
Group Protocols for Peers-Based Systems: A Case

Study

Hui Fang†, Wen Jing Hsu‡, and Larry Rudolph§

† Singapore-MIT Alliance, National University of Singapore
‡Nanyang Technological University, Singapore

§CSAIL, MIT

email: {fanghui@nus.edu.sg;hsu@theory.csail.mit.edu;rudolph@lcs.mit.edu}

October 2005

Abstract

Group protocols are needed under circumstances where a large number of peers may
join or leave the system simultaneously. For instance, collaborative groups of peers may
form, merge or split dynamically. Without a group-oriented protocol coordinating the
transformation of topology, the simultaneous joining/leaving of a massive number of
nodes can impair the routing information and hence the system functionality. Existing
P2P protocols only allow nodes to join or leave individually which unfortunately either
causes a large number of messages in the process or results in long delays before the
system can function normally.

Here we present two protocols for coordinated merging of Chord overlays. The goal
is to merge all the nodes in two given Chord overlays into a single new Chord ring,
while re-configuring their routing tables to support correct and efficient searching. In
order to reduce the number of messages and time delays, both protocols take advantage
of the existing structures of the overlays. Our methods also allow concurrency in the
merging operations, which can reduce the overall latency. Let M and N denote the
number of nodes in the two given overlays, where M ≤ N . Our improved protocol
requires no more than O(M lg M+N

M lg(M + N)) messages and an overall latency of
O(lg M+N

M lg(M + N)) time steps.

1 INTRODUCTION

In the past few years, many peer-to-peer (P2P) systems based on DHTs (Distributed Hash-
ing Tables) have been proposed, e.g. [1, 2, 3, 4]. These systems are both decentralized

1

and autonomous, and the protocols can work with individual node arrivals and departures.
However, few protocols are currently available for coordinating group actions such as the
merging of application-level network overlays. One exception may be [12] where protocols
for forming subgroups from a given Chord are presented. Two P2P systems may need to be
merged into a single new P2P system under various circumstances. For example, in comput-
ing grid based on dynamic P2P system, two well-structured subgroups may need to form a
single group to provide more powerful computing capability. Thus merging operation may
also be used to combine ad hoc collaborative groups on the computational Grid [13].

Here we will consider the specific problem of merging two Chord overlays into one. The
goal is to reassign all the nodes onto the new Chord along with their routing tables (called
the finger tables) to support correct and efficient searching. In Chord, at least Ω(N lg2 N)
messages and the same order of time delays will be required, where N denotes the total
number of nodes in the combined network. Stoica et al. [1] prove that when less than N
nodes join a stable Chord with N nodes, if all successor pointers (but perhaps not all the
other fingers) are correct, then lookups will still take O(lg N) time with high probability.
However, every time after N nodes joining, O(lg2 N) rounds of stabilization have to be done
to correct the states. The protocol entails up to O(lg2 N) messages overall. So far there is
no protocol guaranteeing the stability of the system when a large number of nodes all join
or depart simultaneously (as is the case with merging). Libe-Nowell et al. [11] analyzed
the maintenance rate of N-node Chord with appendage states, and the proposed join model
also showed that when N nodes join the network concurrently, after at least lg2 N rounds of
stabilization the lookup service can be achieved with high probability. Karger and Ruhl [12]
proposed a Diminished Chord for group formation in P2P networks, which allows subgroups
of nodes to form in the network by adding extra finger entries to the subsets of nodes. The
group protocol entails O(lg2 N) rounds of stabilization and O(N lg2 N) messages.

The existing join and departure protocols could be applied to handle the merging process
by firstly dispersing all the peers using a departure protocol, who then join again to form
a new overlay by using a joining protocol. However, the process generally entails a large
number of messages and a long overall latency before the new system can start functioning.
We will show that the merging process could be substantially eased by coordinating the
join/leave process and by exploiting the existing structures in the overlays. For instance,
instead of forming the target Chord from scratch, we may choose one existing overlay as
a base and let the peers in the second chord join this base. In the merging process, the
existing finger entries in the overlays could also be reused as much as possible to set up the
new overlay. This coordinated approach could save communication bandwidth and ensure a
correct merged result.

To illustrate our point, we will first consider a preliminary method for the merging of two
Chord overlays by concatenating them together, retaining a major portion of the finger
entries. Our analysis of the protocol shows that the message and the delays are indeed
reduced by a O(lg N) factor, where N denotes the total number of nodes in the combined

2

networks. However, there are certain restrictions about this approach. In our second, im-
proved protocol, we then show how to carry out even more efficiently. The process consists
of two short phases. The first phase will combine two Chords into a relaxed, but sufficiently
near version of Chord; the second phase then further refines it. The merging process takes
substantially fewer messages and causes shorter delays. The second protocol also allows
parallelism in the merging operations. Let M and N denote the number of nodes in the
two merging Chord overlays, where M ≤ N . Our improved protocol requires no more than
O(M lg M+N

M
lg(M +N)) messages and an overall latency of O(lg M+N

M
lg(M +N)) time steps.

The contributions of this paper are thus two-fold: (a) the provably efficient algorithms for
concurrent merging of two overlays, and (b) the proofs of the message complexity. We also
present Relaxed Chord, a generalized version of Chord, which does not require the fingers to
point at the exact location, but allows them to ”float” within a certain range. This relaxation
allows us to reduce the messages required for readjusting the fingers during the merge, yet
it still can guarantee to support lookups within O(lg N) hops.

The rest of the paper is organized as follows. Section 2 describes the model and formulation.
Section 3 presents the protocols for merging Chords and proves their correctness. In Section
4, we summarize our results and suggest issues for future research.

2 MODEL AND FORMULATION

Chord uses a Distributed Hash Table(DHT) to support the search function. The resource
objects (as identified by unique keys) and the hosts that maintain these resources are assigned
IDs in the same identifier space which forms a ring modulo 2n. Object k 1 is assigned to the
first host whose identifier equals to or follows k in the identifier space. This host is called
the successor of key k, denoted by successor(k). A node y is said to be x’s predecessor node,
iff (if and only if) x is y’s successor node.

Each host in Chord maintains a finger table which records at most O(lg N) other peer
addresses. For a node x, finger[i] in x is defined as the first node on the circle that succeeds
(x + 2i−1) mod 2n, i.e. finger[i] = successor(x + 2i), where 1 ≤ i ≤ n. Hence finger[1]
points to x’s successor node on the identifier circle. Chord provides only one basic function
lookup(key) that yields the node responsible for the key.

We write X = Chord(N, n, h) to denote a Chord X with ID space equal to 2n, a node set
XN := {xi : 0 ≤ i < N} and a hash function h : XN → N which maps the node set XN to
the identifier space of Chord X. Where there is no danger of confusion, the node set XN may
also be identified by X. When there is only one Chord X = Chord(N, n, h) in the context,
X may be written as X = Chord(N, n), and a node x in X is written as x ∈ X.

1To simplify our notations, where there is no danger of confusion, we identify the ID with the hashed
value. Thus, here k denotes the hashed value of the given object.

3

Given two Chords X = Chord(N, n, idX) and Y = Chord(M, m, idY), our goal is to merge
them into one larger Chord Z = Chord(R, r, idZ). So the new Chord Z will have R =
M + N nodes in total. Furthermore, the newly generated Chord will maintain connection
information defined by the finger tables of all peers. One immediate issue is to decide the
ID space of Chord Z. Clearly, the dimension of Z must satisfy the following inequality:
r ≥ max(n,m, lg(M + N)). We assume m ≤ n without loss of generality. In other words, r
could be chosen to equal n or n + 1. r = n means that all peers in Chord Y will be merged
into X’s current ID space. In this case, Chord X still has enough vacancies in its ID space,
i.e. lg(M + N) ≤ n. The case r = n + 1 means that the new Chord has two times identifier
space larger than X. There is no major difference between the two cases whether r equals
to n or n + 1, because section 3.3 shows that, by shifting the table entries, we can easily
enlarge X’s ID space by two times (or 2k times for any k ≥ 1).

In the remaining part of the paper, unless otherwise mentioned, we assume that, before
merging, the identifier assignments of the nodes on each Chord are distributed uniformly at
random on the respective ID space; moreover, the information stored in the finger tables of
each Chord is correct; also, during the merging procedure, there is no node joining or leaving
or node/link failures.

3 APPROACH AND CORRECTNESS PROOF

As mentioned earlier, it is straightforward to construct a new Chord by inserting the nodes
one by one. However, to conserve on the number of messages and to reduce the overall
latency, it makes more sense to preserve the structures of the existing chords as much as
possible.

To illustrate a coordinated merging process, we show the following protocol (Protocol 1)
which combines two Chord overlays to produce a new Chord.

3.1 A protocol for coordinated merging

The key idea here is for Chord X and Chord Y to each occupy a non-overlapping half space
of Z. Based on the hash function idX and idY , the identifier assignment on Z is given by:

∀z ∈ Z, idZ(z) :=

{
idX(z) if z ∈ X

idY (z) + 2n if z ∈ Y

3.1.1 Merging procedure

The merging can start with any pair of nodes xsrc ∈ X and ysrc ∈ Y , as long as there
is a connection setup between xsrc and ysrc. xsrc updates its finger table via ysrc, and it

4

will prompt the other nodes in X to update (modify or create new) fingers. The protocol
(Protocol 1) is shown in Table 1.

On node xsrc:
//Node ysrc searches the successor of key idX(xsrc) in Y
y := ysrc.lookup(idX(xsrc));
finger[n+1]:= y;
for i=1 to n

if idX(xsrc) + 2i−1 ≥ 2n do
finger[i]:= y.lookup(idX(xsrc) + 2i−1 − idY (y));

endif
endfor
send a message with content < xsrc, y, ”merge” > to its successor;
wait until the merge message returns from its predecessor and broadcast to all to terminate.

On any other node x:
receive the message with content < xsrc, y, ”merge” > from its predecessor;
if (idX(x) > idY (y)) do

//y is replaced by the successor of key idX(x) in Y, which is found by node y
y := y.lookup(idX(x));

endif
finger[n+1]:= y;
for i=1 to n

if idX(x) + 2i−1 ≥ 2n do
finger[i]:= y.lookup(idX(x) + 2i−1 − idY (y));

endif
endfor
send a ”readjust” message with content < xsrc, y, ”merge” > to its successor;

Table 1: Protocol 1

xsrc first tells its successor to start the merging operations, which in turn informs its successor
to proceed in the same way and so on. Nodes in Chord Y will carry out a corresponding
sequence of actions to adjust their finger tables. When a node x receives the message, it will
update its finger table. The update action is composed of adding a new entry finger[n+1] and
modifying possibly out-of-date fingers. By unraveling the incoming message with information
about its peer y, x can then set fingers to point at nodes in the second Chord. The process
stops when the ”merge” message returns to xsrc and ysrc.

3.1.2 Changes in finger entries

Here we analyze the number of finger table entries which need to be added or modified for
both Chords. With regard to the newly added entries (arising from the very last entry of
each finger table), we found:

5

Figure 1: Merging two Chord rings that are of the same dimension

Lemma 1: Let X = Chord(N, n, idX) and Y = Chord(M, n, idY) denote two Chord
networks to be merged by using Protocol 1 (as given in Table 1) and the resulting over-
lay is Z. Then Z = Chord(M + N, n + 1, idZ). Also, (1) the total number of different
new fingers and the number of times executed of the lookup operation are both no more
than 2min(N, M). (2) For each lookup y.lookup(idX(x)) in Table 1, |idX(x) − idY (y)| ≤
|idX(x)− idX(x.predecessor)|.

Proof. (Please refer to Appendix A.)

It is well known that the the larest zone size, i.e. the maximun difference between two
adjacent node IDs [5] [6], of a Chord network with N nodes is Θ(lg N) times of the average
zone size with high probability. Therefore the following corollary is immediate.

Corollary 1: with probability 1 − N−ε, where ε > 0 denotes a constant, each lookup
y.lookup(idX(x)) in Protocol 1 requires to contact no more than n− lg N

lg N
+ lg(1 + ε) nodes

in Chord Y.

Proof. (Please refer to Appendix B.)

Besides adding one new entry to the finger table, we note that the existing fingers may
become useless in the context of the new Chord. For instance, node 9 in Fig. 1 had a finger
to node 5, which becomes invalid after merging. The new finger now points to node 26
(which was previously node 10 in Y). The following theorem offers an upper bound on the
total number of modified entries.

Theorem 1: Let X = Chord(N, n, idX) and Y = Chord(M, n, idY) denote two Chord
networks to be merged by using Protocol 1 and let Z = Chord(M + N, n + 1, idZ) denote

6

the new Chord. Then the merging process requires to create less than 2 · min(N, M) new
fingers in Z, and to modify no more than 2(M + N)− lg(N ·M)− 4 fingers from X and Y.

Proof. (Please refer to Appendix C.)

Since each lookup can be resolved via O(lgN) messages to the other nodes on an N-node
Chord, the total number of messages required for merging purpose is O(N lg N). Compared
with a brute force method where each peer joins separately at a total cost of O(N lg N lg N),
the above method is more attractive. However, the approach mentioned above also suffers
from a major drawback: the resulting Chord will have uneven node distribution on its ID
space if there is a large difference between the number of nodes in Chord X and Y . Moreover,
the overall completion time O(N lg N) is too long for large N . To solve this problem, we
will introduce a new approach, which will be described next.

3.2 Modified Protocol

Without loss of generality, we assume that Chord Y has a lower dimension than X which
also has a sufficiently large identifier space to accommodate all nodes. (Section 3.3 shows
how to enlarge the identifier space without any communication cost.) In other words, we
have m < n and lg(M + N) ≤ n as two initial conditions.

This protocol will merge Y into X. The identifier reassignment in Z is as follows:

∀z ∈ Z, idZ(z) :=

{
idX(z) if z ∈ X

idY (z) ∗ 2n−m + δ if z ∈ Y

where δ denotes the least non-negative number which ensures that no other nodes have the
same ID.

3.2.1 Merging procedure

Definition 1: Let X = Chord(N, n, idX) and Y = Chord(M, m, idY) be as defined before,
where m < n. For each node y in Y, Interval(y) is defined by [idY (y) ∗ 2n−m, (idY (y) + 1) ∗
2n−m).

Protocol 2 is described in Tables 2, 3, and 4.

We will also use the following notations in the subsequent discussions:
p = 1

2n

β = pN
1−p

π = 2n−m

7

1. broadcast merging message in Y .

2. each peer z in Z = X
⋃

Y does:
2.1 z.reAssign();
2.2 z.newFingerTabSetup();

Table 2: Protocol 2

// reassign an ID to node z
procedure z.reAssign()

if (z ∈ X) return idX(z);
id = idY (z) ∗ 2n−m; // if z ∈ Y
while (id == idX(lookup(id))) id + +;
return id;

end

Table 3: ID reassignment

// returns a new finger table with size n.
procedure z.newFingerTabSetup()

if (z ∈ X)
newFingers= z.fingers; // copy the previous finger table.

else // z ∈ Y
newFingers= new(fingerTable, size=n);
for (i = 1 to m) do

copy(z.fingers+i, newFingers+n−m + i);
endfor
//Locally update in finger table
for (i = 1 to n−m) do

newFingers[i] = lookup(z + 2i);
endfor

endif
return newFingers;

end

Table 4: Create new finger table

It can be seen that π is the size of Interval(y) and β reflects the node saturability of Chord
X.

One immediate question is: what is the probability that a peer from Y will collide with the
identifiers of the existing peers in X? Lemma 2 shows that whether y can be inserted to
Interval(y) or not depends on the parameters β and π.

Lemma 2: Suppose that Protocol 2 (as described in Tables 2-4) is applied to merge X =
Chord(N, n, idX) and Y = Chord(M, m, idY) where m < n, and lg(M + N) < n. For any

8

node y in Chord Y, (1) y’s new ID in Z, idZ(y), is less than idY (y) ∗ 2n−m + β
(1+β)(1−β)2

on

expectation. (2) Let c denote a constant, where 0 ≤ c < min(π, N). With probability 1−βc,
y can be inserted to within the first c points of Interval(y).

Proof. (Please refer to Appendix D.)

Lemma 2 shows that the success of merging a node y into a target interval depends on how
full we have filled the peers in interval(y) and how large the interval is.

Theorem 2 follows directly from Lemma 2.

Theorem 2: Suppose that Protocol 2 (given in Tables 2-4) is applied to merge X =
Chord(N, n, idX) and Y = Chord(M, m, idY) where m < n, and lg(M + N) < n, and
n > (1 + ε) lg N , ε > 0. Then for any node y ∈ Y , with probability 1 − 1

Ncε , y can be
inserted to within the first c points of the Interval(y), where c denotes a constant and
0 < c < min(π, N). 2

The following proposition assesses the probability of Y being merged into X as a whole.

Theorem 3: Given X = Chord(N, n, idX) and Y = Chord(M, m, idY). If n > m and
n ≥ (2 + ε) lg N , ε > 0, then with probability 1−N−ε, Chord Y can be merged into Chord
X, with each y in Y assigned an ID inside Interval(y).

Proof. (Please refer to Appendix E.)

Remarks: The precondition n ≥ (2 + ε) lg N in Theorem 3 seems a little pessimistic.
Actually when the number of nodes in Y is also relatively small compared to X, it is with
probability at least 1− 2/N that each y in Y can be inserted to Chord X with an ID inside
its Interval(y). Applying Lemma 3.3 in [10], we obtain the following:

Corollary 4: Let X = Chord(N, n, idX) and Y = Chord(M, m, idY) be two given Chord
overalys. If n > m and n ≥ (lg N + lg(1 + ε)), and m < lg N + 2 lg ε − 3 − lg lg N , where
ε > 0, then with probability at least 1 − 2/N , Chord Y can be merged into Chord X with
each y in Y assigned an ID inside Interval(y).

3.2.2 Changes in fingers

Here we consider the efficiency of the modified protocol, in terms of the time required for
the adjustment to the finger tables.

We will relax on the definition of Chord.

9

Definition 2: X = Chord(N, n) is an α-Relaxed Chord iff: ∃0 < α < 1,∀x ∈ X,
x.finger[i] = successor(x + 2i−1 + δx,i), where δx,i ∈ [0, α2i−2), 1 ≤ i ≤ n.

Obviously, according to the definition, finger[1], finger[2] and finger[3] always reflect the
exact pointers to the other nodes. Other than these, the remaining fingers can have multiple
choices. To distinguish, we call the Chord defined in [1] the exact Chord, and the Chord by
Definition 2 the α-Relaxed Chord, respectively.

Our idea is to relax the requirement on full correctness of fingers and successors while still
keeping the basic functionality of the Chord. Specifically, lookups will still take O(lg N)
time with high probability.

Theorem 5: A lookup in a relaxed Chord X will contact no more than O(lg N) nodes with
high probability, where N denotes the total number of nodes in X.

Proof. The normal key lookup algorithm for Chord in [1] can be applied here. Suppose that
the node x initiates a lookup intended for the successor of a target ID id. Let p denote the
node that immediately precedes id.

We will now analyze the number of query steps required to reach p. With greedy routing,
if x 6= p, then x forwards its query to the closest predecessor of id in its finger table. Let i
denote the number such that p is in the interval [x+2i−1, x+2i). By definition, x’s i-th finger
f points to the successor of an identifier inside [x + 2i−1, x + 2i−1 + δx,i) ⊂ [x + 2i−1, x + 2i).

There are two cases: (i) f ∈ (x, p]. In this case, x forwards query to f , and the relation
|f − p| ≤ 2i−1 ≤ |f − x| holds. Therefore, the distance from x to p is halved in this case.
(ii) f /∈ (x, p]. In this case, it implies p ∈ [x + 2i−1, x + 2i−1 + δx,i). Then x will forward the
query via its (i− 1)-th finger to node f

′
, where f

′ ≥ x + 2i−2.
Since |f ′ − p| ≤ (x + 2i−1 + δx,i) − (x + 2i−2) = 2i−2 + δx,i, and |x − p| ≥ 2i−1, therefore,
|f ′−p|
|x−p| ≤

2i−2+δx,i

2i−1 ≤ 2i−2+α2i−2

2i−1 = 1+α
2

.

So, combining the two cases, the distance between the querying node and the node p is at
least shortened by 1+α

2
in each step.

After lg 2
1+α

N forwarding steps, the distance between the current query node and p will be

reduced to at most 2n

N2 . Thus, one more forwarding step from p will reach the target node.
This completes the proof.

Now let’s examine the changes to the finger tables. Note that, under Protocol 2, the finger
table for any node x in Chord X is kept intact; for any node y in Y , its fingers to the nearer
neighbors are adjusted by locally searching on an associated interval, and its fingers to the
further neighbors are directly copied from the existing ones. In details:

i) For peer y in Y , the size of the original finger table is m and will be enlarged to n
by adding (n − m) new entries. The operation on the finger table is: shift the original m

10

entries to the position of (n −m) ranks higher. Then update the lower (n −m) entries, as
illustrated in Figure 2.

ii) For a peer x that is already present in X before merging, the finger table temporarily
unchanged upon completing the merge.

Figure 2: copying finger table

We now analyze to what extent the new Chord Z satisfies the requirement on relaxed Chord.
Theorem 6 shows that the new Chord will be a Relaxed Chord with high probability under
certain conditions.

Theorem 6: Suppose that Protocol 2 is applied to merge X = Chord(N, n, idX) and
Y = Chord(M, m, idY) where m < n, lg(M +N) < n, and n > (1+ ε) lg N , ε > 0. If for any
node y ∈ Y , idY (y.finger[i]) ∈ idY (y) + 2i−1 + [1, α2i−2 − 1), then w.h.p. the new Chord
generated by the protocol is an α-Relaxed Chord.

Proof. (Please refer to Appendix F.)

To ensure the lookup efficiency in Relaxed Chord, we still need the stabilization of finger
tables. However, it is a relatively simple job when compared with that required in the case
where the merging is done by un-coordinated joining of individual nodes.

Theorem 7: For a Relaxed Chord, if each node fails with probability p, then at least
(1− p)α/2 portion of all fingers need not be updated w.h.p.

Proof. Refer to the stabilization described in Table 5. Given a finger of node x, x.finger[i],
and consider an instance that violates the definition of Relaxed Chord. If x.finger[i] fails,
it must be updated. Even if x.finger[i] does not fail, the new node joining between x and
x.finger[i] can also trigger the update if x.finger[i] ≥ x + (1 + α)2i−2. Since x.finger[i] is
lying in [x + 2i−1, x + 2i) with high probability, the part of interval requiring no change is in
α/2 portion, assuming that the key of the finger is chosen from the interval randomly and

11

//periodically run
procedure x.stabilizeFingerTable
input: global parameter α, 0 < α < 1

for i = 1 to n do
if finger[i] failed OR finger[i] /∈ x + 2i−1 + [0, α2i−2) do

key = random (x + 2i−1 + [0, α2i−2)\finger[i]) ;
finger[i] = lookup(key);

endif
endfor

end

Table 5: stabilization in relaxed Chord

uniformly. The probability that the finger needs no update is (1 − p)α/2. This completes
the proof.

In the original Chord protocol, each finger must be updated periodically without exception.
Our modification (relaxed Chord with α < 1) can tolerate up to α/2 < 50% inexact fingers.
This can substantially reduce the topology-maintenance messages and speed up the stabi-
lization process. Relaxed Chord is especially useful for denser network because with higher
probability each finger can point to an active node lying in the specified interval, and new
node joining is unlikely to trigger finger updates of the other nodes.

Since each finger has multiple choices from a specified interval, to improve the robustness of
the relaxed Chord, Chord can keep c node pointers for each finger if all these pointers satisfy
the requirement in the definition of relaxed Chord. Therefore these c pointers in the same
interval may be regarded as backup fingers for each other.

Theorem 8: Suppose that each node in Chord fails with probability p. If each finger in
Relaxed Chord has ε lg N backups in the same interval, where ε > −1/ lg p, then the lookup
can succeed within O(lg N) hops w.h.p.

Proof. Since each finger has ε lg N backups, the probability that they all fail is pε lg N =
1/N−ε lg p < 1/N . Therefore with probability at least 1 − 1/N the query can be forwarded
to an active finger, shortening the distance recursively. This completes the proof.

3.3 Doubling the size of a Chord

Sometimes the total number of the resulting networks requires the ID space to be enlarged.
Fig. 3 shows a simple method for doubling the Chord ID space without communications
overhead. The only work to do is add one bit to each node’s ID and move the entries locally.
The pointer stored in finger[i] is copied to finger[i + 1], 1 < i ≤ n and finger[1] stays intact.

The finger changes are performed locally for each node. The latency is mainly caused by the

12

broadcast to initiate the adjustment, which is O(lg N) because we ignore the time for local
copying. The total number of messages is O(N).

Figure 3: Algorithm 3: doubling the size of a Chord

3.4 Overall latency and message complexity

In the previous sections we have presented two different methods to merge two given Chords:
one is to ”concatenate” two Chords (Protocol 1), and another is to ”disperse” the small Chord
into the big Chord (Protocol 2). The protocols have been analyzed in terms of the number
of changes in the fingers. Here we will analyze the overall latency and message complexity
of the protocols. The latency will include only the time steps required for passing messages
while ignoring the time for node’s local processing like finger copying. Table 6 summarizes
the results for these metrics, including also the number of finger changes, number of messages
and overall latency required. Table 6 also includes the method for doubling the size of a
Chord.

Claim 9 For Protocols 1 and 2, the number of fingers changed, the overall latency, and the
total number of messages are as listed in Table 6.

Proof. (Protocol 1) The number of finger changes is given by Theorem 1, i.e. at most
2(M + N) − lg(N · M) − 4 + 2 · min(N, M) = O(M + N). Since the merging is done by
Chord X and Y separately, the overall latency is the maximum of the two latencies for X
and Y. Chord X needs to update at most 2N − lg N − 2 + min(N, M) fingers and each
finger needs at most lg N hops to be updated. Therefore the total number of messages for
merging is (2N − lg N − 2 + min(N, M)) · lg N + (2M − lg M − 2 + min(N, M)) · lg M =
O(N lg N +M lg M). The merging solicitation message reaches the last node in X from node
xsrc in N hops, and the last node needs at most (lg(M + N)) · (lg(M + N)) hops to update
its all fingers. So the latency for X is N + lg2(M + N). The overall latency therefore is
max(N, M) + lg2(M + N) = O(M + N).

(Protocol 2) With reference to Theorem 6, the finger changes mainly happen in Chord
Y. For each node y in Y, it need only modify its (n − m) (or lg((M + N)/M) by simple

13

substitution) fingers. Therefore, the number of finger changes is given by M · (lg((M +
N)/M)). Protocol 2 allows each y to take the joining operation concurrently upon receiving
the merging broadcast. So the overall latency is (lg((M + N)/M)) · lg(M + N). The total
number of messages includes two parts: the M broadcast messages, and up to M · (lg((M +
N)/M)) · lg(M + N) messages for updating fingers.

Merging strategy Number of fingers changed Overall latency Messages
For two Chords with n = m O(M + N) O(M + N) O(N lg N + M lg M)

For two Chords with n > m O(M ∗ lg M+N
M

) O((lg M+N
M

) · lg(M + N)) O(M ∗ (lg M+N
M

) · lg(M + N) + M)

Table 6: Performance comparison on two merging strategies

4 DISCUSSION AND CONCLUSION

We have presented the main steps for merging two overlays into one. Because the two overlays
are reused during merging, the whole process has been substantially sped up compared with
un-coordinated merging by individual nodes. Specifically for Chord, we also show that Chord
can tolerate more node dynamism when it does not require accurate definition of finger table,
i.e. a relaxed Chord, while still keeping the O(lg N) lookup efficiency. This kind of structure
feature is very useful during P2P network evolutions.

Without a group protocol coordinating the transformation of topology, the simultaneous
joining/leaving of a massive number of nodes can cause a large number of messages. More-
over, the leave-and-join can impair the routing information in the chaos and compromise the
system functionality.

For future research we suggest to study the peer collaboration during the splitting and merg-
ing of various types of overlay topologies. We will analyze the evolution of network topology
and its fault tolerance during node join and leaving activities in subgroups. Moreover,
schemes for relocating the data on each node during merging is also an important topic.

References
[1] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balarikishnan, Chord: A scalable

Peer-to-peer Lookup Service for Internet Applications, ACM SIGCOMM, San Deigo, USA,
pp. 149-160, August 2001

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A Scalable Content-
Addressable Network, ACM SIGCOMM, pp. 161-172, 2001.

[3] F. Kaashoek and D Karger, Koorde: A Simple Degree-optimal Distributed Hash Table, In 2nd
International Workshop on Peer to Peer Systems, LNCS Hot Topics, Berkeley, CA, January
2003. Springer.

[4] A. Rowstron and P. Druschel, Pastry: Scalable, Decentralized Object Location and Routing
for Large-Scale Peer-to-peer Systems, IFIP/ACM International Conference on Distributed
Systems Platforms, Heidelberg, Germany, pages 329-350, 2001.

14

[5] M. Naor and U. Wieder, Novel Architectures for P2P Applications: the Continuous-Discrete
Approach, in Proc. of the 15th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA 2003), San Diego, USA, pp. 50-59, June 2003.

[6] D. Lewin, Consistent hashing and random trees: Algorithms for Caching in Distributed Net-
works, Master thesis, Department of EECS, MIT, 1998.

[7] X. Wang, Y. Zhang, X. Li, and D. Loguinov, On Zone-Balancing of Peer-to-Peer Networks:
Analysis of Random Node Join, SIGMETRICS/Performance’04, New York, pp. 211-222, June
2004.

[8] L. Devroye, Law of the Iterated Logarithm for Order Statistics of Uniform Spacings, Annals
of Probability, vol.9, no. 5, pp. 860-867, 1981.

[9] J. Xu, A. Kumar, and X. Yu, On the Fundamental Tradeoffs between Routing Table Size and
Network Diameter in Peer-to-peer Networks, IEEE Journal on Selected Areas in Communica-
tions, Vol. 22, NO.1, pp. 151-163, January 2004.

[10] G. Manku, Routing Networks for Distributed Hash Tables, PODC’03, Boston, pp. 133-142,
July 2003.

[11] D. Liben-Nowell, H. Balakrishnan and D. Karger, Analysis of the Evolution of Peer-to-peer
Systems, PODC’02, pp. 233-242, July 2002.

[12] D. Karger and M. Ruhl, Diminished Chord: A Protocol for Heterogeneous Subgroup Formation
in Peer-to-Peer Networks, in International Workshop on Peer-to-Peer Systems (IPTPS ’04)
San Diego, pp. 288-297, February 2004.

[13] V. Sunderam, J. Pascoe and R. Loader, Towards a Framework for Collaborative Peer Groups,
in Proc. of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID.03), pp. 428-433, 2003

Appendix A

Proof. As shown in Fig. 1, all the nodes in Y are to be reassigned new IDs between 2n and
2n+1−1. Let x denote a node in Chord X. In the new Chord, x needs a new finger to point at a
node y, such that idZ(y) = successor(x+2n). Since the original ID of y (in Y) is idZ(y)−2n,
it implies that y is the first node in Y that is no less than (idX(x) + 2n)− 2n = idX(x).

As shown in Table 1, xsrc finds y via a contact node ysrc in Y. Then it sets its last
finger to point at y and sends this information to its successor. So when each x re-
ceives the merging message < xsrc, y, ”merge” > from its predecessor, y is exactly the
successor of idX(x.predecessor) in Chord Y. So the following relation must be satisfied:
idX(x.predecessor) ≤ idY (y) ≤ idX(x) when the lookup is executed, which proves item (2)
of the results. For Chord X, there are N nodes, each of which chooses one node from Y
as its last finger. Therefore the total number of different last fingers for nodes in X is no
more than min(N, M). A similar result can be obtained for Chord Y, and hence a total of
2 ·min(M, N) for all the nodes in both X and Y. This completes the proof.

15

Appendix B

Proof. We recall a result in [7] (Theorem 1 specifically) which implies that
|idX(x)− idX(x.predecessor)| ≤ (1 + ε) lg(N) ∗ 2n/N
with probability 1−N−ε. Notice that the distance between the node handling the query and
the destination is halved in each step, and it is initially equal to |idX(x)−idX(x.predecessor)|,
so the total number of contacted nodes in Chord Y is lg |idX(x) − idX(x.predecessor)| ≤
(n− lg N

lg N
+ lg(1 + ε)).

Appendix C

Proof. Lemma 1 gives the number of newly created fingers.

Now consider a node x in Chord X during the concatenation (see Fig. 1 for illustration). It
should be easy to see that if x has a larger value of ID (and hence is near the range of Y),
then more of its finger entries will have to be redirected (to point at nodes in Y).

Note that, when Chord Y’s address space is fully occupied (i.e. M = 2m), the modified
pointers in the finger table all have different values. Also, when Chord X is fully occupied
(i.e. N = 2n), the number of affected nodes is the largest and the number of affected fingers
is also the largest. So, to derive an upper bound, we assume that N = M = 2n. For
convenience, we write xi to denote a node with ID = i.

The nodes in the range of [0, 2n−1), i.e. x0, x1, · · · , x2n−1−1, will modify 0 finger items;
The nodes in [2n−1, 2n−1 + 2n−2), i.e., x2n−1 , x2n−1+1, · · · , x2n−1+2n−2−1, will each modify 1
finger item (the last entry in old finger table);
· · · · · ·
The nodes in [2n−1 + 2n−2 + · · ·+ 2n−k+1, 2n−1 + 2n−2 + · · ·+ 2n−k+1 + 2n−k) will each modify
k finger items (the last k entries in the old finger table); In total k · 2n−k entries will be
affected.
· · · · · ·
The node x2n−1 will modify (n− 1) fingers.

Therefore, the total number of fingers Sn that need to be modified for the nodes in X is
given by:

Sn =
n∑

k=0

k · 2n−k = 2n+1 − n− 2.

It should not be difficult to see from the above that if n is substituted by lg N , the argument
still holds true. The scenario is similar with nodes in Y. Therefore the maximum number of
modified fingers is 2(M + N)− lg(N ·M)− 4. This completes the proof.

Appendix D

16

Proof. By assumption, each node x in Chord X is assigned an ID by choosing a point
independently, uniformly and randomly in the ID space. Therefore, the probability that x
is assigned an ID=i is given by p = 1

2n . In notation, Pr(idX(x) = i) = p, ∀x ∈ X. In the
rest of the proof, x is used to denote idX(x) as well.

Write the points belonging to Interval(y) as {i0, i1, ..., iπ−1}. Following the merging process
in Table 2, we have:
p0:=Pr(y is inserted to point i0) = Pr(point i0 is empty, unoccupied by any of the N nodes of X)=
(1− p)N ;
p1:=Pr(y is inserted to point i1) = Pr(!empty(i0) and empty(i1))
= Pr(∃xj ∈ X, xj = i0 and ∀xi ∈ X, xi 6= i1)

=
N∑

j=1

Pr(xj = i0) · Pr(∀xi ∈ X, xi 6= i1 and xj = i0)

=
N∑

j=1

Pr(xj = i0) ·
N∏

i6=j,i=1

Pr (xi 6= i1)

= Np(1− p)N−1;

pk:= Pr(y is inserted to point ik)
= Pr(∃{x0, x1, ..., xk−1} ⊆ X, x0 = i0, x1 = i1, ..., xk−1 = ik−1; and ∀xk ∈ X, xk 6= ik)

=


(

N

k

)
pk(1− p)N−k

0, if k > N

, if k ≤ N

So, by summing up:

Expectation(The offset of y’s ID from the point i0) =
N∑

k=0

kpk

=
N∑

k=0

k

(
N

k

)
pk(1− p)N−k, (∵

(
N

k

)
< Nk)

<
N∑

k=0

k(Np
1−p

)k(1− p)N = (1
1+β/N

)N
N∑

k=0

kβk

≤ 1
1+β

∗ β
(1−β)2

, (∵
N∑

i=1

iβi =
NβN+2 + β − (N + 1)βN+1

(1− β)2
<

β

(1− β)2
, if 0 < β < 1).

Furthermore,

Pr(y is inserted to Interval(y)) =
min(π,N)∑

k=0

(
N

k

)
pk(1− p)N−k

Pr(y is inserted to any of the first c points of Interval(y)) =
c∑

k=0

pk = 1 −
N−c∑
k=1

pk+c =

1−
N−c∑
k=1

(
N

c + k

)
pk(1− p)N−k(p

1−p
)c

17

> 1−
N−c∑
k=1

(
N

k

)
pk(1− p)N−k(Np

1−p
)c

> 1−(Np
1−p

)c = 1−βc, since

(
N

c + k

)
=

(
N

k

)
(N − k)(N − k − 1) · · · (N − k − c + 1)

(k + c)(k + c− 1) · · · (k + 1)
<

(
N

k

)
N c

This completes the proof.

Appendix E

Proof. Let Si denote the gap between xi and its successor along the Chord ring X, where
the size of the overall address space is 2n. Normalize the set {Si} by dividing each Si by 2n.
The set of (S1, S2, ..., SN) is uniformly distributed on the simplex {(w1, w2, ..., wN) : wi ≥

0,
N∑

i=1

wi = 1} and accordingly [8], we have

Pr(S1 > a, S2 > a, . . . , SN > a)

=

{
(1− aN)N−1, aN < 1

0, aN ≥ 1

Let a = 1
2n , then the probability above is given by (1− N

2n)N−1

≥ 1− N(N−1)
2n

≥ 1− N2

2n

≥ 1− N2

N2+ε

= 1− 1
Nε

which means the probability that any (normalized) gap is greater than 1
2n is at least 1−N−ε.

Therefore, each Interval(y) contains at most 2n−m/2n

a
= 2n−m nodes with high probability.

In other words, with high probability, there is still an unused ID inside Interval(y) for a
given y to take up. This completes the proof.

Appendix F

Proof. By assumption, Chord X is already an exact Chord. For any x.finger[i], it can only
lie in one interval with size 2n−m. Rarely would the merging operation destroy x’s condition
for Relaxed Chord. Therefore we consider the node y in Y . Denote fi = y.finger[i]. By
assumption, we have
idY (fi) = idY (y) + 2i−1 + c, where c ∈ [1, α2i−2 − 1)
or idY (fi) · 2n−m = idY (y) · 2n−m + 2n−m+i−1 + c · 2n−m

Theorem 2 assures that any y can be inserted to its intervals with high probability. Fur-
thermore, it implies that w.h.p. idZ(y) and idY (y) · 2n−m differ by at most 2n−m. Thus we
have:

18

idZ(fi) = idZ(y) + 2n−m+i−1 + c · 2n−m + c
′
, where c

′
is a constant in [−2n−m, 2n−m].

In the new Chord Z, fi is copied directly as the (n−m+i)-th finger of the node y. Therefore,
to satisfy the requirement of a Relaxed Chord, it is only necessary to satisfy:

0 ≤ c · 2n−m + c
′
< α2n−m+i−2, or,

0 ≤ c + c
′

2n−m < α2i−2

The inequalities hold because c ∈ [1, α2i−2−1) and c
′

2n−m ∈ [−1, 1]. This completes the proof
that the new Chord is a relaxed Chord with high probability.

19

