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Outline of the talk
1. Curve evolution and MCMC methods.

2. MCMC curve sampling.

3. Visualizing curve samples.

4. Conditional simulation.

5. Hybrid 2D/3D models.

6. Conclusions and future work
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Curve Evolution
• Given an image I defined on an image domain Ω ⊂ R2, curve

evolution methods attempt to find a curve ~C : [0, 1] → Ω that
best segments it.

• This is typically done by constructing an energy functional
E( ~C) (which can be viewed as a negative log probability
distribution) and finding a local minimum using gradient
descent.

• This results in a geometric gradient flow which can expressed
in terms of a force f times the normal to the curve ~N~C :

d ~C

dt
(p) = f(p) ~N~C(p) .
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Level Set Methods
• A natural numerical implementation to track ~C is to use

marker points on the boundary. This approach has problems
with reinitialization and topological change.

• Level sets are an alternative approach which evolve a surface Ψ
(one dimension higher than our curve) whose zeroth level set is
~C. (Osher and Sethian 1988)

• Standard curve derivatives can be written in terms of Ψ:

~N~C =
∇Ψ
‖∇Ψ‖ and κ~C = ∇ ·

( ∇Ψ
‖∇Ψ‖

)
.

• Setting Ψ( ~C(p)) = 0 for all p ∈ [0, 1] and differentiating with
respect to t, we obtain:

dΨ
dt

=
d~C

dt
· ∇Ψ = f( ~N~C · ∇Ψ) = f‖∇Ψ‖ .
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Markov Chain Monte Carlo
• Markov Chain Monte Carlo (MCMC) methods are a class of

algorithms which are designed to generate samples from a
target distribution π(x).

• π(x) is difficult to sample from directly, so instead a Markov
chain with transition probability T(y |x) is constructed whose
stationary distribution is π(x):

π(z) =
∫

π(x)T(z |x)dx .

• Detailed balance is a sufficient condition for this to hold:

π(z)T(x | z) = π(x)T(z |x) .

• If a chain is ergodic and detailed balance holds, successive
samples from T(z |x) asymptotically become samples from
π(x).
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Metropolis-Hastings
• General method developed by Metropolis et al. (1953) and

extended by Hastings (1970).

• Define transition probability as the product of a proposal
distribution q(y |x) and an acceptance probability a(y |x).

• A candidate sample is generated from q, and the Hastings ratio
is computed:

η(y |x) =
π(y)q(x | y)
π(x)q(y |x)

.

• Then z = y with probability min(1, η(y |x)). Otherwise z = x.

• Problem of sampling from π is now the problem of generating
many samples from q and evaluating π.
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Gibbs Sampling
• MCMC method developed by Geman and Geman (1984). Most

easily applied to models which have a Markov structure.

• Begin by dividing the variables into two subsets xS and x\S .
x\S remains unchanged (so y\S = x\S).

• The proposal distribution q(yS |x) is defined to be the
conditional probability of yS given the remaining variables:
q(yS |x) = π(yS |x\S). The resulting sample is always
accepted, so a(y |x) = 1.

• If the model is defined by a Markov graph structure,
π(yS |x\S) = π(yS |xN (S)) where N (S) is the neighborhood of
S.

• The subset S changes over time. This can be done randomly or
according to some deterministic sequence.
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Curve Sampling
• We construct a curve sampling framework which generates

samples based on random curve perturbations.

• There are a number of benefits of sampling over traditional
optimization-based curve evolution:
− Naturally handles multi-modal distributions
− Can help avoid local minima
− Higher-order statistics (e.g., error variances)
− Conditional simulation
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Curve Perturbations
• For consistency, all perturbations for a curve ~C are defined

relative to a canonical arc length curve parameterization ~Ca.

• Generate random, correlated Gaussian noise

f (t+1) = µ~C
(t)
a

(p) + h ©∗ n(t+1)(p) .

• These smooth perturbation are added to the normal of the
curve:

~Γ(t+1)(p) = ~C(t)
a (p) + f (t+1)(p) ~N~C

(t)
a

(p)δt

• Our standard choice for µ is:

µ~C
(t)
a

(p) = −ακ~C
(t)
a

(p) + γ~C
(t)
a

.
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Detailed Balance
• To implement Metropolis-Hastings, we need to be able to

calculate the Hastings ratio:

η(~Γ(t+1) | ~C(t)) =
π(~Γ(t+1))q(~C(t) | ~Γ(t+1))

π( ~C(t))q(~Γ(t+1) | ~C(t))
.

• The probability of the forward perturbation is:

q(~Γ(t+1) | ~C(t)) = p(f) ∝ exp
(
−nTn

2σ2

)

• Reverse perturbation is:

~Cr(q) = ~Γa(q) + φ(q) ~N~Γa
(q)δt

φ(q) = µ~Γa
(q) + h©∗ ν(q)
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Synthetic Noisy Image Example

• Assume a piecewise-constant image
m(x) with white Gaussian noise w(x):

I(x) = m(x) + w(x)

• This corresponds to the Chan-Vese
energy functional (which also adds a
regularizing term):

E(~C) =
∫∫

R~C

(I −m1)2dx

+
∫∫

Rc
~C

(I −m0)2dx + β

∮

~C

ds
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Visualizing Samples
We use three main methods for visualizing the output of our curve
sampling algorithm:

1. Most likely samples
• Close to the global maximum.

2. Histogram images

• Given samples {~Cn}N
n=1, Φ(x) = 1

N

∑N
n=1H(−Ψ~CN

(x))
(i.e., the percentage of samples for which x is inside the
curve).

3. Marginal confidence bounds
• Level curves of Φ. Contours which can give an idea of the

range of likely locations of the true curve.
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Synthetic Gaussian Results
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• Most likely samples not very accurate (due to specific noise
configuration).

• 10/90% confidence bounds bracket the true answer.
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Conditional Simulation
• In many problems, the model admits many reasonable

solutions. This can be due to a low signal-to-noise ratio (SNR)
or an ill-posed estimation problem.

• For most segmentation algorithms, user input is limited to
initialization and parameter selection.

• Conditional simulation involves sampling part of the solution
conditioned on the rest being known (e.g., pinned Brownian
motion).
− For curve sampling, part of the curve is specified. Much

more feasible for sampling than constrained optimization in
high-dimensional spaces.

− Can help with both accuracy and convergence speed.
− Leads to interactive semi-automatic segmentation

approaches.
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Conditional Curve Sampling

• Let ~Ck : [0, b] → Ω be the known portion of the curve, and
~Cu : [b, 1] → Ω be the unknown portion.

• We now wish to sample from π̃(~Cu | ~Ck):

π̃(~Cu | I, ~Ck) ∝ p(I | ~Cu, ~Ck)p(~Cu | ~Ck) = p(I | ~C)p(~Cu | ~Ck)

• We note that p(~Cu | ~Ck) = p( ~Cu, ~Ck)/p(~Ck), and the
denominator can generally only be obtained from p(~C) by
integrating out ~Cu.

15



GSS ystems
tochastic

roup

Exact Curve Information
• For special cases, evaluation of p( ~Cu | ~Ck) is tractable:
− ~C is low-dimensional.
− ~Ck is assumed to be exact.
− p(~C) has special form (e.g., Markov structure).

• When the curve is specified exactly, we observe that

π̃(~Cu | I, ~Ck) ∝ p(I | ~C)p(~Cu, ~Ck)/p(~Ck) ∝ π(~C | I)

• Thus we see that evaluation of the target distribution is
unchanged (except some of the curve does not change with
time). The proposal distribution must be modified so that
perturbed curves remain on the manifold of curves which
contain ~Ck.

• To do so, we can multiply our earlier perturbation f(p) by a
scalar field d(p) which is 0 on [0, b].
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Thalamus Segmentation

• The thalamus is a subcortical brain
structure.

• Low-contrast makes it difficult to
distinguish it from surrounding cerebral
tissue.

• One approach to make the problem
better-posed is using shape models
(Pohl et al. 2004).

• We apply our conditional simulation
approach which requires much less
training and allows more user control
over the segmentation process.
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Multiple Disjoint Regions

• Disjoint regions leads to a set of multiple curves C = {~Ci}Nc
i=1.

• Perturb each curve individually with

q(Γ |C) =
∏

i

qi(~Γi | ~Ci) .

• Curves are coupled together through the evaluation of π.
Because pixel intensities in both halves of the thalamus are
drawn from the same distribution, we combine the curves into
a joint label map λC(x) which is 1 if x is inside any ~Ci.

• If curves represent objects with different statistics, need to
resolve ambiguities caused by overlap.
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Thalamus Model
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• Learn histograms from band of pixels
within a distance d0 of the
expert-segmented boundary.

• Resulting data likelihood:

p(I |C) =
∏

{x |∃ i s.t.

|Ψ̃~Ci
(x)| ≤d0}

p (I(x) |λC(x))) .

• This leads to an overall target
distribution of:

π(C) ∝ p(I |C) exp

(
−α

∑

i

∮
~Ci

ds

)
.
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Top Points Fixed
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Adding Constraints at the Bottom
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Gravity Inversion

• The goal is to find salt body boundaries
using an array of surface gravimeters.

• Difficult to image below salt without
knowing bottom salt location. Salt
bodies also act as liquid traps (e.g., gas,
oil).

• Data are processed to remove base
effects (e.g., the geoid, centrifugal force)
to leave residual gravity effects from
differing salt density:

~gi = G

∫

Ω

ρ(x)(x− xi)
‖x− xi‖3 dx
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Gravity Inversion Model
• To construct a curve-based gravity model, we assume constant

density inside and outside salt:

ρ(x; ~C) = ∆ρH(−Ψ~C(x)) .

• This leads to the following forward model to translate a curve
into a gravity measurement:

~gi(~C) = ∆ρG

∫

R~C

(x− xi)
‖x− xi‖3 dx .

• We construct an energy functional that penalizes the L2 error
between the observed gravity and the forward model plus a
regularization penalty:

E(~C) =
Ng∑

i=1

||~gi( ~C)− ~ξi||2 + α

∮
~C

ds
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Real Geometry: Gravity Profile
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• 600 measurements, 300× 240 image (72,000 pixels).

• Synthetic salt body constructed from expert-segmented seismic
image.
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Real Geometry: Most Probable Samples
& Confidence Bounds
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Samples generated with top salt fixed.
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Real Geometry: Results Overlaid on
Seismic
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(in real life, this creates a registration problem)
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Sampling Surfaces
• Extending our 2D curve sampling formulation to three

dimensions is not straightforward, primarily because a
canonical parameterization does not exist.

• Let ~S : [0, 1]× [0, 1] → R3 be a surface and Y be the observed
3D volume.

• We construct a collection of curves on equally-spaced parallel
slices S = {~c1,~c2, . . . ,~cN}.

• We then approximate the process of sampling from π(~S|Y ) by
sampling from π(S|Y ).
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Hybrid 2D/3D Markov Model
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• Construct target distribution as undirected
Markov chain.

• This leads to the following factorization of
π(S|Y ) in terms of potential functions:

N∏

i=1

Φ~ci
(~ci)

N∏

i=1

Φ~ci,yi
(~ci, yi)

N−1∏

i=1

Φ~ci,~ci+1(~ci,~ci+1)

• Φ~ci
(~ci) and Φ~ci,yi

(~ci, yi) involve intra-slice
interactions. Φ~ci,~ci+1(~ci,~ci+1) models
inter-slice interactions (e.g., dynamic shape
models).
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Slice-based Surface Area Model
• The standard regularizing term for 2D curve evolution is curve

length. The analogous quantity in 3D is surface area.

• Consider a slice-based approximation to surface area:
∫∫

~S

dA ≈
∫∫

0⊕~c1

dA +
N−1∑

i=1

∫∫

~ci⊕~ci+1

dA +
∫∫

~cN⊕0

dA .

• Need to define a natural surface construction method to
connect curves in adjoining slices (minimal surfaces are not
geometrically accurate as they bow inwards).
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Template Metric as a Coupling Term

• If we approximate the coupling areas as
piecewise-constant (in the z-direction), we
get a stacked cylinder approximation.

• Define template metric (or symmetric area
difference) as:

dSAD(~C1, ~C2) =
∫∫

R(~C1)

dx+
∫∫

R(~C2)

dx−2
∫∫

R(~C1)∩R(~C2)

dx .

• We can write the slice-coupling surface area
as:
∫∫

~ci⊕~ci+1

dA =
∆z

2

∮

~ci

ds+
∆z

2

∮

~ci+1

ds+dSAD(~ci,~ci+1)
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Neighbor Slice Constraints
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• Consider the situation where we are
given ~cn−1 and ~cn+1 and we wish to ~cn.

• Due to Markov nature of model, ~ci is
conditionally independent of all other
slices, so we simply have a 2D curve
sampling problem with additional terms
in the energy (can view as shape priors):

π(~cn | S \ ~cn, Y ) ∝ Φ~cn
(~cn)Φ~cn,yn

(~cn, yn)

Φ~ci−1,~ci
(~ci−1,~ci)Φ~ci,~ci+1(~ci,~ci+1)
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Thalamus: Neighbor Slice Results
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Gibbs Sampling for Multiple Slices
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• If there are contiguous unknown slices, we
need to be able to sample from the joint
distribution over those slices (discontiguous
groups of slices may still be processed
independently).

• One option is to do Gibbs sampling and
iteratively sample from p(~ci|~ci−1,~ci+1, yi). i
can be changed randomly or
deterministically.

• We do not know how to sample from p
directly. Instead, we can do N
Metropolis-Hastings steps (same
formulation as for the 2D case) and still
have detailed balance hold.
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Thalamus: Slices 5, 7, 9, and 11
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Variability Per Slice
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On left, variance map from histogram image (σ2 = p(1− p)).
On right, sum of variance per slice normalized by area of true curve.
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Error Per Slice
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• We can use a number of methods to
compare our sampling results with the
expert segmentations:
− Symmetric area difference (SAD)

between median contour and expert
contour.

− Dice measure (weights correct labels
twice as much as incorrect labels)
between median and expert contours.

− L2 distance between histogram image
and binary 0/1 expert label map.

36



GSS ystems
tochastic

roup

Orthogonal Slice Information
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• An alternative model is to consider
having slices oriented in orthogonal
directions.

• If ~c⊥ is known and fixed, this is
equivalent to fixing the segmentation
values along a row or column in the
original slices.

• Thus we can incorporate this
information simply using our 2D
conditional sampling framework.

37



GSS ystems
tochastic

roup

Sagittal Expert Segmentations
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Sagittal Constraints, Axial Slices
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Conclusions and future work
Summary

• Sampling provides a number of benefits over standard
optimization-based curve evolution techniques (e.g., robustness
to local minima).

• We extended our original formulation to allow conditional
simulation for semi-automatic segmentation applications.

• We also constructed a hybrid 2D/3D framework to sample
surfaces.

Future work

• Incorporate uncertainty into user information.

• Orthogonal 2.5D chains which allow conflicting state
information.
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