
Mining User Position Log for Construction of

Personalized Activity Map

Hui Fang1, Wen-Jing Hsu1, and Larry Rudolph2

1 Singapore-MIT Alliance, Nanyang Technological University
N4-02b-40, 65 Nanyang Drive, Singapore 637460
fang0025@ntu.edu.sg, hsu@pmail.ntu.edu.sg

2 VMware Inc.
5 Cambridge Center, Cambridge, MA, USA

rudolph@vmware.com

Abstract. Consider a scenario in which a smart phone automatically
saves the user’s positional records for personalized location-based appli-
cations. The smart phone will infer patterns of user activities from the
historical records and predict user’s future movements. In this paper,
we present algorithms for mining the evolving positional logs in order
to identify places of significance to user and representative paths con-
necting these places, based on which a personalized user activity map
is constructed. In addition, the map is designed to contain information
of speed and transition probabilities, which are used in predicting the
user’s future movements. Our experiments show that the user activity
map well matches the actual traces and works effectively in predicting
user’s movements.

1 Introduction

Personal positioning refers to the inference of a mobile user’s current position
based on user’s historical positional records and occasional measurements. It has
inspired many location-aware applications for personal use with the development
of wearable computers that are equipped with position sensors. See, e.g., [9, 6,
14]. The raw data collected from the position sensors, or the user’s log, provides
an important source for mining useful patterns for personal positioning.

The existing data mining techniques for personal positioning can be classified
into two categories: (i) location prediction based on location-to-location transi-
tion probabilities [10, 15, 11], and (ii) position tracking based on Bayesian filters
[5, 2]. Techniques in the first category aim at inferring user’s presence at certain
locations (called the significant places) and the transitions among these places;
but these techniques are generally not designed for the purpose of inferring ac-
curate positions. Techniques in the second category involve online estimation of
the user’s exact positions, and as such, they usually require well-defined dynam-
ics model of the target. A well-designed model of user activities thus constitute
the basis for accurate prediction of user’s nondeterministic movements.

The challenges for personal positioning lies in the construction and main-
tenance of this personalized map, and the modeling of the user movements. In
a mobile and pervasive context, the device may be allowed to access some po-
sitioning sensors, but the large-scale map resources such as central geographic
database may be unavailable. A smart device can assist the user’s movement
only with geometrically accurate map of his environment. In other words, a
smart device needs to figure out the map of user’s activities on its own in many
cases. Unfortunately, the mobile user’s positional records can increase quickly
with regular uses, which poses difficulty in both storage and information re-
trieval. Therefore, the key problem here is to build an internal representation
of user’s environment from user’s own movements. This map should be different
from generic maps in two aspects: (i) it evolves from user’s movement log; (ii) it
highlights the geographical features (locations and paths) of significance specific
to the user.

These challenges motivate the paper. We propose a new data mining ap-
proach to generate a map of user activities for use in personal positioning. Our
construction of the user activity map includes three parts: identifying significant
places, identifying representative paths, and building the speed and transition
model. The experiments show that the position tracking based on user activity
map provides sufficient accuracy.

The paper is organized as follows. Section 2 presents the problem statement.
Section 3 shows the construction of significant places. Section 4 shows the con-
struction of representative paths. Section 5 shows the construction of user activ-
ity map. Section 6 shows the experimental results. Finally Section 7 concludes
the paper.

2 Patterns in User Activities

As ”history often repeats itself”, with more and more positional samples of
regular use over a period of time, a repeated path will be accumulated into the
user’s trace log. The user’s trace log is a sequence of position measurements
ordered by time. Fig. 1(a) shows the GPS records gathered from a user over a
week. Fig. 1(b) shows the GPS data of the same user over three months. The
figures suggest that some repetitive patterns exist in the user’s trace log.

The required map of user activities should be adaptive to the log updates.
This map is an abstraction of user’s history of movements. Thus, if the user
repeats a routine activity, the size of the map should not increase drastically. On
the other hand, the map must reflect the recent significant change of information
about the user’s environment. For example, if a user recently starts to use a
detour around a street-block, the map should be revised accordingly.

The required map of user activities should identify the locations and paths
that are significant to the user. Unfortunately, location is a rather imprecise
notion, which often means different things to different people. People often refer
to a location or place without precise position. The size of a location ranges
widely. Cities, streets, buildings, or even rooms can be called locations. GPS

(a) one week. (b) three months.

Fig. 1. GPS samples of a user collected in Boston-Cambridge (MA) area. Each GPS
sample is marked by a star. The background is shown by Google Earth.

coordinates are seldom made references of by ordinary people. In addition, people
establish relationship between locations to learn the environment. For example,
one can tell a direction by saying ”five minutes walk from the shop, you will get
to the post-office”. The shop, the post-office, and the path between them, thus
form the significant components of a map.

3 Identifying Significant Places

To extract patterns, one crucial step is to identify ”significant places”. A mobile
user might stay at one location for some time, or he may visit this location
frequently (while the device may keep recording). Thus, a location is identified
to be significant if user’s dwelling time at this location is sufficiently long, or
if the density of the location is sufficiently high. A location is defined to be a
tuple (x, y; r) where (x, y) represents the coordinates of a position and r denotes
the radius of the associated circle centered at (x, y). Further, the definitions of
location density and dwelling time are given below.

Definition 1 (location density). The density of a location is the number of

sample points within the associated circular region.

Definition 2 (dwelling time). The dwelling time at each location is approxi-

mated by averaging the time staying at this position for each trace.

Clustering is one of the main techniques used in identifying the significant
places by density. After clustering, the positional points that are geographically
or temporally nearby within a specified distance will be identified as within one
cluster, i.e., they can be represented by a cluster head whose density is the

number of the points lying inside the cluster. Many clustering methods have
been proposed for the purpose of identifying the significant places [8, 3, 7, 12].

Two thresholds Tdw, λmin are given for dwelling time and location density
respectively. Figure 2 shows the number of significant places for different value
of thresholds.

Figure 2(a) draws the number of significant places against the dwelling time
threshold using the 3-month history of a voluntary user. For example, a point at
(60, 53) means that there are 53 significant places whose dwelling time is no less
than 60 seconds. The diagram also shows that the number of significant places
is a constant (=53, or 25 respectively) in between some dwelling time intervals
(60−140 or 160−280 seconds resp.). The relatively stable number of SPs implies
that the user stays long enough only in places that are of significance to him.

(a) The number of significant places re-
mains invariant when the dwelling time
is inside certain interval.

(b) The number of significant places ob-
tained by setting density threshold. The
arrow shows the point from which the
number of SPs changes slowly with the
increase of density.

Fig. 2. The number of significant places against Tdw, λmin, resp.

Figure 2(b) draws the number of significant places against the density thresh-
old using the 3-month history. For example, a point at (100, 13) means that there
are 13 significant places whose density is no less than 100. Figure 2(a) shows a
similar property: the number of SPs decreases with greater threshold value of
the density, and it remains almost a constant number in a range of density values
(e.g., 130 − 250).

Figure 3(a) shows some locations whose dwelling time is more than 5 minutes
are inferred from user’s historical data. These places, identified as office, home,
playground etc. on the map, are mostly important to the user’s activities. Figure
3(b) also shows that the set of the significant places obtained by setting density
threshold (=100) is rather similar to the set as seen in Figure 3(a). That is,
important places to user, such as office and residence, are included by both
schemes for identifying significant places.

(a) Twenty-six locations are identified as
significant in terms of dwelling time (over
5 minutes). Google Earth shows that they
are office, gym, playground, residence,
etc. Some locations on the road have long
dwelling time possibly because of traffic
lights.

(b) Thirteen locations are identified as
significant in terms of density (>= 100).
Each significant location is marked by a
star and its density number. Four loca-
tions with densities over 200 are identi-
fied as the residences, a gym, and an office
building. The remaining locations are on
the paths connecting these four locations.

4 Identifying Representative Paths

Multiple traces between two significant places do not necessarily correspond to
the same path. Two nearby traces may actually correspond to two disjoint paths
that only join at the two ends, or they may share some portion of a path but
split at a branching point. In addition, noises are inherent in the trace sam-
ples. Consequently, identifying representative paths implies two closely related
problems:

1. The first problem is to classify traces into different paths according to certain
metric of trace similarity.

2. The second problem is to form a representative path for those similar traces.

The existing techniques for path reconstruction can be roughly categorized
into two types: polygonal reconstruction approach and clustering approach. A
path P is treated as a curve x(t) in the plane. A trace of P is a sequence P of
sample points {zk}k from this path. Denote zk = xk + n(tk), where xk = x(tk)

is the path position at time point tk, and n(tk) is called noise. Let P (i) = {z
(i)
k :

k = 1, 2, ..., K(i)} denote a trace. The path reconstruction problem is to estimate
x(t) from a set of Ns traces {P (i)}, 1 ≤ i ≤ Ns for the same path.

The polygonal approach for path reconstruction aims to find a series of x(t)
that minimize the mean squared error while preserving the correct temporal
ordering of the sample points of the path. Two points x(t1) and x(t2) (t1 ≤ t2)
are adjacent if no other sample point x(t) exists on the arc {x(t) : t1 < t < t2}. If

x = x(t) is a smooth and twice-differentiable curve in the plane, and P is a finite
deterministic sample curve with unknown sampled time points, Amenta et al.
[1] defined a polygonal reconstruction of the curve from the sample points that
connects every pair of sample points that are adjacent on the curve. Amenta’s
algorithm preserves the order of the curve correctly when there is sufficient
sampling density. Therefore, samples from multiple traces can be taken as a large
set of points and paths can be constructed by using the polygonal reconstruction
method.

In contrast, the clustering approach is an approximation of the curve re-
construction from noisy samples. To merge multiple traces to produce a single
curve, this approach clusters the sample points of all traces and replaces them
by their cluster centers. Using this approach, similar traces are generally merged
into one simplified curve, but there is no guarantee that the result will preserve
the original temporal order.

The existing path reconstruction methods, however, are not suitable for per-
sonal positioning. Firstly, the polygonal reconstruction approach is not able to
classify the user traces into different path groups. Secondly, the clustering ap-
proach cannot guarantee to preserve the original order of the traces. This inspires
us to design new path reconstruction algorithms for personal positioning.

Our path reconstruction is carried out in two steps. Firstly, the user’s log, or
a sequence of position measurements ordered in time, is segmented into multi-
ple disjoint traces according to their similarity under both temporal and spatial
metrics. Secondly, similar traces will be consolidated, and some disjoint but geo-
graphically close traces can be transformed into connected paths. The resulting
representative paths will be further used in map construction.

The output of data segmentation is a set of traces connecting each pair of
significant places. The trace connectivity is defined as follows. The traces are
samples of the paths in the map of user activities. The connectivity in the traces
reflects the user’s experience that one location is reachable from another.

Definition 3 (trace connectivity). Given two threshold values Dth, Tth, two
sample positions z(ti), z(ti+1) ∈ R

2 are said to be linked if and only if: |ti− tj| <

Tth and ‖z(ti) − z(tj)‖ < Dth.

The distance between two traces is defined by their Hausdorff distance as
follows. Let P = 〈p1, ..., pn〉 be a polygonal curve, where pi = (xi, yi) ∈ R

2, 1 ≤
i ≤ n and n denotes the size of P . Let p1p2 = {(x, y) : (x2 −x1)y = (y2 − y1)x+
y1x2 − x1y2, x ∈ [x1, x2]} be the line segment between points p1, p2.

Definition 4 (Hausdorff distance). The distance between a point p and a

curve Q, written as d(p, Q), is the shortest distance between p and points on Q,
i.e., d(p, Q) = minq∈Q ‖p − q‖. The directional distance from curve P to curve

Q, written as dH(P |Q), is given by: dH(P |Q) = maxp∈P d(p, Q). The Hausdorff

distance between two curves P, Q, written as dH(P, Q), is given by:

dH(P, Q) = max{dH(P |Q), dH(Q|P)}.

A path reconstruction algorithm named PCM (pairwise curve-merging) is
presented below. After path reconstruction, similar traces will be consolidated,
and some disjoint but geographically close traces can be transformed into con-
nected paths. The resulting representative paths will be further used in map
construction.

4.1 PCM Algorithm: Reducing Multiple Traces to Representative
Paths

The basic idea of PCM algorithm is to iteratively compare every two traces
and merge similar segments of the two traces. The algorithm is applied pairwise
on the traces and a predefined distance threshold value, ǫ, is given. When the
iterative process terminates, the remaining traces will all be distinct based on
the distance metric.

The PCM algorithm consists of subroutine Merge(P, Q, ǫ) in Algorithm 1
and routine Merge(M, ǫ) in Algorithm 2, where M is a set of traces and P, Q are
any two traces of M . Routine Merge(M, ǫ) uses the subroutine Merge(P, Q, ǫ) to
compare two traces P, Q for the given tolerance ǫ. In subroutine Merge(P, Q, ǫ),
each point p of P is compared with its nearest neighbor q in Q. If p is within
the tolerance distance of q, and if p is closer to q than to any adjacent point of
p in P , then p is replaced by q. Algorithm 1 is illustrated in Figure 3.

Fig. 3. Illustration of the subroutine Merge(P,Q, ǫ). The circle is centered at point p

with radius ǫ. The two dashed lines are bisectors of segments ppleft and ppright respec-
tively. The shadow indicates that q can be replaced by p according to the algorithm.

Intuitively, the PCM algorithm enforces two conditions when carrying out the
merging operation. Firstly, the algorithm repeatedly merges two curves when-
ever nearby (but not the same) points between the curves are found. Secondly,
one polygonal curve partitions the plane into many zones by bisecting the line
segments of the curve. Each point of the curve dominates one zone. For one point
p ∈ P , only the points of Q that lie inside p’s zone can replace p. The second
condition ensures the order of the curve points.

Input: ǫ and two curves P and Q

Output: Updated P

for each point p ∈ P do1

q = the point in Q that is nearest to p;2

pleft, pright = p’s left and right point in P , resp.;3

if p 6= q and d(p, q) ≤ min{ǫ, d(pleft, q), d(pright, q)} then4

p = q ;5

end6

end7

return P ;8

Algorithm 1: Merge(P, Q, ǫ): Merging P into Q by tolerance ǫ

Input: ǫ and a set of traces, M

Output: Updated M

changed = True;1

while changed do2

changed = False;3

for P, Q ∈ M and P 6= Q do4

P̄ = Merge(P, Q, ǫ) in Algorithm 1;5

if P̄ 6= P then6

changed = True;7

end8

end9

end10

return M ;11

Algorithm 2: Merging a set of traces, M , by tolerance ǫ

Lemma 1 below shows that the process of the PCM can terminate. Further-
more, Lemma 2 shows that two nearby curves in Hausdorff distance will still
remain close by after merging.

Lemma 1. PCM can finish in finite number of steps.

Proof. Each time when two points on different curves are merged, the number
of all points on all traces will decrease by 1. So the substitution operation must
finish in a finite number of steps. �

Lemma 2. Let P̄ , Q̄ denote the new curves obtained from P and Q, respectively,

after executing subroutine Merge(P, Q, ǫ). If dH(P, Q) ≤ ǫ, then

max{dH(P̄ , P), dH(P̄ , Q), dH(Q̄, P), dH(Q̄, Q)} ≤ ǫ.

Proof. The subroutine Merge(P, Q, ǫ) does not change Q. So Q̄ = Q. We only
need to prove dH(P̄ , P) ≤ ǫ and dH(P̄ , Q) ≤ ǫ respectively.

Consider each point x ∈ P̄ . If x ∈ P , the distance from x to P , d(x, P) =
0. Otherwise, it should be the case that x ∈ Q. Since the Hausdorff distance
between P and Q is less than or equal to ǫ, we have d(x, P) ≤ dH(Q, P) ≤ ǫ.
Therefore, ∀x ∈ P̄ : d(x, P) ≤ ǫ, which leads to dH(P̄ |P) ≤ ǫ.

Now we prove dH(P |P̄) ≤ ǫ. Let x be any point in P , and y be the nearest
point in Q to x. Obviously, it is true that d(x, y) = dH(x, Q) ≤ dH(P, Q) ≤ ǫ.
According to Algorithm 1, if x is not replaced by y, then x will be kept in P̄ ,
i.e., x ∈ P̄ ; otherwise, there will be y ∈ P̄ . In each case, ∃y ∈ P̄ , s.t., d(x, y) ≤ ǫ.
This means d(x, P̄) ≤ ǫ, which leads to dH(P |P̄) ≤ ǫ.

dH(P̄ |P) ≤ ǫ and dH(P |P̄) ≤ ǫ together prove that dH(P̄ , P) ≤ ǫ.
Using similar arguments we can show that dH(P̄ , Q) ≤ ǫ. This completes the

proof. �

The PCM algorithm will be applied to generate a map. The algorithm reduces
the redundancy in the user’s log and outputs a simplified representation of paths
in the map. In practice, the value of ǫ was chosen to be the road width.

The computational complexity of the PCM algorithm is estimated as follows.
Let n be the number of curves, and m be the maximum number of sample points
on a trace. The PCM algorithm at most runs n(n − 1) iterations of subroutine
Merge(P, Q, ǫ). For Merge(P, Q, ǫ), we can firstly construct a Voronoi diagram
for the points of Q to speed up the nearest-neighbor searching. The construction
costs O(m log m) time, and each nearest-neighbor searching costs O(log m) time
[4]. Since Merge(P, Q, ǫ) traverses all the points of P , the total running time is
O(m log m). As a result, the running time of PCM algorithm is O(n2m log m).

Figure 4(a) shows the user’s traces given as the input of the pairwise curve
merging algorithm. Figure 4(b) shows the corresponding output of the pairwise
curve merging algorithm. To compare the merged results with the actual roads
and streets, the output is also shown on the maps of Google Earth. It can be seen
that the redundancy in the traces is dramtically reduced, and the reconstructed
paths reflects the actual roads rather well.

(a) A user’s raw data segmented into 748
traces, with thresholds Tth = 1200 sec-
onds, Dth =0.2 km, and a total of 6003
GPS sample points. The disjointed points
in the raw data are pruned off.

(b) Paths are reconstructed from the
user’s traces. The parameter ǫ =
0.050km. The resulted 197 significant
places are connected by 289 edges.

Fig. 4. Paths are reconstructed from the user’s traces by the PCM algorithm, and
shown in Google Earth.

5 Extracting Other Map Attributes

A map of user activities can be constructed after identifying significant places
and representative paths from historical log. The map is a 2-dimensional directed
graph G =< V, E > without self-cycles, where V is the set of significant places
and E is the set of edges. Each vertex v ∈ V has associated information of the
x-y coordinates of the center and the radius of the circle representing the place,
dwelling time, and density. The density of a location is defined to be the number
of samples within the associated circular region. Each edge e =< v1, v2 >∈ E

records the connectivity from v1 to v2. Two vertices v1, v2 have an edge when
there is any path crossing from v1 to v2. Moreover, each edge also records the
edge width, the speed and the number of traversals, which are calculated based
on the historical records.

A sample map is given in Figure 5(a). The user speed on the edge e is
approximated by the average speed of the historical traces that constitute e. For
each edge e =< v1, v2 >, its speed is calculated by the distance between v1 and
v2, divided by the time difference.

The number of traversals over the edges provides an approximation of the
transition probabilities among the vertices. Figure 5(b) shows a subset of the map
which contains three vertices and their transitions. Specifically, the transition
probability density function (pdf) from vertex src is approximated by

Prob(z|src) ∼ normalization{λ(src, z) :< src, z >∈ E},

where λ(src, z) is the number of traversals on edge < src, z >. Let π(v) denote
the transition probability density function for vertex v. For example, π(A) =
[2087 , 29

87 , 2
87 , 2

87 , 16
87 , 11

87 , 7
87] for vertex A in Figure 5(b).

5.1 Speed and Transition Probabilities

Supported by the map with transition probabilities, certain inferences concerning
the path likely to be used in between the significant places can be carried out.
For example, a ”shortest” path from the source vertex to the destination vertex
can be obtained by applying a searching algorithm. We use a classical heuristic
searching algorithm, A* search [13], in order to minimize the total estimated
cost. Just like using distance d(v1, v2) as a cost function in the shortest-path
problem, we interpretate the transition probabilities as a part of the cost on the
edges. The cost function is chosen to be

J(v1, v2) =
d

log(1 + λ)
,

where λ is the number of traversals on the edge < v1, v2 >, and d is the length
of the edge. The rationale of this cost function is: when the user visits a path
more often than the other paths from the same location, he/she is more likely
to reuse this path than the other paths in future. Each use of a path is thus like
shortening the distance between two locations by a 1

log(1+λ) percent.

Figure 5(b) shows a ”shortest” path in the map for the given source and
destination. Figure 6(b) shows the speed distribution for this path. The average
speed on the path (evaluated from Figure 6(b)) is 2.8 meters per second.

6 Experiments and Performance Evaluation

To verify the effectiveness of the user activity map, we set up experiments for
a position tracking application as follows. Assume that a map of user activities
is given (e.g., Figure 5(a)), which has been extracted from the user’s historical
positional data.

We test the tracking method for a given trace with the known path from
source to destination. The position inference is activated periodically. The method
takes into consideration user’s speed model derived from the map. Specifically,
the average velocity with its standard deviation can be statistically approxi-
mated from the historical traces. In this experiment, the estimated trajectory of
the user is then compared with the actual trajectory at each time step. The Root

Mean Squared Error (RMSE) 3, as a widely-used measure in the literature, is
included here to evaluate the quality of the output produced by the algorithm. It
reflects the deviation of the estimated trajectory to a given reference trajectory.

3 For a given trajectory {xk} over Ks time steps and its estimate {x̂k}, the position

RMSE is defined to be RMSE =
q

1

Ks

PKs

k=1
‖x̂k − xk‖2.

(a) a map of user activities. Each node
represents a significant place. Each edge
represents the path between two nodes.

(b) A ”shortest” path from source A to
destination B is marked between two
stars on the map. The numbers on the
edge indicate the numbers of traversals.
The numbers of traversals from vertex A

to its neighbors are also marked.

Fig. 5. A map of user activities is represented as a graph.

(a) Estimating a trajectory using the
map. Each prediction is indicated by
a triangle, while each measurement is
drawn as a balloon. The predicted tra-
jectory is shown in solid lines.

(b) The average speeds on the edges of
the path.

Fig. 6. Searching a ”shortest” path in the map.

Figure 6(a) draws all observed positions of a user’s trajectory and a predicted
trajectory. It shows that the predicted trajectory well matches the user’s actual
movements, which is even better than merely relying on GPS measurements.
This is possible because GPS signals can be momentarily disturbed by external
sources. The RMSE for this method is about 4.3 meters.

(a) The sample points in the user histor-
ical data.

(b) All the particles generated by the PF
process for a trace prediction. The num-
ber of iterations, Ks = 50. The number
of particles, Ns = 100. The map is rep-
resented by lines and circling points.

Fig. 7. Comparing historical data points and generated particle samples.

6.1 Comparison between Map and Raw Data

Figure 7 compares the distribution of the particles generated by particle filter
with the samples from user’s historical raw data. It is shown that the two dis-
tributions are quite similar, which both reflect the shape of the actual road.
However, our map-guided particle filter algorithm does not require storing the
huge raw data. It keeps only a map of user activities for the sampling purpose,
and chooses the best result from the particles.

7 Discussions and Conclusion

This paper presents the method for mining the pattern of user activity from
historical positional data. The method includes the algorithm for constructing
significant places and representative paths. It also derives the information about
user’s speed and transition probabilities. The map of user activity is then applied
to position tracking applications. The experiments show that the algorithm can
be applied to personal position tracking, and it deals with user’s non-linear
movement behaviors fairly well. Thus we believe that our algorithm for mining

the user activity map can form a basis for many promising personal location-
aware applications.

References

1. Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust, unions
of balls, and the medial axis transform. Computational Geometry: Theory and
Applications, 19:127–153, 2001.

2. M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans.
on Signal Proc., 50(2):174–188, 2002.

3. Daniel Ashbrook and Thad Starner. Learning significant locations and predicting
user movement with gps. International Symposium on Wearable Computing, pages
101–108, 2002.

4. Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Handbook of Compu-
tational Geometry, pages 201–290. Elsevier, 2000.

5. Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and Computing, 10(3):197–
208, 2000.

6. Thomas D’Roza and George Bilchev. An overview of location-based services. BT
Technology Journal, 21(1):20–27, January 2003.

7. Erhan Gokcay and Jose C. Principe. Information theoretic clustering. IEEE Trans-
actions on Pattern Aanalysis and Machine Intelligence, 24(2), February 2002.

8. John Hartigan. Clustering Algorithms. John Wiley and Sons Inc., 1975. ISBN:
0-471-35645-X.

9. B. Hoffmann-Wellenhof, Herbert Lichtenegger, and James Collins. GPS: Theory
and Practice. The 3rd ed. Springer-Verlag, New York, 1994.

10. Thanos Manesis and Nikolaos Avouris. Survey of position location techniques in
mobile systems. In Proc. of the 7th Int. Conf. on Human Computer Interaction with
Mobile Devices and Services, volume 111, pages 291–294, Austria, 2005. ISBN:1-
59593-089-2.

11. Eduardo F. Nakamura, Antonio A.F. Loureiro, and Alejandro C. Frery. Information
fusion for wireless sensor networks: Methods, models, and classifications. ACM
Computing Surveys, 39(3), August 2007.

12. Petteri Nurmi and Johan Koolwaaij. Identifying meaningful locations. In the Third
Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services, pages 1–8, San Jose, CA, July 2006. ISBN: 1-4244-0499-1.

13. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, 2nd
Edition. Prentice Hall, 2003. ISBN: 0-13-790395-2.

14. Emiliano Trevisani and Andrea Vitaletti. Cell-id location technique, limits and
benefits: An experimental study. In Proceedings of the Sixth IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA’04), pages 51–60, 2004.

15. Gokhan Yavas, Dimitrios Katsaros, Ozgur Ulusoy, and Yannis Manolopoulos. A
data mining approach for location prediction in mobile environments. Data and
Knowledge Engineering’05, pages 121–146, 2005.

