MCMC Curve Sampling for Image Segmentation
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Introduction

e Hybrid Markov Chain Monte Carlo (MCMC) and curve evolution
sampling approach.

e \We generate samples using correlated Gaussian curve perturbations
and show how to apply the Metropolis-Hastings acceptance rule to
provide detailed balance.

e This leads to an iterative algorithm to sample from probability dis-
tributions on curves.

e Extend to a conditional simulation approach for interactive segmenta-
tion where part of the curve is specified and the remainder is sam-
pled conditioned on the known part.

e Major advantages:

— Naturally handle problems with multi-modal distributions.
— Most probable samples similar to running a global optimizer.

— Multiple samples can be combined together to provide higher-
order curve statistics (e.g., error estimates).

— Conditional simulation approaches can substantially lessen
work required for manual segmentation and dramatically re-
duce uncertainty for low-contrast problems.

Background

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms
designed to generate samples from a target distribution =(x). which is
difficult to sample from directly. Instead a Markov chain with transition
probability T(y|«) and stationary distribution 7(x) is constructed:

m(z) = /TF(I)T(Z |z)dz . (1)
Detailed balance is a sufficient condition for this to hold:
m(2)T(z]2) = m(2)T(z|z) . @)

If a chain is ergodic and detailed balance holds, sequential samples from
T(z | z) asymptotically become samples from (z).

Metropolis-Hastings is a general MCMC algorithm developed by
Metropolis et al. (1953) and extended by Hastings (1970). The transition
probability T(z|x) is defined as the product of a proposal distribution
q(y | z) and an acceptance probability a(y | ). A candidate sample is gen-
erated from g, and the Hastings ratio is computed:

m(y)a(=|y)
ylo)= -+ . ®)
)= @ay o)
Then the acceptance rule states = = y with probability min(1,7(y | z)).
Otherwise z = z. Detailed balance automatically follows.

Curve Evolution

Given an image I defined on an image domain Q c R2, curve evolution
methods find a curve € : [0,1] — Q that minimizes an energy functional

E(C) using gradient descent. This results in a geometric PDE flow:

) = 1)) (@
where f is a force function and /\70- is the normal to the curve.
A classical example of this is the Euclidean curve shortening flow:
ac
dt

This flow minimizes the energy E(C) = $7ds where ds = IC" (p)||dp is
differential arc length. This generally has a smoothing effect, and it is
common to use as a regularizing prior term.

(p) = —ra()N5(p) . (5

Level set methods are a standard numerical
implementation which evolve a surface ¥ (one
dimension higher than our curve) whose ze-
roth level set is C. (Osher and Sethian 1988)
Flow on a curve is related to a flow on the level
set:

av  acé .
o E'V‘I’ = f(Né'V‘I’) = fIVel . (6) -
Need to do velocity extension to make f de-

fined on all of Q.

Sampling Framework

We define an algorithm to sample curves using a Metropolis-Hastings
MCMC algorithm which transforms the problem of sampling from 7 into
one of generating many samples from q. We view the curve evolution
energy functional E(é; I) as a negative log probability distribution. This
means we write our target distribution as:

(C 1) oc exp(~E(C 1)) W)
In this framework, we implicitly define q(f | 6) by explicitly defining how
to sample from it. Candidate samples are generated through random
Gaussian perturbations, and then we approximately compute the prob-
ability of those perturbations. Similar approach to Tu and Zhu (2002).

Largest difference is we address the issue of detailed balance, so we are
generating samples, not doing optimization.

Overall Algorithm

1. Set C(© to some initial value (deterministic or random) and ¢ = 1.

2. Generate candidate sample T ~ q(I| C(*=1) by creating Gaus-
sian perturbation f®). This results in T®(p) = Ct-V(p) +
FO(p)N g1 (p)dt for some positive constant 6t. Implement with
level sets, but no topology change allowed.

3. Compute Hastings ratio 5(I'®) | C(t=1)) which requires evaluation
of the forward and reverse perturbation probabilities q(I'® | C(=1))
and q(Ct=1 |T®) as well as the target distribution probabilities
x(Ct=D) and 7(F®),

4. Accept of reject T'(Y) with probability n(I') | C*=1)) to obtain the cur-
rent iterate value C(*),

5. Increment ¢ and return to Step 2.

Forward Perturbation

To make the sampling process geometric, we define all perturbations rel-
ative to a canonical arc length curve parameterization. We denote the arc
length-parameterized curve as C, and drop the time superscripts for sim-
plicity. We then generate random, correlated Gaussian noise:

f(0) = pa () +h ® n) . )
These perturbation are added to the normal of the curve:
T(p) = Ca(p) + F(0)N 5, (0)3t . ©)

Our standard choice for 4 is a smoothing term:

1 (p) = —akg (p) +75, - (10)

The probability of the forward perturbation is (approximating as dis-
cretized vectors):

o o T
alF10) = () = vl + H) o (<53 . @)

Reverse Perturbation
The reverse perturbation (going from T back to ') can be written as:
Ci(q) = Talq) + ¢(9)Nz (q)6t (12)
o(q) = pg (@) +h @®v(9) (13)

Here C, is geometrically identical to C but with a different parameteriza-
tion. We can find ¢ by tracing back along the normal of T',.

Talqo)

#(q0) N, (40)t

1) NG, (po)st

This computation can be approximated by forming locally-linear approx-
imations to C, to obtain;

dlao) = —% : (14)
(Napo), Ne(ao))
The curve parameters p, and qq are defined so that T'(pg) = Ta(qo).
This results in a reverse perturbation probability:
== l/Tl/
a(C1T) = p(6) = plpg + ) e (<5F) a9

Experimental Results

We demonstrate the algorithm on three examples: a synthetic image with
very low SNR, a noisy prostate magnetic resonance (MR) image, and a
thalamus MR segmentation problem. For each example, 1000 samples are
generated. We use three main techniques to visualize the output:

1. Plotting the most likely samples. These can be viewed as a proxy
for what a global optimization approach would capture.

2. Histogram images. For each pixel x, we count the samples for
which « is inside the curve. This value ®(x) is the marginal dis-
tribution over segmentation labels at each € ).

3. Marginal confidence bounds. Given a histogram image, we plot
the level contours (the kth level contour is the set of points x such
that ®(x) = k). which can be viewed as confidence bounds (e.g.,
the 10% confidence bound is the contour outside of which all pixels
were inside fewer than 10% of the samples).

Synthetic Example

Generate image as piecewise constant plus Gaussian noise (forward
model implied by Chan-Vese energy). Overall SNR is -20 dB. Energy func-

tional is:
E(C) :74/(1_ml)de+74/(1—mo)2dw+a7§6ds (16)

In this case, due to the specific noise realization, the most probable sam-
ples are actually not very good in the upper-right corner. Histogram im-
age and confidence bounds tell us likely range of locations for the true
location whereas optimization would only give us an incorrect answer.

Prostate Segmentation

The images were obtained from a prostate MR image captured with a sur-
face coil, and the bias field was removed using the technique in Fan et al.
(2003). Gaussian noise was added to then simulate a T1-weighted body
coil image. We assume that pixels are iid given the curve and learn non-
parametric histogram distributions p(Z(z)|0) and p(I(x)|1) (shown be-
low) to specify the pixel intensity distribution outside and inside the curve
respectively. The overall data likelihood term is

p(I|C) =]]p (I(=) | H(¥s(x))) n

with H the Heaviside function. We use a standard curve length penalty
as the prior.

We can see that this distribution has three primary modes: one around the
correct prostate segmentation; another which segments just the rectum;
and the third encompasses both the prostate and the rectum. The curves
that segment the two regions together are actually from the most likely
mode due to the learned intensity models and simplistic iid assumption.

While the aggregate marginal
statistics do not appear to be pro-
viding very useful information,
we can cluster the samples into
prostate-only, rectum-only, and
prostate and rectum segmenta-
tions.

We show the most-likely sam-

ples and the marginal confidence

boundaries for the prostate-only cluster Note that an optimization-based
approach would have only found the prostate and rectum cluster due to
the multi-modality.

Conditional Simulation

In many problems, multiple reasonable solutions may exist due to low
SNR or ill-posedness. Conditional simulation involves sampling part of
the solution conditioned on the rest being known (e.g., pinned Brownian
motion). For curve sampling, this means that part of the curve is speci-
fied. This approach is much more feasible with sampling than it would be
doing constrained optimization in high-dimensional spaces.

Let C : [0,5] — © be the known portion of the curve, and C,, : [b,1] — ©
be the unknown portion. When there is no uncertainty associated with
Ck, the conditional target distribution 7(C, | Ci) can be written as:

#(Cy | 1,Ci) o p(I| C)p(Ca, Ck) /p(Cr) o w(C| 1) . (18)

We see that evaluation of the target distribution is unchanged. The dif-
ference is that some of the curve does not change with time, so the pro-
posal distribution must be modified so that perturbed curves remain on
the manifold of curves which contain Cy. To do so, we simply multiply
our perturbation f(p) by a smooth scalar field d(p) which is 0 on [0, b].

Thalamus Segmentation

Low contrast makes it difficult to distinguish the thalamus from sur-
rounding cerebral tissue. One approach to this problem is to use shape
models (Pohl et al. 2004). Here we apply our conditional simulation ap-
proach which requires much less training and allows more user control
over the segmentation process.

Note that the thalamus has two halves which we track with independent
curves C = {C;}2_,. We perturb each curve individually, and the curves
are combined into a joint label map A\c(z) which is 1 if z is inside any C.
The evaluation of 7 is now done relative to Ac(x).

We apply a similar non-parametric data intensity model as for the
prostate, except the probability distribution is only defined in a band 10-
pixels thick around the curve location.

plC) = ]
A=[Tist.
[V, ()] <do}

p((z)|Ac(z)) (19)

We begin by fixing a point on the top of each half of the thalamus (without
any constraints, the samples generated are extremely poor):

We can see there is greater uncertainty (in terms of the gap in the confi-
dence bounds) at the bottom. If we iteratively introduce additional expert
information at the bottom, we can refine the results:

Conclusion

e Introduced a framework combining curve evolution and MCMC
methods to sample from probability distributions on curves.

e Showed how to evaluate probability of perturbations to ensure de-
tailed balance.

e Demonstrated benefits over optimization-based methods:

— Noisy synthetic example: global maximum is skewed by the
noise, but marginal confidence bounds bracket the true curve
location.

— Prostate: multi-modal distribution. Clustering to characterize
different modes.

— Thalamus: conditional simulation to perform semi-automatic
segmentation.




