

Gravity Inversion using Curve Sampling and Geometric Conditional Simulation

Ayres Fan

John W. Fisher III

Alan S. Willsky

Stochastic Systems Group

April 3, 2007

Massachusetts Institute of Technology

Outline

- 1. Overview
- 2. Curve evolution
- 3. Markov chain Monte Carlo
- 4. Curve sampling
- 5. Conditional simulation
- 6. 2.5D Segmentation

Overview

- Curve evolution attempts to find a curve C (or curves C_i) that best segment an image (according to some model)
- Goal is to find a local minimum of energy functional E(C) (view as a negative log likelihood) using gradient descent
- Instead of optimization, draw multiple samples from a probability distribution **p** defined on the space of curves
 - Naturally handles multi-modal distributions
 - Avoid local minima
 - Higher-order statistics (e.g., variances)
 - Conditional simulation

Planar curves

- A curve is a function $ec{C}$: $[0,1]
 ightarrow \mathbb{R}^2$
- We wish to minimize an energy functional with a data fidelity term and regularization term:

$$\mathsf{E}(\vec{C}) = \mathsf{D}(y|\vec{C}) + \mathcal{R}(\vec{C})$$

• This results in a gradient flow:

$$\frac{\mathrm{d}\vec{C}}{\mathrm{d}t}(p) = \vec{\mathsf{F}}(p)$$

• We can write any flow in terms of the normal:

$$\frac{\mathrm{d}\vec{C}}{\mathrm{d}t}(p) = f(p)\vec{\mathcal{N}}(p)$$

Euclidean curve shortening flow

• Let
$$\mathsf{E}(\vec{C}) = \oint_{\vec{C}} \mathsf{d}s$$

- This energy functional is smaller when C is shorter so the gradient flow is the direction that minimizes the curve length the fastest
- Using Euler-Lagrange, we see

$$\frac{\mathrm{d}\vec{C}}{\mathrm{d}t}(p) = -\kappa(p)\vec{\mathcal{N}}(p)$$

where κ is curvature, N is the outward normal

- A curve is a function (infinite dimensional)
- A natural implementation approach is to use marker points on the boundary (snakes)
 - Reinitialization issues
 - Difficulty handling topological change
- Level set methods instead evolve a surface (one dimension higher than our curve) whose zeroth level set is the curve (Sethian and Osher)

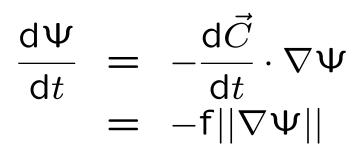
Embedding the curve

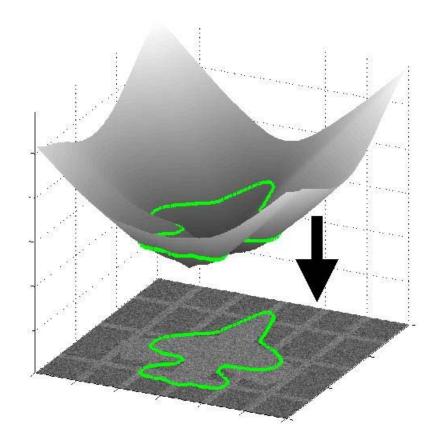
 Force level set Ψ to be zero on the curve

$$\Psi(\vec{C}(p)) = 0$$

 $\forall p \in [0, 1]$

• Chain rule gives us





Popular energy functionals

• Geodesic active contours (Caselles et al.):

$$E(\vec{C}) = \oint_{\vec{C}} \frac{ds}{1 + |\nabla I|^2}$$

- Separating the means (Yezzi et al.): $E(\vec{C}) = (\mu_{in} - \mu_{out})^2$
- Piecewise constant intensities (Chan and Vese): $E(\vec{C}) = \iint_{R_0} (y - \mu_0)^2 dx + \iint_{R_1} (y - \mu_1)^2 dx + \alpha \oint_{\vec{C}} ds$

Examples

Gravity inversion

- Supplement to standard seismic data to segment bottom salt using an array of surface gravimeters (~10⁻¹⁵ N accuracy)
- Subtract base effects (geoid, centrifugal force, etc.) to leave salt effects:

$$\vec{g}(i;\vec{C}) = G \int \int_{\Omega} \frac{\rho(x;\vec{C})\hat{r}_i(x)}{||\vec{r}_i(x)||^2} \mathrm{d}x$$

- Assume constant density inside and outside (using Heaviside function H): $\rho(x; \vec{C}) = \rho_0 \mathcal{H}(-\Psi(x))$
- Model energy as L2 estimation error (probability as Boltzmann distr $E(\vec{C}) = \sum_{i=1}^{N_{array}} ||\vec{g}_{obs}(i) - \vec{g}(i;\vec{C})||^2 + \alpha \oint_{\vec{C}} ds$

Markov Chain Monte Carlo

 $p(\vec{C}|y;S) \propto p(y|\vec{C};S)p(\vec{C};S)$

- *C* is a curve, *y* is the observed image (can be vector), S is a shape model, data model usually iid given the curve
- We wish to sample from p(x|y;S), but cannot do so directly
- Instead, iteratively sample from a proposal distribution **q** and keep samples according to an acceptance rule **a**. Goal is to form a Markov chain with stationary distribution **p**
- Examples include Gibbs sampling, Metropolis-Hastings

Metropolis-Hastings

- Metropolis-Hastings algorithm:
 - Start with x^0
 - At time t, generate candidate ϕ^t (from **q** given x^{t-1})
 - Calculate Hastings ratio:

$$r^{t} = \frac{\mathsf{p}(\phi^{t})}{\mathsf{p}(x^{t-1})} \cdot \frac{\mathsf{q}(x^{t-1}|\phi^{t})}{\mathsf{q}(\phi^{t}|x^{t-1})}$$

- Set $x^t = \phi^t$ with probability min(1, r^t), otherwise $x^t = x^{t-1}$
- Go back to 2

Asymptotic Convergence

• We want to form a Markov chain such that its stationary distribution is p(x):

$$p(x) = \int p(\phi) T(x|\phi) d\phi$$

- For asymptotic convergence, sufficient conditions are:
 - 1) Ergodicity
 - 2) Detailed balance

 $p(x^{t-1})q(\phi^t | x^{t-1})a(\phi^t | x^{t-1}) = p(\phi^t)q(x^{t-1} | \phi^t)a(x^{t-1} | \phi^t)$

MCMC Curve Sampling

• Generate perturbation on the curve:

$$\vec{C}'(s) = \vec{C}(s) + f(s)\vec{\mathcal{N}}(s)dt$$

• Sample by adding smooth random fields:

 $f \sim N(-\kappa + \gamma, \Sigma)$

- Σ controls the degree of smoothness in field, κ term is a curve smoothing term, γ is an inflation term
- Mean term to move average behavior towards higherprobability areas of **p**

Synthetic noisy image

• Piecewise-constant observation model:

$$y(x) = \mu(x) + n(x)$$

• Chan-Vese energy functional:

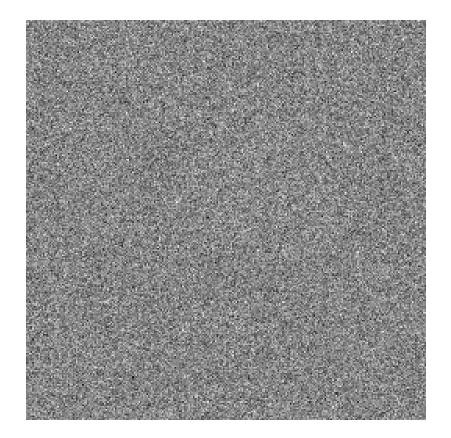
$$E(\vec{C}) = \iint_{R_0} (y - \mu_0)^2 dx + \iint_{R_1} (y - \mu_1)^2 dx + \alpha \oint_{\vec{C}} ds$$

• Probability distribution (T= $2\sigma^2$):

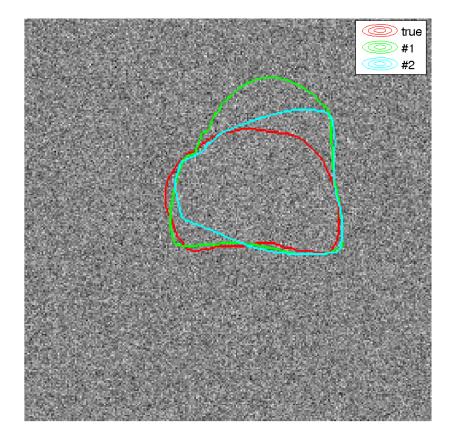
$$p(\vec{C}) = \frac{1}{Z} \exp(-\mathsf{E}(\vec{C})/T)$$



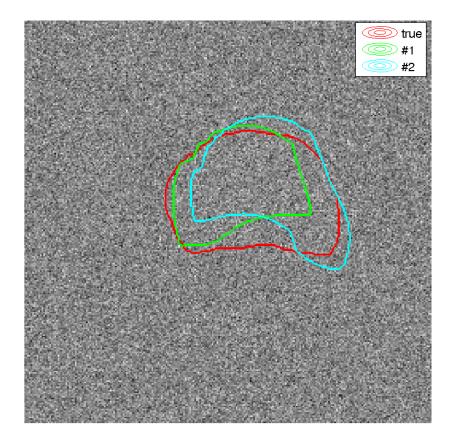
Prostate in a Haystack



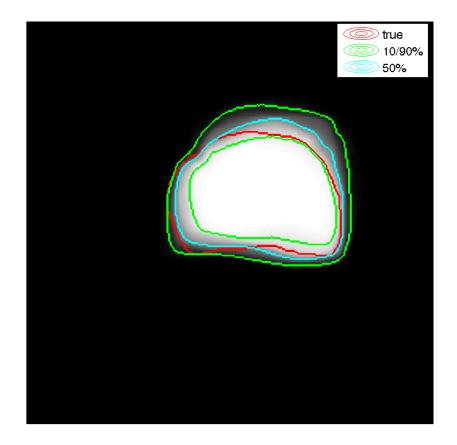
Most likely samples



Least likely samples



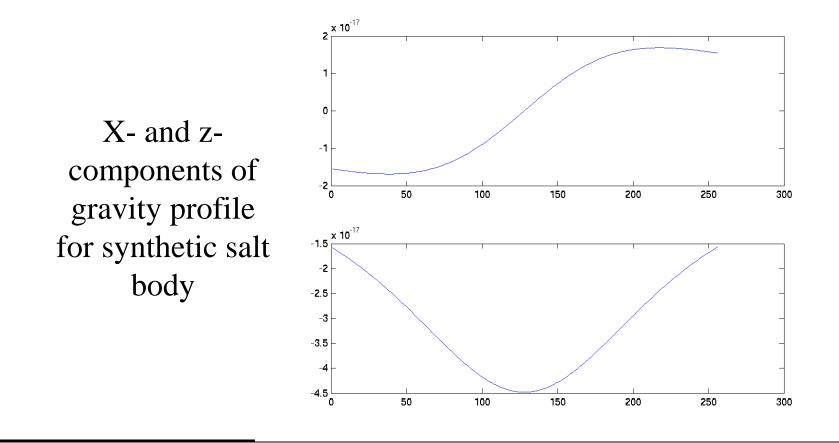
Confidence intervals



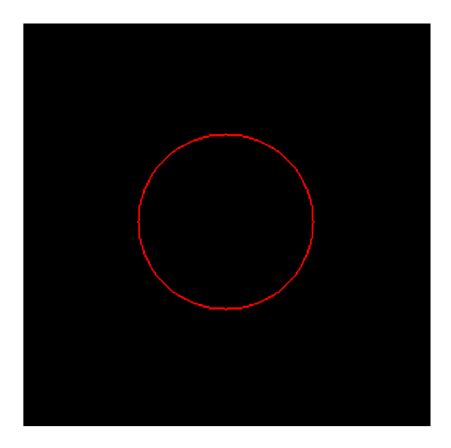
When "best" is not best

- In this example, the most likely samples under the model are not the most accurate according to the underlying truth
- 10%/90% "confidence" bands do a good job of enclosing the true answer
- Histogram image tells us more uncertainty in upper-right corner
- "Median" curve is quite close to the true curve
- Optimization would result in subpar results

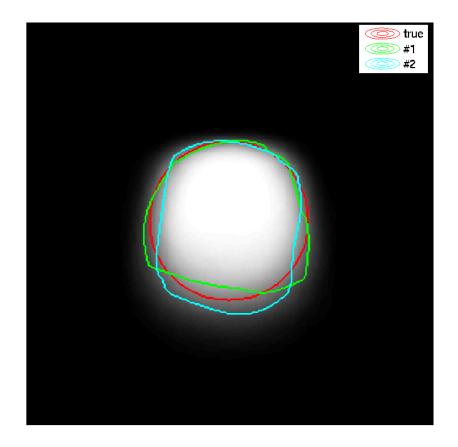
Observed measurements



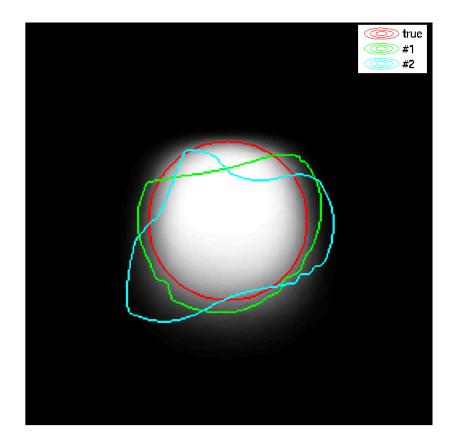
Circle salt



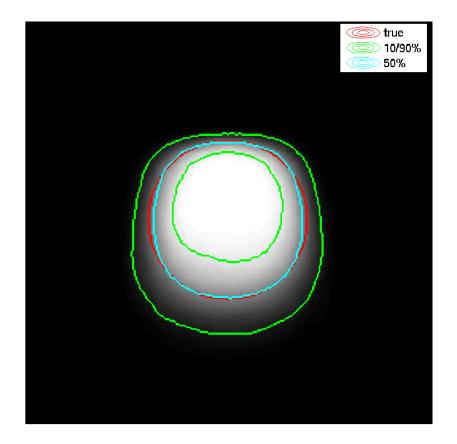
Most likely samples



Least likely samples



Confidence intervals



Notable features

- Measurement points << image pixels, but we can do a reasonable job
- Much higher uncertainty at the bottom than the top (weaker measurements)
- Less uncertainty in middle than on sides
- Median of histogram not necessarily related to median of distribution

Conditional simulation

- In many problems, the model admits many reasonable solutions
- We can use user information to reduce the number of reasonable solutions
 - Regions of inclusion or exclusion
 - Partial segmentations
- Curve evolution methods largely limit user input to initialization
- With conditional simulation, we are given the values on a subset of the variables. We then wish to generate sample paths that fill in the remainder of the variables (e.g., simulating pinned Brownian motion)
- Can result in an interactive segmentation algorithm

Simulating curves

- Say we are given C_s , a subset of C (with some uncertainty associated with it)
- We wish to sample the unknown part of the curve $C_{\rm u}$
- One approach is to view as sampling from: $p(y|\vec{C})p(\vec{C}) = p(y|\vec{C})p(\vec{C}_u|\vec{C}_s)p(\vec{C}_s)$
- Difficulty is being able to evaluate the middle term as theoretically need to integrate p(*C*)

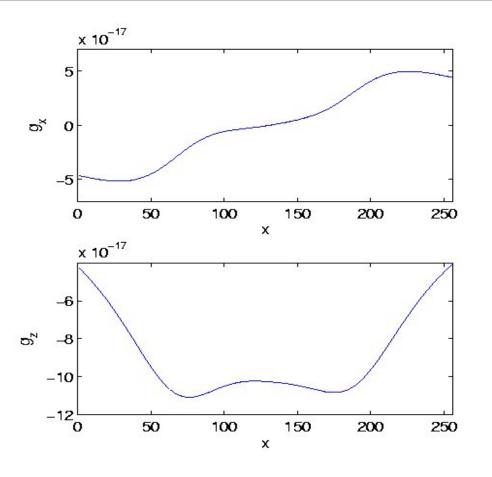
Simplifying Cases

For special cases, evaluation of $p(\vec{C}_u | \vec{C}_s)$ is tractable:

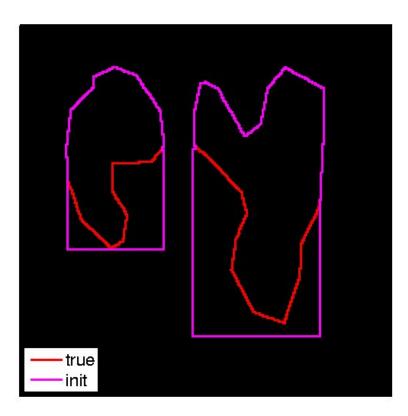
- When *C* is low-dimensional (can do analytical integration or Monte-Carlo integration)
- When C_s is assumed to be exact
- When p(*C*) has special form (e.g., independent, Markov)
- When willing to approximate
- When implementing conditional simulation, modify **q** to be compatible with new conditional probability

More complex example

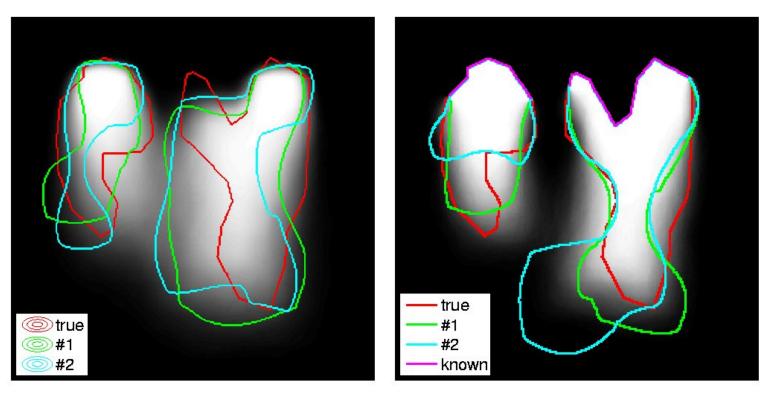
- Same x- and zcomponents of gravity
- Synthetic image with more complex geometry



Initialization



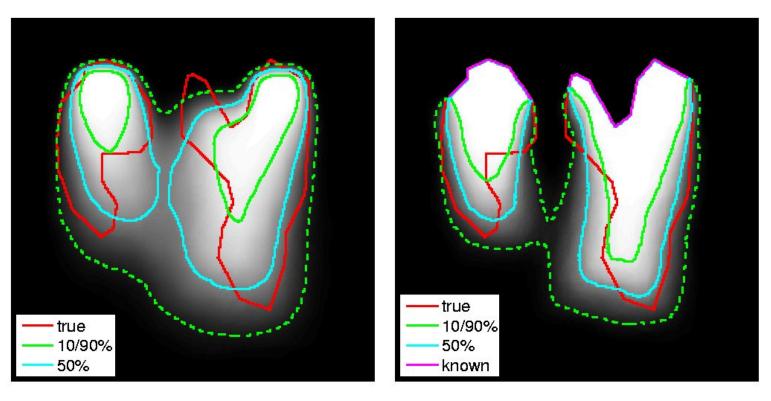
Most likely samples



Regular

Conditionally simulated

Marginal confidence bounds



Regular

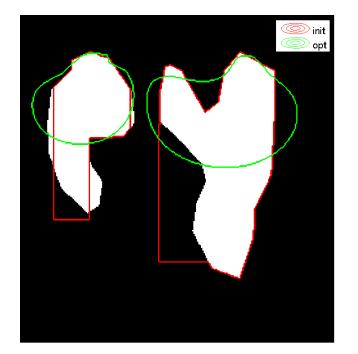
Conditionally simulated



Optimization-based approach

• Gradient-flow of energy functional:

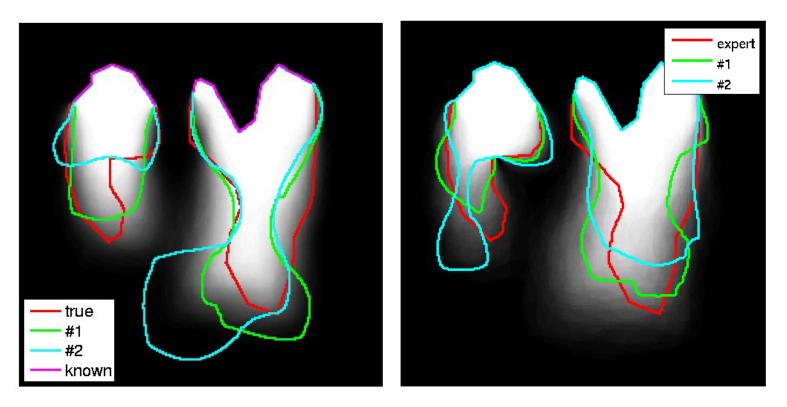
$$\frac{\mathrm{d}E}{\mathrm{d}\vec{C}} = \left[\sum_{i=1}^{N_{\mathrm{array}}} -\frac{2G\rho_0(\vec{g}_{\mathrm{obs}} - \vec{g}(i;\vec{C})) \cdot \hat{r}_i(x)}{r_i^2(x)} - \alpha\kappa\right]\vec{\mathcal{N}}$$



Aggregating samples



Adding additional constraints

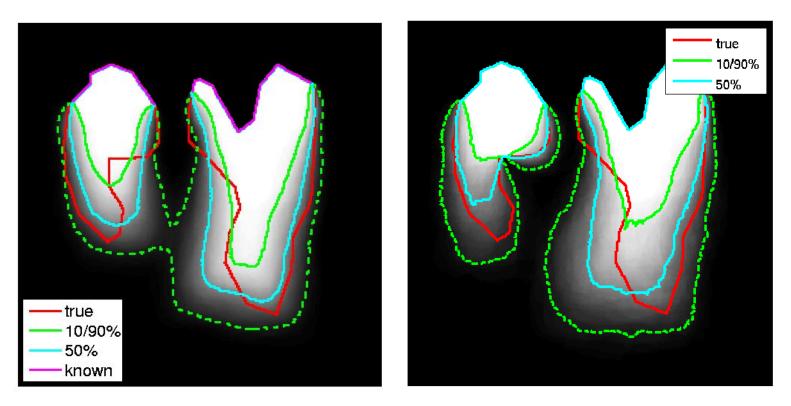


Top salt constraint

With additional constraint

Massachusetts Institute of Technology

Marginal confidence bounds



Top salt constraint

With additional constraint

Principal Components Analysis

- Have vectors x₁, x₂, ..., x_m, linear combination forms a subspace S in Rⁿ
- Find k << m vectors that best explain the data
- One view: use singular value decomposition to find a basis for S (with associated variance):

 $X = U \Sigma V^{\top}$

and keep k largest eigenvectors in U, variance in Σ

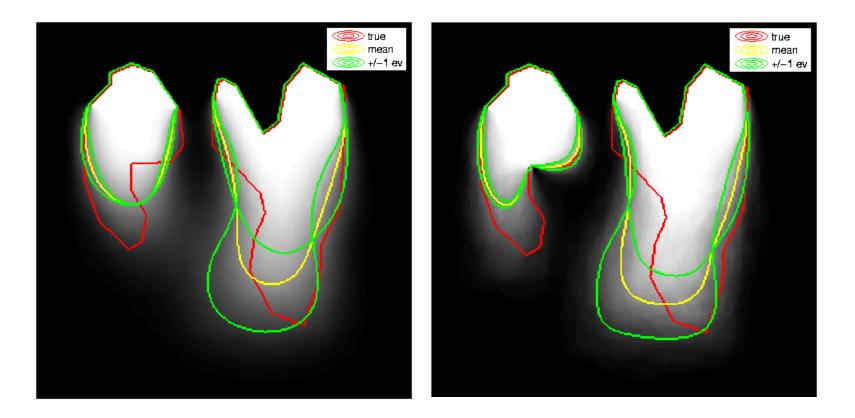
• Vectors within sub-subspace are:

 $x = \sum_{i=1}^{k} a_i \sigma_i u_i$

Applying PCA to Shape Spaces

- Shape space depends on representation chosen
- Generally shapes do not form a linear space (manifold)
- If shapes are close to each other, manifold is fairly flat so PCA can find an appropriate local linear approximation
- One approach is to work in the space of level set functions with appropriate smoothness (e.g., C²)
- Many level sets map to one curve, so convert curves to level sets using signed distance function as canonical representation

First principal mode of variation

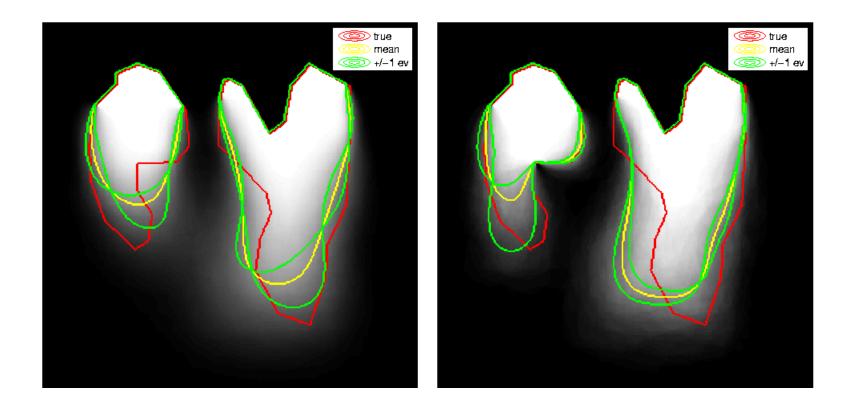


Top salt constraint

With additional constraint

Massachusetts Institute of Technology

Second principal mode of variation



Top salt constraint

With additional constraint

Massachusetts Institute of Technology

Future approaches

- More general density models (piecewise smooth)
- Full 3D volumes
- Additional features can be added to the base model:
 - Uncertainty on the expert segmentations
 - Shape models (semi-local)
 - Exclusion/inclusion regions
 - Topological change (through level sets)
 - Better perturbations

Conclusion

- Computationally feasible algorithm to sample from space of curves
- Approximate detailed balance
- Demonstrated utility for robustness to noise, multimodal distributions, displaying uncertainty
- Can generate arbitrary shapes with relatively complex geometry
- Conditional simulation provides a natural framework to incorporate partial user segmentations on a slice-by-slice level

Piecewise smooth densities

- Previously we assumed C mapped to a piecewise constant ρ
- A more general model would be to allow ρ to be smooth everywhere except on the curve (similar to Mumford-Shah):

$$\mathsf{E}(\vec{C}) = \sum_{i=1}^{N_{\text{array}}} ||\vec{g}_{\text{obs}}(i) - \vec{g}(i;\rho)||^2 + \beta \int_{\Omega - \vec{C}} ||\nabla \rho||^2 \mathrm{d}x + \alpha \oint_{\vec{C}} \mathrm{d}s$$

• Usually solve using coordinate descent/EM approach

2.5D Approach

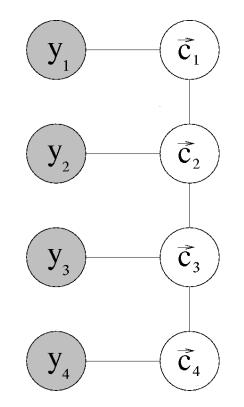
- In 3D world, natural (or built-in) partition of volumes into slices
- Assume Markov relationship among slices
- Then have local potentials (e.g., PCA) and edge potentials (coupling between slices)
- Naturally lends itself to local Metropolis-Hastings approach (iterating over the slices)

Stochastic Systems Group

2.5D Model

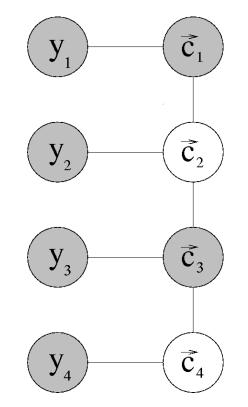
- We can model this as a simple chain structure with pairwise interactions
- This admits the following factorization:

$$p(Y|\vec{C}) = \prod_{i=1}^{n} p(y_i|\vec{c}_i)$$
$$p(\vec{C}) = \prod_{i=1}^{n} \psi_i(\vec{c}_i) \prod_{i=1}^{n-1} \psi_{i,i+1}(\vec{c}_i, \vec{c}_{i+1})$$



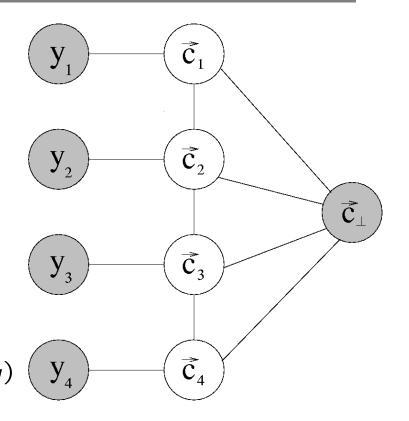
Partial segmentations

- Assume that we are given segmentations of every other slice
- We now want to sample surfaces conditioned on the fact that certain slices are fixed
- Markovianity tells us that c₂ and c₄ are independent conditioned on c₃



Incorporating perpendicular slices

- c_{\perp} is now coupled to all of the horizontal slices
- c_⊥ only gives information on a subset of each slice
- Specify edge potentials as, e.g.: $\Psi_{i,\perp}(\vec{c}_i, \vec{c}_\perp) = \exp(-\int_{0}^{L_y} (\Gamma(x_0, y, i \triangle z) - \Gamma_\perp(x_0, y, i \triangle z))^2 dy)$



Coverage/Detailed balance

- It is easy to show we can go from any curve C₁ to any other curve C₂ (shrink to a point)
- For detailed balance, we need to compute probability of generating *C*' from *C* (and vice versa)

$$\vec{C}'(s) = \vec{C}(s) + f(s)\vec{\mathcal{N}}(s)dt$$

$$\hat{C}(s) = \hat{C}'(s) + f'(s)\hat{\mathcal{N}}'(s)dt$$

• Probability of going from *C* to *C*['] is the probability of generating *f* (which is Gaussian) and the reverse is the probability of *f*['] (also Gaussian)

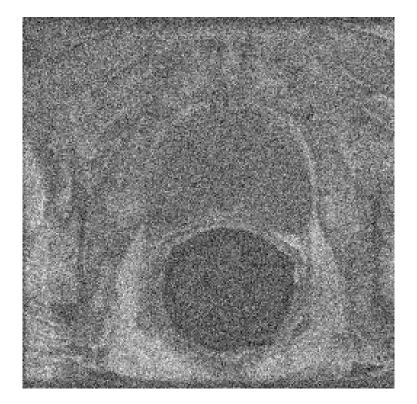
$\label{eq:proximations} \textbf{Approximations to} \ q$

- Relationship between *f* and *f* ′ complicated due to the fact that the normal function changes
- *f* ´ does not always exists (given an *f*). Unknown what conditions on f are necessary to guarantee existence.
- Various levels of exactness
 - Assume $\vec{\mathcal{N}} = \vec{\mathcal{N}}'$ (then f' = -f)
 - Locally-linear approximation $f'(s) = -f(s) / \langle \vec{\mathcal{N}}(s), \vec{\mathcal{N}}'(s) \rangle$
 - Trace along \mathcal{N} (technical issues)
- Unknown how approximations affect convergence

Massachusetts Institute of Technology

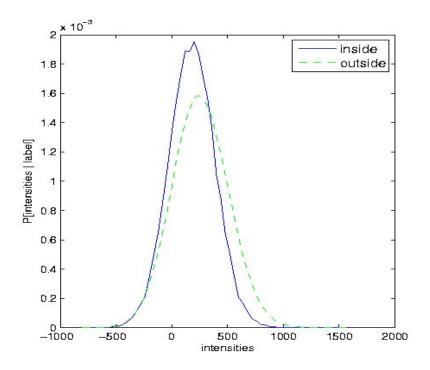
Bias-corrected prostate

• "Expert" segmentation, add noise (simulate body coil image)



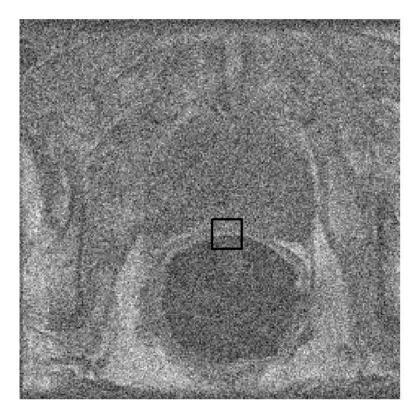
Learn probability densities

- Use histograms
- Learn pdf inside p(y|
 1) and pdf outside
 p(y|0) and assume iid
 given curve:

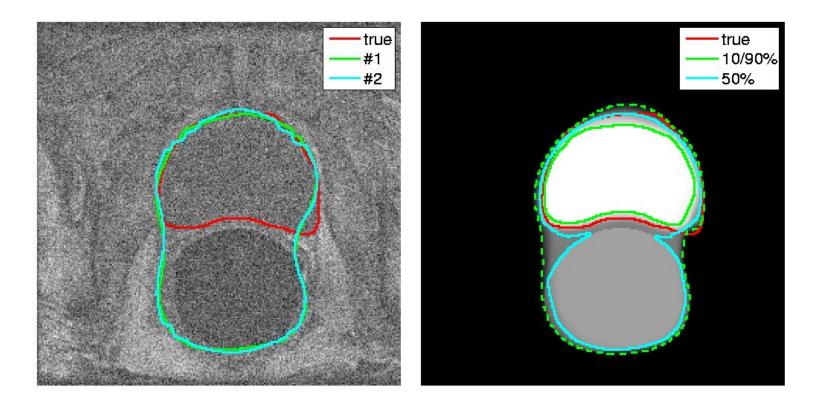


$$E(\vec{C}) = -\int_{\Omega} \log p(y(x)|\mathcal{H}(-\Psi(x))) dx + \alpha \oint_{\vec{C}} ds$$

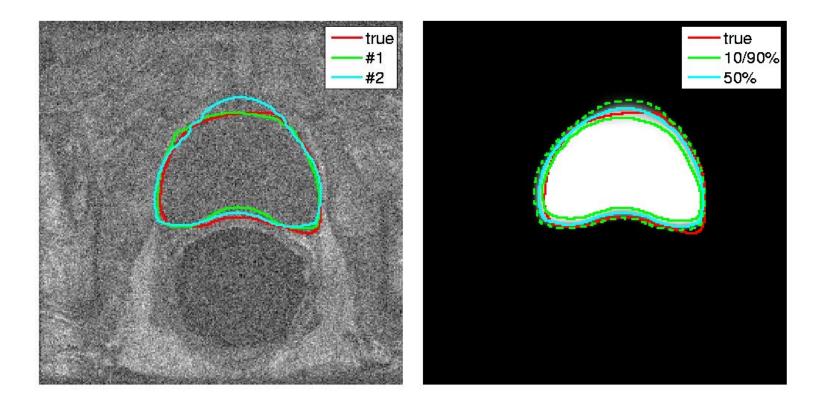
Initialization



Results



Prostate-only cluster



Multimodality and convergence

- Natural multimodal distribution
- When starting near one mode, need a lot of time to traverse valley between modes
- Clustering helps with presenting results
- Interesting work to be done in learning dimensionality of manifold and local approximations