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Image Segmentation
• Given an image I : Ω → R on a domain Ω ⊂ R2, we wish to

partition the image into meaningful regions.

• Traditional curve-based segmentation methods try to optimize
an energy functional E(~C; I).

• Sampling-based methods can offer a number of benefits over
optimization-based techniques:
− Robustness to local optima.
− Characterization of multi-modal distributions.
− Uncertainty measures using confidence bounds and principal

modes of variation.
− Conditional simulation to create semi-automatic

segmentation algorithms.
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Sampling Problem
• We view the energy functional of optimization-based curve

evolution approaches as the negative log likelihood of a
posterior probability distribution π:

π( ~C | I) ∝ exp(−E(~C; I)) .

• The results that we present here:

− Draw samples from π(~C | I).
− Show how to visualize many samples from a

high-dimensional space.
− Extend the approach to do conditional simulation.
− Create a hybrid 2D/3D Markov model for volume

segmentation.
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Outline of the talk
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3. MCMC curve sampling.

4. 2D curve sampling results.
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7. Conclusions and future work.
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Curve Evolution
• Given an image I defined on an image domain Ω ⊂ R2, curve

evolution methods attempt to find a curve ~C : [0, 1] → Ω that
minimizes an energy functional E(~C) using gradient descent.

• If the energy functional is geometric (i.e., only depends on the
geometry of ~C, not its parameterization), this results in a
geometric partial differential equation (PDE):

d ~C

dt
(p) = f(p) ~N~C(p) .

This flow is expressed in terms of a force function f times the
normal function of the curve ~N~C .
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Euclidean Curve Shortening Flow

• Let E( ~C) =
∮

~C
ds where ds = ‖~C ′(p)‖dp is differential arc

length.

• This energy functional is smaller when ~C is shorter, so the
gradient flow is in the direction which minimizes the curve
length the fastest. The gradient flow (which can be found using
the Euler-Lagrange equation) is:

d~C

dt
(p) = −κ~C(p) ~N~C(p) .

• This flow has a smoothing effect and nice geometrical
properties (e.g., evolution using this flow shrinks any embedded
plane curve to a point without any self intersections).

• Common to use curve length as a regularizing prior term.
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Level Set Methods

• A natural numerical implementation to
track ~C is to use marker points on the
boundary [Kass et al. 1988].

• This approach has problems with
reinitialization and topological change.

• Level sets are an alternative approach
which evolve a surface Ψ (one dimension
higher than our curve) whose zeroth
level set is ~C. [Osher and Sethian 1988]
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Level Set Methods (continued)

• Setting Ψ( ~C(p)) = 0 for all p ∈ [0, 1] and differentiating with
respect to t, we obtain:

dΨ
dt

=
d ~C

dt
· ∇Ψ = (f ~N~C) · ∇Ψ .

• Standard curve derivatives can be written in terms of Ψ:

~N~C =
∇Ψ
‖∇Ψ‖ and κ~C = ∇ ·

( ∇Ψ
‖∇Ψ‖

)
.

• This results in an evolution equation for Ψ of:

dΨ
dt

= f‖∇Ψ‖ .

• The force function f is only defined on the curve. Velocity
extension methods are a standard method to extend it to Ω.
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Markov Chain Monte Carlo
• Markov Chain Monte Carlo (MCMC) methods are a class of

algorithms which are designed to generate samples from a
target distribution π(x).

• π(x) is difficult to sample from directly, so instead a Markov
chain with transition probability T(y |x) is constructed whose
stationary distribution is π(x):

π(z) =
∫

π(x)T(z |x)dx .

• Detailed balance is a sufficient condition for this to hold:

π(z)T(x | z) = π(x)T(z |x) .

• If a chain is ergodic and detailed balance holds, successive
samples from T(z |x) asymptotically become samples from
π(x).
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Metropolis-Hastings
• General method developed by Metropolis et al. (1953) and

extended by Hastings (1970).

• Define transition probability as the product of a proposal
distribution q(y |x) and an acceptance probability a(y |x).

• A candidate sample is generated from q, and the Hastings ratio
is computed:

η(y |x) =
π(y)q(x | y)
π(x)q(y |x)

.

• Then the next iterate value z = y with probability
min(1, η(y |x)). Otherwise z = x.

• Problem of sampling from π is now the problem of generating
many samples from q and evaluating π.
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Curve Sampling
• We construct a curve sampling framework based on the

Metropolis-Hastings algorithm.

• The target distributions π( ~C) are usually based on standard
curve evolution energy functionals (e.g., Chan-Vese or
non-parametric densities similar to Kim et al.).

• We define our proposal distribution q(~Γ(t) | ~C(t−1)) by
specifying a method of generating samples from it using
random curve perturbations.
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Curve Perturbations
• For consistency, all perturbations for a curve ~C are defined

relative to a canonical arc length parameterization ~Ca.

• We generate random, correlated Gaussian noise

f (t) = µ~C
(t−1)
a

(p) + h ©∗ n(t)(p) .

• These smooth perturbation are added to the normal of the
curve:

~Γ(t)(p) = ~C(t−1)
a (p) + f (t)(p) ~N~C

(t−1)
a

(p)δt

• Our standard choice for the mean perturbation is:

µ~C
(t)
a

(p) = −ακ~C
(t)
a

(p) + γ~C
(t)
a

.
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Convergence
• For ergodicity, we need to show irreducibility and aperiodicity.

The latter is difficult to show, but even without it, sample
averages will converge asymptotically.

• For a chain to be irreducible, any two curves ~C0 and ~C1 with
non-zero probability under π must have non-zero probability of
transitioning from ~C0 to ~C1 by simulating the chain.

• For “nice” curves, we can construct a discrete evolution:

~C(p, τ + δt) = ~C(p, τ) +
δt

T

〈
~CT (p)− ~C0(p), ~N~Cτ

(p)
〉

~N~Cτ
(p)

with non-zero probability under our Gaussian perturbation
model.

• We can make arbitrary curves convex using a −κ ~N flow [Gage
1986] which also has non-zero probability for our perturbation
model.
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Numerical Implementation
• While we view our method as having a continuous curve, any

implementation must be discrete.

• At time t, we generate the random portion of the perturbation
r(t)(p) as a discrete Gaussian vector r(t) = Hn(t) (where n(t)

is white noise and H implements circular convolution).

• The curve is discretized on a set of points {pi}Nc
i=1 ∈ [0, 1],

extracting the points from the level set Ψ~C
(t−1)
a

.

• The r(t) values are interpolated to {pi}Nc
i=1 (using, e.g., linear

interpolation or cubic splines) and added to the mean
perturbation µ~C

(t)
a

(p) (computed on the discretization points)

to form a perturbation f (t).

• We apply f (t) to ~C
(t−1)
a using a narrowband level set

implementation.

15



GSS ystems
tochastic

roup

Detailed Balance
• To implement Metropolis-Hastings, we need to be able to

calculate the Hastings ratio:

η(~Γ(t) | ~C(t−1)) =
π(~Γ(t))q(~C(t−1) | ~Γ(t))

π(~C(t−1))q(~Γ(t) | ~C(t−1))
.

• The target distribution computation is application dependent.

• The probability of the forward transition is approximately the
probability of generating the perturbation f (t):

q(~Γ(t) | ~C(t−1)) ≈ p(f) ∝ exp
(
−nTn

2σ2

)

This is exact for infinitesimal δt.
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Reverse Perturbation
• The reverse perturbation is the one that takes us from ~Γ(t) back

to ~C
(t−1)
r , a curve which is geometrically identical to ~C(t−1):

~C(t−1)
r (q) = ~Γ(t)

a (q) + φ(t)(q) ~N~Γ
(t)
a

(q)δt

φ(t)(q) = µ~Γ
(t)
a

(q) + h©∗ ν(t)(q)

~Γa(q0) = ~Γ(p0)

f(p0) ~N ~Ca

(p0)δt

φ(q0) ~N~Γa

(q0)δt

~Ca(p0) ~Cr(q0)
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Reverse Perturbation (continued)

• Given the reverse perturbation φ(t), we can employ a similar
discretization as for the forward computation and approximate
the reverse proposal distribution probability as:

q(~C(t−1) | ~Γ(t)) ≈ p(φ) ∝ p(ν) ∝ exp
(
−νTν

2σ2

)

• By building a linear approximation to ~C
(t−1)
a around p0, we

can estimate the reverse perturbation at q0 (where p0 and q0

are defined so that ~Γ(t)(p0) = ~Γ(t)
a (q0)) as:

φ̂
(t)
lin(q0) = − f (t)(p0)〈

~N~C
(t−1)
a

(p0), ~N~Γ
(t)
a

(q0)
〉 .
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Summary of Algorithm
1. Initialize ~C(0) to some initial value (deterministic or random).

Set t = 1.

2. Generate candidate sample ~Γ(t) ∼ q(~Γ | ~C(t−1)) by creating a
Gaussian perturbation f (t) and applying it to the normal:

~Γ(t)(p) = ~C(t−1)(p) + f (t)(p) ~N~C(t−1)(p)δt

for some positive constant δt.

3. Compute Hastings ratio η(~Γ(t) | ~C(t−1)). This requires
evaluation of the forward and reverse perturbation probabilities
q(~Γ(t) | ~C(t−1)) and q(~C(t−1) | ~Γ(t)) as well as the target
distribution probabilities π( ~C(t−1)) and π(~Γ(t)).

4. Accept or reject ~Γ(t) with probability η(~Γ(t) | ~C(t−1)) to obtain
the current iterate value ~C(t).

5. Increment t and return to Step 2.
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Visualizing Samples
We use four main methods for visualizing the output of our curve
sampling algorithm:

1. Most likely samples
• Close to the global maximum.

2. Histogram images
• Given samples {~Ci}N

i=1, Φ(x) = 1
N

∑N
i=1H(−Ψ~CN

(x)) (i.e.,
the percentage of samples for which x is inside).

3. Marginal confidence bounds
• Level curves of Φ. These can give an idea of the range of

likely locations of the true curve.

4. Principal modes of variation
• Principal components analysis (PCA) on signed distance

functions. [Leventon et al. 2000]
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Synthetic Noisy Image Example

• Assume a piecewise-constant image
m(x) with white Gaussian noise w(x):

I(x) = m(x) + w(x)

• This corresponds to the Chan-Vese
energy functional (which also adds a
regularizing term):

E(~C) =
∫∫

R~C

(I −m1)2dx

+
∫∫

Rc
~C

(I −m0)2dx + β

∮

~C

ds
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Synthetic Gaussian Results

 

 

true
#1
#2

 

 

true
10/90%
50%

• Most likely samples not very accurate (due to specific noise
configuration).

• 10/90% confidence bounds bracket the true answer.
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Prostate Magnetic Resonance Example

• Segmentation of the prostate from
magnetic resonance (MR) images is
important for cancer staging and
treatment planning.

• Here we have a bias-corrected noisy
T1-weighted image that simulates a
body coil image.
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Non-parametric Intensity Distribution
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• We learn (from segmented training
data) non-parametric histogram
distributions p(I(x) | 0) and p(I(x) | 1).

• This leads to a data likelihood of:

p(I | ~C) =
∏
x

p
(
I(x) |H(Ψ~C(x))

)

with H the Heaviside function.

• Adding in a curve length prior results in
an overall target distribution of

π( ~C | I) ∝ p(I | ~C) exp(−β dSAD( ~C, ~Ci)) .
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Prostate MR Results
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• Most likely samples actually capture the prostate and rectum.

• Multi-modality evident in the histogram image.
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Clustered Prostate Samples
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• We can cluster the results into prostate-only, rectum-only, and
prostate-and-rectum groups.

• Here we display the results for the prostate cluster.
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Conditional Simulation
• In many problems, a model may admit many reasonable

solutions. This can be due to a low signal-to-noise ratio (SNR)
or an ill-posed estimation problem.

• For most segmentation algorithms, user input is limited to
initialization and parameter selection.

• Conditional simulation involves sampling part of the solution
conditioned on the rest being known (e.g., pinned Brownian
motion).
− For curve sampling, part of the curve is specified. Much

more feasible for sampling than constrained optimization in
high-dimensional spaces.

− Can help with both accuracy and convergence speed.
− Leads to interactive semi-automatic segmentation

approaches.
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Conditional Curve Sampling

• Let ~Ck : [0, b] → Ω be the known portion of the curve, and
~Cu : [b, 1] → Ω be the unknown portion.

• We now wish to sample from π̃(~Cu | ~Ck):

π̃( ~Cu | ~Ck) ∝ p(I | ~Cu, ~Ck)p(~Cu | ~Ck) = p(I | ~C)p(~Cu | ~Ck)

• We note that p(~Cu | ~Ck) = p( ~Cu, ~Ck)/p(~Ck), and the
denominator can generally only be obtained from p(~C) by
integrating out ~Cu.
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Exact Curve Information
• For special cases, evaluation of p( ~Cu | ~Ck) is tractable:

− ~C is low-dimensional.
− ~Ck is assumed to be exact.
− p(~C) has special form (e.g., Markov structure).

• When the curve is specified exactly, we observe that

π̃(~Cu | I, ~Ck) ∝ p(I | ~C)p(~Cu, ~Ck)/p(~Ck) ∝ π(~C | I)

• Thus we see that evaluation of the target distribution is
unchanged. The proposal distribution must be modified so that
candidate samples remain on the manifold of curves which
contain ~Ck.

• To do so, we can multiply our earlier perturbation f(p) by a
scalar field d(p) which is 0 on [0, b].
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Thalamus Segmentation

• The thalamus is a subcortical brain
structure.

• Low-contrast makes it difficult to
distinguish it from surrounding cerebral
tissue.

• One approach to make the problem
better-posed is using shape models
(Pohl et al. 2004).

• We apply our conditional simulation
approach which requires much less
training and allows more user control
over the segmentation process.
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Multiple Disjoint Regions

• Disjoint regions leads to a set of multiple curves C = {~Ci}Nc
i=1.

• Perturb each curve individually with

q(Γ |C) =
∏

i

qi(~Γi | ~Ci) .

• Curves are coupled together through the evaluation of π.
Because pixel intensities in both halves of the thalamus are
drawn from the same distribution, we combine the curves into
a joint label map λC(x) which is 1 if x is inside any ~Ci.

• If curves represent objects with different statistics, we would
need to resolve ambiguities caused by overlap.
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Thalamus Model
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• Learn histograms from band of pixels
within a distance d0 of the
expert-segmented boundary.

• Resulting data likelihood:

p(I |C) =
∏

{x |∃ i s.t.

|Ψ̃~Ci
(x)| ≤d0}

p (I(x) |λC(x))) .

• This leads to an overall target
distribution of:

π(C) ∝ p(I |C) exp

(
−α

∑

i

∮
~Ci

ds

)
.
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Top Points Fixed
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Adding Constraints at the Bottom
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Gravity Inversion

Bodies
Salt

x

z

Gravimeters • The goal is to find salt body boundaries
using an array of surface gravimeters.

• Difficult to image below salt without
knowing bottom salt. Salt bodies also
act as liquid traps (e.g., gas, oil).

• Data are processed to remove base
effects (e.g., the geoid, centrifugal force)
to leave residual gravity effects from
differing salt density:

~gi = G

∫

Ω

ρ(x)(x− xi)
‖x− xi‖3 dx

• Shape priors difficult to apply.
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Gravity Inversion Model
• To construct a curve-based gravity model, we assume constant

density inside and outside salt:

ρ(x; ~C) = ∆ρH(−Ψ~C(x)) .

• This leads to the following forward model to translate a curve
into a gravity measurement:

~gi(~C) = ∆ρG

∫

R~C

(x− xi)
‖x− xi‖3 dx .

• We construct an energy functional that penalizes the L2 error
between the observed gravity and the forward model plus a
regularization penalty:

E(~C) =
Ng∑

i=1

||~gi( ~C)− ~ξi||2 + α

∮
~C

ds
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Real Geometry: Gravity Profile
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• 600 measurements, 300× 240 image (72,000 pixels).

• Synthetic salt body constructed from expert-segmented seismic
image.
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Real Geometry: Most Probable Samples
& Confidence Bounds
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Samples generated with top salt fixed.
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Real Geometry: Results Overlaid on
Seismic
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(in real life, this creates a registration problem)
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Synthetic Two Body: Gravity Profile
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• 512 measurements, 256× 256 image (65,536 pixels).

• Purely synthetic salt body.
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Synthetic Two Body: Optimization

 

 

local opt

• We can form a curve evolution flow for
our energy functional (not given here).

• After running multiple experiments
with a varying regularization parameter
α, we show here the best result.

• Location of bottom is more uncertain
than location of top due to weaker
gravitational effects. This results in the
regularization having a stronger effect
at the bottom.
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Synthetic Two Body: Unconstrained
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Synthetic Two Body: Top Salt
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Synthetic Two Body: Top Salt and
Recumbency
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PCA Formulation
• Take a set of K curves {~Ci}K

i=1, and compute the signed
distance function Ψi for each ~Ci.

• The mean level set function Ψ̄(x) is then computed and
subtracted from each level set function:

Ψ̃i(x) = Ψi(x)− Ψ̄(x) .

• Each level set is converted to a vector ai. These vectors then
combine to form a matrix:

A =
(

a1 a2 . . . aK

)
.

• The singular value decomposition of A is:

A = UΣV T . (1)

U contains the eigenvectors, and Σ has the variances on its a
diagonal.
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PCA Eigenvectors

 

 

true
mean
+/−1

 

 

true
mean
+/−1

 

 

true
mean
+/−1

• We show the zero level sets of the three principal eigenvectors
at one standard deviation (Ψ = Ψ̄± 1 · σiΨi).

• The second mode captures the left salt body nearly perfectly.
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Sampling Surfaces
• Extending our 2D curve sampling formulation to three

dimensions is not straightforward, primarily because a
canonical parameterization does not exist.

• Let ~S : [0, 1]× [0, 1] → R3 be a surface and Y be the observed
3D volume.

• We construct a collection of curves on equally-spaced parallel
slices S = {~c1,~c2, . . . ,~cN}.

• We then approximate the process of sampling from π(~S|Y ) by
sampling from π(S|Y ).
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Hybrid 2D/3D Markov Model

~c1

~c2

~c3

~c4

~c5

y1

y2

y3

y4

y5

• Construct target distribution as undirected
Markov chain.

• This leads to the following factorization of
π(S |Y ) in terms of potential functions:

π(S |Y ) ∝
N∏

i=1

Φi(~ci)
N∏

i=1

Λi(~ci, yi)
N−1∏

i=1

Φi,i+1(~ci,~ci+1)

• Φi(~ci) and Λi(~ci, yi) involve intra-slice
interactions. Φi,i+1(~ci,~ci+1) models
inter-slice interactions (e.g., dynamic shape
models).

51



GSS ystems
tochastic

roup

Slice-based Surface Area Model
• The standard regularizing term for 2D curve evolution is curve

length. The analogous quantity in 3D is surface area.

• Consider a slice-based approximation to surface area:
∫∫

~S

dA ≈
∫∫

0⊕~c1

dA +
N−1∑

i=1

∫∫

~ci⊕~ci+1

dA +
∫∫

~cN⊕0

dA .

• We need to define a natural surface construction method to
connect curves in adjoining slices (minimal surfaces are not
geometrically accurate as they bow inwards).
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Template Metric as a Coupling Term

• If we approximate the coupling areas as
piecewise-constant (in the z-direction), we
get a stacked cylinder approximation.

• Again, the template metric (or symmetric
area difference) is:

dSAD( ~C1, ~C2) =
∫∫

R~C1
\R~C2

dx +
∫∫

R~C2
\R~C1

dx .

• Using symmetric area difference, we can
write the slice-coupling surface area as:
∫∫

~ci⊕~ci+1

dA =
∆z

2

∮

~ci

ds+
∆z

2

∮

~ci+1

ds+dSAD(~ci,~ci+1)
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Neighbor Slice Constraints
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• Consider the situation where we are
given ~cn−1 and ~cn+1 and we wish to ~cn.

• Due to Markov nature of model, ~ci is
conditionally independent of all other
slices, so we simply have a 2D curve
sampling problem with additional terms
in the energy (can view as shape priors):

π(~cn | S \ ~cn, Y ) ∝ Φn(~cn)Λn(~cn, yn)

Φi−1,i(~ci−1,~ci)Φi,i+1(~ci,~ci+1)
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Thalamus: Neighbor Slice Results
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Local Metropolis-Hastings Sampling

~c1

~c2

~c3

~c4

~c5

y1

y2

y3

y4

y5

• If there are contiguous unknown slices, we
need to be able to sample from the joint
distribution over those slices (discontiguous
groups of slices may still be processed
independently).

• One option is to do Gibbs sampling and
iteratively sample from p(~ci|~ci−1,~ci+1, yi)
where i can be changed randomly or
deterministically.

• We do not know how to sample from p
directly. Instead, we can do N
Metropolis-Hastings steps (same
formulation as for the 2D case) and still
have detailed balance hold.
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Slices 13-16 Unknown
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Variable Unknown Gaps (2 or 3)

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

 

 

expert
10/90%
50%

10 11 13 14

58



GSS ystems
tochastic

roup

Variable Unknown Gaps (4 or 5)
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Error Per Slice
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• We can use a number of methods to
compare our sampling results with the
expert segmentations:
− Symmetric area difference (SAD) or

Dice measure between median contour
and expert contour.

− L2 distance between histogram image
and binary 0/1 expert label map.

• The upper-left figure shows the L2 error
per slice for an example with a gap of 6.

• The lower-left figure shows average,
minimum, and maximum L2 errors per
slice for a varying gap size.
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Orthogonal Slice Information

c1
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c3

c4

y
1

y
2

y
3
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4

c

• An alternative model is to consider
having slices oriented in orthogonal
directions.

• If ~c⊥ is known and fixed, this is
equivalent to fixing the segmentation
values along a row or column in the
original slices.

• Thus we can incorporate this
information simply using our 2D
conditional sampling framework.
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Sagittal Expert Segmentations
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Axial & Sagittal Constraints, Axial Slices
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Summary
• We constructed a sampling method using Gaussian

perturbations and showed how to maintain detailed balance.

• We demonstrated the benefits of sampling over standard
optimization-based techniques on a number of examples.
− Avoids local minima and handles multi-modal distributions.
− Confidence bounds and PCA modes.
− Do not need access to gradient of energy functional.
− Robust to model error.
− Conditional simulation and interactive segmentation.

• We extended our framework to a hybrid 2D/3D model to
sample surfaces.
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Future Work
• Sampling:
− Faster numerical implementations.
− Better perturbations (e.g., multiresolution,

feature-generating).
− Jump-diffusion for topological change.

• Modeling:
− Region-based user inputs.
− Incorporate uncertainty into user information.
− Time-based Markov chain problems.

• Visualization:
− Interactive PCA mode exploration.
− Conditional simulation using PCA approximations.
− Manifold-based representations.
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Gibbs Sampling
• MCMC method developed by Geman and Geman (1984). Most

easily applied to models which have a Markov structure.

• Begin by dividing the variables into two subsets xS and x\S .
x\S remains unchanged (so y\S = x\S).

• The proposal distribution q(yS |x) is defined to be the
conditional probability of yS given the remaining variables:
q(yS |x) = π(yS |x\S). The resulting sample is always
accepted, so a(y |x) = 1.

• If the model is defined by a Markov graph structure,
π(yS |x\S) = π(yS |xN (S)) where N (S) is the neighborhood of
S.

• The subset S changes over time. This can be done randomly or
according to some deterministic sequence.
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Multi-modal Shape Model
• Here we construct a shape model using non-parametric Parzen

density distributions. [Kim et al. 2007]

• We define the symmetric area difference (SAD) as:

dSAD(~C1, ~C2) =
∫∫

R~C1
\R~C2

dx +
∫∫

R~C2
\R~C1

dx .

• A Parzen density is constructed from exemplars {~Ci} and a
kernel function K:

p̂(~C) ∝ 1
N

N∑

i=1

K(~C, ~Ci) .

• We construct our kernel function as exponentiated negative
distance:

K(~C, ~Ci) = exp(−β dSAD(~C, ~Ci)) .
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Two Target Curves

 

 
init

• We construct a target distribution using
the shape model and a regularizing
term:

π( ~C; {~Ci}M
i=1)∝

(
M∑

i=1

e−β dSAD(~C, ~Ci)

)
e(−α

∮
~C

ds) .

• In this example, we have two target
curves ~C1 and ~C2 which are circles
horizontally offset from each other.
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Sampling Results
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• Most probable samples find each mode.

• Marginal confidence bounds are not as informative due to
multi-modality (analogous to mean of Gaussian mixture).
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Clustering the Samples
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• The samples from the two
modes are very different, so
they are easy to cluster using a
variety of techniques.

• Here we cluster the samples
into groups corresponding to
the left and right target curves.

• We display the resulting most
probable samples, histogram
images, and marginal confidence
bounds for each cluster.
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