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Overview

 Curve evolution attempts to find a curve C (or curves C)) that
best segment an image (according to some model)

* Goal is to find a local minimum of energy functional E(C)
(view as a negative log likelihood) using gradient descent

* Instead of optimization, draw multiple samples from a
probability distribution p defined on the space of curves

* Naturally handles multi-modal distributions
= Avoid local minima

= Higher-order statistics (e.g., variances)

= Conditional simulation
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Planar curves

+ AcurveisafunctionC @ [0, 1] — RZ

* We wish to minimize an energy functional with a data fidelity
term and regularization term:

E(C) = D(y[C) + R(C)
* This results in a gradient flow:
dC/ \ _ B
W(P) = F(p)
* We can write any flow in terms of the normal:

40 (1) = f(p)N'(p)
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Euclidean curve shortening flow

. Let E(C) = ]{éds

* This energy functional is smaller when C is shorter so the
gradient flow is the direction that minimizes the curve length
the fastest

* Using Euler-Lagrange, we see

40 (1) = —k(p)N'(p)

where « IS curvature, N 1Is the outward normal
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Level-Set Methods

* A curve is a function (infinite dimensional)

* A natural implementation approach is to use marker points on
the boundary (snakes)

* Reinitialization issues
= Difficulty handling topological change

* Level set methods instead evolve a surface (one dimension

higher than our curve) whose zeroth level set is the curve
(Sethian and Osher)
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Embedding the curve

* Force level set ¥ to be zero
on the curve

W(C(p)) =0
Vp € [0, 1]

* Chain rule gives us

dw dC
A VA,
dt dt

= —f||VWV]|
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Popular energy functionals

* Geodesic active contours (Caselles et al.):

BlC) = fé’ 1 —|—0|ZSVI|2
* Separating the means (Yezzi et al.):
E(C) = (pin — pout)?
* Piecewise constant intensities (Chan and Vese):

B(O) = [ [ (y-po)2dut [ [ (y—p1)2de+a § ds
Ro R4 c
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Gravity inversion

* Supplement to standard seismic data to segment bottom salt using an array
of surface gravimeters (~10-> N accuracy)

* Subtract base effects (geoid, centrifugal force, etc.) to leave salt effects:

X, CYF:(z
(i) = [ [ L)
|75 ()]
* Assume constant density inside and outside (using Heaviside function H):

p(z; C) = poH(—W(z))

* Model energy as L2 estimation error (probability as Boltzmann
distr Narray

E@) = 3 lldons(D) = 3G NP +a f ds

1=1

dx
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Markov Chain Monte Carlo

P(Cly; S) o p(y|C; S)p(C; S)
* Cisacurve,y is the observed image (can be vector), Sis a
shape model, data model usually 1id given the curve

* We wish to sample from p(x|y;S), but cannot do so directly

* Instead, iteratively sample from a proposal distribution g and
keep samples according to an acceptance rule a. Goal is to
form a Markov chain with stationary distribution p

* Examples include Gibbs sampling, Metropolis-Hastings

H .
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Metropolis-Hastings

* Metropolis-Hastings algorithm:
- Start with x°
- At time t, generate candidate ¢' (from ¢ given x*1)
— Calculate Hastings ratio:

ot — P(eh) | a('"leh)
p(zi=1)  q(¢f[zt-T)

- Set xt= ¢' with probability min(1, rt), otherwise xt= xt1
- Go back to 2
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Asymptotic Convergence

*  We want to form a Markov chain such that its stationary
distribution is p(x):

p(2) = [ P(&) T (x]$)dg
*  For asymptotic convergence, sufficient conditions are:

1)  Ergodicity
2) Detailed balance

p(zt~Da(stz!~Da(et|z!~1) = p(s)a(zt—1|pt)a(zt—1|4t)
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MCMC Curve Sampling

* Generate perturbation on the curve:
C'(s) = C(s) + f(s)N(s)dt
* Sample by adding smooth random fields:
f~N(=r+7~v,%)

* X controls the degree of smoothness in field, k term is a
curve smoothing term, y is an inflation term

* Mean term to move average behavior towards higher-
probability areas of p
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Synthetic noisy image

* Piecewise-constant observation model:

y(z) = p(z) + n(z)

* Chan-Vese energy functional:

B(O) = [ [ (y-po)2dut [ [ (y—p1)2de+a § ds
Ro R4 c

* Probability distribution (T=2c?):

() = exp(~E(C)/T)
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Prostate in a Haystack
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Most likely samples
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Least likely samples
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Confidence intervals

true
10/90%
50%
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When “best” I1s not best

* In this example, the most likely samples under the model are
not the most accurate according to the underlying truth

* 10%/90% “confidence” bands do a good job of enclosing the
true answer

* Histogram image tells us more uncertainty in upper-right corner
* “Median” curve is quite close to the true curve

* Optimization would result in subpar results

H .
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Observed measurements
X-and z- .
components of |
gravity profile
for synthetic salt
body
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Most likely samples
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Least likely samples
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Confidence intervals

true
10/90%
50%
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Notable features

* Measurement points << image pixels, but we can do a
reasonable job

* Much higher uncertainty at the bottom than the top (weaker
measurements)

* Less uncertainty in middle than on sides

* Median of histogram not necessarily related to median of
distribution

H .
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Conditional simulation

* In many problems, the model admits many reasonable solutions

* We can use user information to reduce the number of reasonable solutions
= Regions of inclusion or exclusion
= Partial segmentations

* Curve evolution methods largely limit user input to initialization

With conditional simulation, we are given the values on a subset of the
variables. We then wish to generate sample paths that fill in the remainder
of the variables (e.g., simulating pinned Brownian motion)

* Can result in an interactive segmentation algorithm

I I" Massachusetts Institute of Technology
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Simulating curves

 Say we are given C,, a subset of C (with some uncertainty
associated with it)

« We wish to sample the unknown part of the curve C,

* One approach is to view as sampling from:

p(y|CYp(C) = p(y|C)P(CulCs)p(Cs)

* Difficulty is being able to evaluate the middle term as
theoretically need to integrate p(C)

H .
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Simplifying Cases

For special cases, evaluation of p(éulés) IS tractable:

*  When C is low-dimensional (can do analytical integration or
Monte-Carlo integration)

«  When C, Is assumed to be exact

*  When p(C) has special form (e.g., independent, Markov)

*  When willing to approximate

*  When implementing conditional simulation, modify q to be
compatible with new conditional probability

H .
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More complex example

* Same X- and z-
components of 3
gravity

8] 50 100 160 200 2560

* Synthetic image with X
more complex s
geometry s}
o> -8
10}
% 50 100 150 200 250
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Marginal confidence bounds

10/90%
50%
——khown

Regular Conditionally simulated
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Optimization-based approach

* Gradient-flow of energy functional:

Narray — TN - .
d_E_i — [ Z _QGPO(gObS 29(?’1 C)) 'I“Z(Cl?) . CEK/]N
i=1 ri ()
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Aggregating samples
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Adding additional constraints

Top salt constraint With additional constraint
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Marginal confidence bounds
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Top salt constraint With additional constraint
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Principal Components Analysis

« Have vectors X, X,, ..., X.., linear combination forms a
subspace S in R"

* Find k << m vectors that best explain the data

* One view: use singular value decomposition to find a basis for
S (with associated variance):

X=Uxv"
and keep k largest eigenvectors in U, variance in X

* VVectors within sub-subsbace are:
T = ) A0;U;

H .
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Applying PCA to Shape Spaces

* Shape space depends on representation chosen
* Generally shapes do not form a linear space (manifold)

* If shapes are close to each other, manifold is fairly flat so PCA
can find an appropriate local linear approximation

* One approach is to work in the space of level set functions with
appropriate smoothness (e.g., C?)

* Many level sets map to one curve, so convert curves to level
sets using signed distance function as canonical representation

H .
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First principal mode of variation

Top salt constraint With additional constraint
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Second principal mode of variation

Top salt constraint With additional constraint
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Future approaches

* More general density models (piecewise smooth)
* Full 3D volumes

* Additional features can be added to the base model:
= Uncertainty on the expert segmentations
= Shape models (semi-local)
= Exclusion/inclusion regions
= Topological change (through level sets)
= Better perturbations

H .
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Conclusion

* Computationally feasible algorithm to sample from space of
curves

* Approximate detailed balance

* Demonstrated utility for robustness to noise, multimodal
distributions, displaying uncertainty

* Can generate arbitrary shapes with relatively complex
geometry

* Conditional simulation provides a natural framework to
Incorporate partial user segmentations on a slice-by-slice level

H .
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Piecewise smooth densities

* Previously we assumed C mapped to a piecewise constant p

* A more general model would be to allow p to be smooth
everywhere except on the curve (similar to Mumford-Shah):

Narray
EE) = Y Fobs()=3CIP+8 [ IVpl2data ¢ ds
=1 Q-C ¢

* Usually solve using coordinate descent/EM approach

H .
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2.5D Approach

* In 3D world, natural (or built-in) partition of volumes into
slices

* Assume Markov relationship among slices

* Then have local potentials (e.g., PCA) and edge potentials
(coupling between slices)

* Naturally lends itself to local Metropolis-Hastings approach
(iterating over the slices)

H .
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2.5D Model

* We can model this as a simple chain
structure with pairwise interactions

* This admits the following
factorization:

p(Y|C) = ] p(uil&)
i=1

n n—1
p(C) = T[] vi(@) ] %ii+1(G,Er1)
i—1 i—1
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Partial segmentations

* Assume that we are given
segmentations of every other slice

* We now want to sample surfaces
conditioned on the fact that certain
slices are fixed

« Markovianity tells us that c, and c,
are independent conditioned on c,

H .
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Incorporating perpendicular slices

e ¢, is now coupled to all of the e e

horizontal slices

« ¢, only gives information on a e e
subset of each slice e
* Specify edge potentials as, e.g.: e e
Ly
Wi 1 @) =exp( = [(M(wo,9,i42)

0
- FuGowisoya) () (6)
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Coverage/Detailed balance

e It is easy to show we can go from any curve C, to any other
curve C, (shrink to a point)

* For detailed balance, we need to compute probability of
generating C” from C (and vice versa)

C'(s) C(s) 4+ f(s)N(s)dt
C(s) C'(s) + f'(s)N'(s)dt

* Probability of going from C to C” is the probability of
generating f (which is Gaussian) and the reverse is the
probability of f~ (also Gaussian)

H .
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Approximations to

* Relationship between f and f © complicated due to the fact
that the normal function changes

* f” does not always exists (given an f). Unknown what
conditions on f are necessary to guarantee existence.

* Various levels of exactness
= Assume N = N (thenf'=-f)
= Locally-linear approximation

f'(s) = =f(s)/ <N(s),N'(s) >

* Trace along N (technical issues)

* Unknown how approximations affect convergence
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Bias-corrected prostate

* “Expert” segmentation, add noise (simulate body coil image)
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Learn probability densities

il - Iinside
* Use histograms ~—~ouiside]
* Learn pdf inside p(y| 2
1) and pdf outside i
p(y|0) and assume iid £
given curve:

intensities

E(C) = - [Q 10 p(y(@)|H(~W(2)))d + o f ds
C

H .
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Results

—true
——10/90%
50%
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Prostate-only cluster
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Multimodality and convergence

e Natural multimodal distribution

* When starting near one mode, need a lot of time to traverse
valley between modes

* Clustering helps with presenting results

* Interesting work to be done in learning dimensionality of
manifold and local approximations
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