Larger spacing

• Apply local Metropolis-Hastings algorithm where we sample 
on a slice-by-slice basis

• Theory shows that asymptotic convergence is unchanged

• Unfortunately larger spacing similar to less regularization

• Currently have issues with poor data models that need to be 
resolved
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Full 3D

• In medical imaging, have multiple slice orientations (axial, 
sagittal, coronal)

• In seismic, vertical and horizontal shape structure expected

• With a 2.5D approach, this introduces complexity to the graph 
structure
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Incorporating perpendicular slices
• c⊥ is now coupled to all of the 

horizontal slices

• c⊥ only gives information on a 
subset of each slice

• Specify edge potentials as, e.g.:
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Other extensions

• Additional features can be added to the base model:
Uncertainty on the expert segmentations
Shape models (semi-local)
Exclusion/inclusion regions
Topological change (through level sets)
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Conclusion

• Computationally feasible algorithm to sample from space of 
curves

• Approximate detailed balance

• Demonstrated utility for robustness to noise, multimodal 
distributions, displaying uncertainty

• Can generate arbitrary shapes with relatively complex geometry

• Conditional simulation provides a natural framework to 
incorporate partial user segmentations on a slice-by-slice level
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Further research

• Multiple curves, known/unknown topology

• We would like q to naturally sample from space of smooth 
curves (different perturbation structure) 

• Speed always an issue for MCMC approaches
Multiresolution perturbations
Parameterized perturbations (efficient basis)
Hierarchical models

• Using samples to explore the geometry of shape manifolds
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Smooth curve + smooth perturbations ≠ smooth curve
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SAD Target
• We define symmetric area difference (SAD) as:

• Use a Boltzmann distribution:

• T is a parameter we can use to control how likely we are to 
keep less likely samples

• We will keep a sample with T log(2) additional errors with 
probability ½

• Single mode distribution
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Target Shape



71Massachusetts Institute of Technology

Stochastic Systems GroupLaboratory for Information and Decision Systems

Initialization
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Most likely samples
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Least likely samples
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“Confidence intervals”
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Doubling the temperature
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Results
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