Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Decision Making for Cooperative Agents Multiagent MDPs, Decentralized MDPs & POMDPs

Frans Oliehoek fao@csail...

6.882: Planning and Decision Making November 23, 2010

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs
Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs • Backwards Approach

- Forward Approach
- The State of the Art
- Summary

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Topic: Multiple Agents

- Course so far:
 - planning,
 - reinforcement learning (RL),
 - state uncertainty (POMDPs)
- All the above assume a single agent interacting with an environment.
- However, if we can build one intelligent agent, soon we will have many!
 - Multiagent system (MAS)
- Interactions between decision makers: game theory, but focus on:
 - self-interested, and often competitive agents.
 - single-shot interactions.
- This lecture:
 - teams of cooperative agents in a dynamic environment.

|'|iT

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Focus on planning, but also provide some pointers to reinforcement learning approaches.

Planning/Learning, on-/off-line

- Focus on the situation where
 - planning off-line.
 - team of agents executes the plan in an on-line phase.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Agents in the team receive global observations.

- The regular (PO)MDP model be extended to multiple agents (multiagent MDP, POMDP).
- What assumptions does that require?

<u>Overview of this lecture</u>

Why this still requires specialized approaches.

Agents in the team receive only local observations.

- No longer a reduction to a centralized model. 'Truly' decentralized. (decentralized MDP, POMDP).
- Agents do not have a Markovian signal to act on!
- Coordination vs. Exploitation of local information.

Solving Dec-POMDPs:

- backward approach: dynamic programming.
- I forward approach: heuristic search.

Plii

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

- Recap: Single-agent (PO)MDPs
- Multiagent MDPs
- Multiagent POMDPs
- Local Observations: Dec-MDPs & Dec-POMDPs
 Dec-(PO)MDPs
 - Issues When Acting on Local Observations
- Solution Methods for Dec-POMDPs • Backwards Approach
 - Forward Approach
- The State of the Art
- Summary

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
 Recap: Single-agent (PO)MDPs
 Multiagent MDPs

Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs • Backwards Approach

- Forward Approach
- The State of the Art

Summary

Plii

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

A single-agent scenario

Predator-prey

- One agent, the predator (blue).
- Prey (red) is part of environment.
- Wrap-around world (on a torus)

Formalization

• states: relative positions.

- actions: N,W,S,E.
- transitions:
 - probability of failure to move.
 - prey's movements.
- reward for capture.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

The Markov Decision Process

A Markov Decision Process (MDP) $\langle S, A, T, R, h \rangle$

- S finite set of states s.
- \mathcal{A} finite set of actions *a*.
- T transition function, specifying P(s'|s,a).
- R immediate reward function: R(s,a).
- h the horizon finite or infinite.
- Policy maps states to actions $\pi : S \to A$.
- Goal: policy that maximizes the (discounted) return.
- Compute π^*
 - Value, policy iteration or linear programming: V*.
 - From V^* we can greedily construct π^* .
- Finite horizon: $V^{*,\tau+1}(s)$ for τ time-steps-to-go.

|'|iī

Partial Observability (PO)

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

- Global Observations (PO)MDPs
- Multiagent MDPs Multiagent POMDPs
- Local Observations Dec-(PO)MDPs Issues
- Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

- Two causes:
 - Noise e.g., distance is approx. 1.5m.
 - Perceptual aliasing e.g., cannot look around a corner.

Example PO

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Single agent predator-prey, with limited sight.

- States same as in MDP:
 - (-8, -8) up to (8,8).
 current s = (-3,4)
- But now agent has a different observation:
 - $o = \mathsf{Null}$

Example PO

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Induce	MAGA
Intro	IVIASS

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs Local

Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Single agent predator-prey, with limited sight.

- States same as in MDP:
 - (-8, -8) up to (8,8).
 current s = (-3,4)
- But now agent has a different observation:

The POMDP model

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

- Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs
- Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

$\mathsf{POMDP} = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mathcal{O}, \mathcal{O}, h \rangle$

- \mathcal{O} finite set of observations o
- O observation function, providing P(o|a,s')
- Observations are not a Markovian signal...
 - Should remember the entire history of observations?
- No: we can maintain a belief.

$$b = (Pr(-8, -8) Pr(-7, -8) \dots Pr(7,8) Pr(8,8))^{7}$$

- Reduction to a 'belief-state MDP'.
- So compute V*(b).
 - (how to do this is more complicated, but the principle is the same.)

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs • Dec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs • Backwards Approach

- Forward Approach
- The State of the Art

Summary

|'|iT

Multiagent planning

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Predator-prey with multiple predators.

State:

$$s=\left(egin{array}{c} (3,-4)\ (1,1)\ (-2,0) \end{array}
ight)$$

 (now with prey as point of reference)

14i7

The Multi-agent MDP

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Can be formalized as a multiagent MDP (MMDP). MMDP is an MDP with multiple agents

- *R*(*s*,*a*₁,...,*a*_n)
- *P*(*s*'|*s*,*a*₁,...,*a*_n)
- It is just an MDP but with joint actions $\boldsymbol{a} = \langle a_1, ..., a_n \rangle$.

• Interpretation: 'Puppeteer' who plans with \boldsymbol{a} . $\Rightarrow R(\boldsymbol{s}, \boldsymbol{a}),$

 $\Rightarrow P(s'|s,a)$

MMDP is an MDP

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

- Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs
- Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

An MMDP is special case of an MDP

- under some assumptions (next).
- In practice, term 'MMDP' used when these assumptions hold.
- So MDP solution methods (value iteration, policy iteration, linear programming) apply.
- Also can consider reinforcement learning in MMDPs.
- However:
 - Number of joint actions scales exponentially with *n*.
 - Need special methods to deal with that [Guestrin et al., 2002a,b, Kok and Vlassis, 2006].

PliT

MMDP Assumptions

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

When can we make the reduction to an MDP?

- Bottom line: the agents need to be able to execute the optimal MDP policy π(s) = a.
- If π has been computed in an off-line stage, then each agent *i* has a copy. Then, at execution:
 - Observe s
 - look up π(s) = a
 - execute *a_i* the individual component of *a*.

So either

- each agent can observe s, or
- agents can communicate.
 - noise-free, cost-free, instantaneous broadcast communication!

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs • Dec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs • Backwards Approach

- Forward Approach
- The State of the Art
- Summary

Pliī

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Partial observability in MASs

• MAS where each agent gets an individual observation.

- State unchanged: $s = \begin{pmatrix} (3, -4) \\ (1,1) \\ (-2,0) \end{pmatrix}$
- But now 3 observations

•
$$o_1 = \text{Null}$$

• $o_2 = (-1, -1)$
• $o_3 = \text{Null}$

Multiagent POMDPs

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

We can formalize the problem as follows:

Multiagent POMDP (MPOMDP)

• *n* agents.

- $\mathcal{A} = \times_i \mathcal{A}_i$ set of joint actions
 - A_i actions of agent *i*.
 - $\boldsymbol{a} = \langle \boldsymbol{a}_1, ..., \boldsymbol{a}_n \rangle$ one joint action
- $T P(s'|s, \boldsymbol{a}).$
- R R(s, a)
- $\mathcal{O} = \times_i \mathcal{O}_i$ set of joint observations.
 - \mathcal{O}_i observations for agent *i*.
 - joint observation $\mathbf{o} = \langle o_1, ..., o_n \rangle$
- O observation function $P(\mathbf{o}|\mathbf{a},s')$
- h the horizon.

MPOMDP is a POMDP

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• When agents can communicate observations freely:

- Reduction to a POMDP.
- Again, term MPOMDP typically used when these assumptions hold.
- Off-line: compute $V^*(\boldsymbol{b}), \pi^*(\boldsymbol{b})$.
- On-line: At each time step,
 - synchronize local observations.
 - compute joint belief b.
 - look up π(b) = a
 - execute individual component a_i.
- Again, scales exponentially with number of agents.
 - still a very much open direction of research.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPsDec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs

- Backwards Approach
- Forward Approach
- The State of the Art

Summary

Outline

PliT

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Acting based on global information can be impractical for several reasons:

Acting Based on Local Observations

- Communication is not possible...
 - military domains, space exploration.
- ... or has a (significant) cost
 - networks, battery power.
- ... or is not instantaneous, or noise-free, etc.
- Moreover, the required broadcast communication does not scale with the number of agents.

The alternative: act based on local observations.No communication at all.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs • Dec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs

- Backwards Approach
- Forward Approach
- The State of the Art
- Summary

Decentralized MDP and POMDPs

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Again, we are considering this setting.

But now:

• $s = \begin{pmatrix} (3, -4) \\ (1,1) \\ (-2,0) \end{pmatrix}$

Observations

•
$$o_1 = \text{Null}$$

• $o_2 = (-1, -1)$
• $o_3 = \text{Null}$

No communication

Act based on local observations only!

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Decentralized POMDPs

Dec-POMDP

A Dec-POMDP is a MPOMDP without (explicit) communication.

I.e., each agent acts only on its own observations.

• Every *t*: agent *i* observes *o_i* and *a_i*

- Communication can be modeled
 - via actions and observations.
 - but is not explicit: does not allow agents to perform a joint belief update.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Dec-MDP

Dec-MDP

A Dec-MDP is a Dec-POMDP that is jointly observable

- I.e., the joint observation identifies the state.
- For instance: predator-prey where each agent only observes its own position relative to prey.

$$\left(\begin{array}{c} o_1\\ o_2\\ o_3\end{array}\right) = \left(\begin{array}{c} (3,-4)\\ (1,1)\\ (-2,0)\end{array}\right)$$

Even though special case, not necessarily simpler.

Two Generals' problem

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• "Two generals" or "Coordinated attack" problem.

Two Generals' problem

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

• "Two generals" or "Coordinated attack" problem.

Two generals

2 states: SMALL or LARGE enemy army 2 actions: ATTACK or OBSERVE 2 observations: SMALL or LARGE Probability of correct observation: 0.85. Rewards:

• 1 general attacks: it loses the battle *R*(*,*ATTACK*,*OBSERVE*) = -10

Both OBSERVE: small cost R(*,OBSERVE,OBSERVE) = -1

 Both ATTACK: depends on state R(SMALL,ATTACK,ATTACK) = +5 R(LARGE,ATTACK,ATTACK) = -20

Goal, Histories & Policies

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Goal: find a good joint policy $\boldsymbol{\pi} = \langle \pi_1, \dots, \pi_n \rangle$

- π^* maximizes the expected return.
- What do the policies look like?

Mappings from histories of observations to actions! $\pi_i(o_i^0, o_i^1, \dots, o_i^t) = a_i$ $\pi_i(\vec{o}_i^t) = a_i$

• We will see that there is no better way (known) next.

Goal, Histories & Policies

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations

Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

a Cooli find a good joint policy - /-

- Goal: find a good joint policy $\pi = \langle \pi_1, \dots, \pi_n \rangle$
- π^* maximizes the expected return.
- What do the policies look like?
- Mappings from histories of observations to actions!

$$\pi_i(o_i^0, o_i^1, \dots, o_i^t) = a_i$$

 $\pi_i(\vec{o}_i^t) = a_i$

• We will see that there is no better way (known) next.

Goal, Histories & Policies

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Goal: find a good joint policy $\pi = \langle \pi_1, \dots, \pi_n \rangle$

- π^* maximizes the expected return.
- What do the policies look like?

A joint policy — tree representation

Individual policies can be represented as trees.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

<u>Outline</u>

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs • Dec-(PO)MDPs

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs

- Backwards Approach
- Forward Approach
- The State of the Art
- Summary

No Sufficient Statistic

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• No sufficient statistic during execution!

- Reason from perspective of individual agent *i*.
- Assume π_j of other agent j is known and a function of its internal state l_j.
 - Transformation to POMDP.
 - But, need to predict the actions a_j
 - E.g., to predict state transitions P(s'|s,a_i,a_j) and rewards R(s,a_i,a_j).
 - I.e., need to track the internal state I_i.
 - Using a belief b_i(s, l_j)

• a sufficient statistic of future behavior of the agent *j*.

- 'individual belief' over states $b_i(s)$ is not enough.
- When π_{-i} not known: individual belief can not even be computed.

PliT

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

In these problem there is a trade-off: coordination vs. exploiting local information.

Coordination vs. using Information

- If all agents ignore own observations: open loop plan.
 - E.g. "ATTACK on 2nd time step"
 - maximally predictable.
 - but low quality.
- If all agents base their action on all their local information (e.g. compute individual belief and execute MPOMDP policy)
 - potentially higher quality.
 - but less predictable; more likely to result in coordination failures.
- Optimal policy should balance between these.

Complexity Results

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Powerful model, but comes at a price...

Dec-(PO)MDP Complexity

• finite-horizon: NEXP-complete [Bernstein et al., 2002]

- Cast as a decision problem: Guess between EXP possibilities, then need EXP time to verify that it is a solution.
- Also for ε-approximate solutions!
- Infinite-horizon: undecidable
 - just like POMDPs.

Intro MASs

Global Observations Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summarv

References

Complexity Results — 2

What does NEXP mean?

Brute-force policy evaluation:

nr. joint pols. h 2 7.290e023 4.783e064 2.059e145 3.815e296 1.310e607 1.545e1218 2.147e243

denotes largest individual set.

 Still: 1) theoretically interesting, and relevant for 2) for small problems 3) principled approximation methods.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs
Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs

- Backwards Approach
- Forward Approach
- The State of the Art
- Summary

Solution Methods

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

We will discuss general solution methods for finite-horizon Dec-POMDPs:

- Brute-force search.
- Introduction to the two main methods.
- Remember:
 - also works for Dec-MDPs; then observations are local states.
 - general Dec-MDPs are no easier than Dec-POMDPs.
- There exist all kinds of special cases with specialized solution methods.
 - TOI-Dec-MDPs, ED-Dec-MDPs, Com-MTDPs, Com-Dec-POMDP, ND-POMDPs, TD-POMDPs etc.

|||iT

Off-line Planning

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

Remember:

- planning off-line.
- team of agents executes the plan in an on-line phase.

Brute Force Search

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

• The stupidest algorithm possible: Brute force search.

- We only need to consider deterministic joint policies.
- There are finitely many.
- So evaluate them all and pick the best.

$$V_{\pi}^{t}(s^{t},\vec{\mathbf{o}}^{t}) = R\left(s^{t},\pi(\vec{\mathbf{o}}^{t})\right) + \sum_{s^{t+1}\in\mathcal{S}}\sum_{\mathbf{o}^{t+1}\in\mathcal{O}} \Pr(s^{t+1},\mathbf{o}^{t+1}|s^{t},\pi(\vec{\mathbf{o}}^{t}))V_{\pi}^{t+1}(s^{t+1},\vec{\mathbf{o}}^{t+1}).$$
(1)

$$V(\pi) = \sum_{\boldsymbol{s}^0 \in \mathcal{S}} V_{\pi}(\boldsymbol{s}^0, \vec{\theta}_{\emptyset}) \boldsymbol{b}^0(\boldsymbol{s}^0).$$
 (2)

PliT

Two Main Approaches

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

2 Main approaches: 'forward' and 'backward'

old

_ _ _ _ . new

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs
Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs Backwards Approach

- Forward Approach
- The State of the Art
- Summary

|||i7

Backward Approach

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Forward Approach The State of the Art

Summary

References

LIS

 Backward approach: dynamic programming for Dec-POMDPs [Hansen et al., 2004].

- Works on sub-tree policies $q_i^{\tau=k}$.
- τ denotes time-to-go.
- Given a policy π_i , and a history \vec{o}_i^t
 - \Rightarrow can find the implicated sub-tree $q_i^{\tau=h-t}$

|||iT

Determining the Value

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

Determining values for joint sub-tree policies.

Via implied sub-trees $V_{\pi}^{t}(s^{t}, \vec{o}^{t})$ translates to

$$V(s^{t}, q_{1}^{\tau=h-t}, q_{2}^{\tau=h-t}) = R(s^{t}, \boldsymbol{a}^{t}) + \sum_{s^{t+1} \in S} \sum_{\boldsymbol{o}^{t+1} \in \mathcal{O}} Pr(s^{t+1}, \boldsymbol{o}^{t+1} | s^{t}, \boldsymbol{a}^{t}) V(s^{t+1}, q_{1}^{\tau=h-t}(o_{1}^{t+1}), q_{2}^{\tau=h-t}(o_{2}^{t+1})).$$

where

a^t is specified by the roots of q₁^{τ=h-t}, q₂^{τ=h-t}.
 q_i^{τ=h-t}(o_i^{t+1}) is the sub-tree q_i^{τ=h-t-1} for o_i^{t+1}.

DP for Dec-POMDPs

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach The State of the Art

Summary

References

Now have a method for valuating joint sub-tree policies of increasing length.

- If some sub-tree policies are bad: than they will likely result in bad values.
- So BFS may be improved:

DP avoids evaluation of policies with bad sub-tree policies!

• $\mathcal{Q}_i^{\tau=k}$ is set of $\tau = k$ sub-tree policies for agent *i*.

Initialize: $orall_i \; \mathcal{Q}_i^{ au=1} = \mathcal{A}_i$. For k=2:h

 $\forall_i \ \mathcal{Q}_i^{\tau=k} = ExhaustiveBackup(\mathcal{Q}_i^{\tau=k-1})$ Prune dominated $q_i^{\tau=k} \in \mathcal{Q}_i^{\tau=k}$.

LIS

Improvements

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs

Backwards Approach Forward Approach

The State of the Art

Summary

References

Many improvements have been proposed for the DP algorithm:

- policy compression
- point-based DP (PBDP)
 - samples belief points and computes maximizing (non-dominated) sub-tree policies for those
- memory bounded DP
 - PBDP that maintains a maximum of sub-trees for each agent: $|Q_i^{\tau=k}| = maxtrees$
- improvements to exhaustive backup.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs
Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs Backwards Approach

Forward Approach

The State of the Art

Summary

Forward Approach

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

• Forward approach: heuristic search over partially specified joint policies $\varphi^t = (\delta^0, \delta^1, \dots, \delta^{t-1})$.

 Remember: we search over joint partial policies. (figure shows an individual policy)

|4ii

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Multiagent A* (MAA*) [Szer et al., 2005]

• Really, it is A*.

MA

• Search nodes correspond to past joint policies

$$\boldsymbol{\varphi}^t = \left(\delta^0, \delta^1, \dots, \delta^{t-1}
ight)$$

Heuristic value

$$F(arphi^t) = G(arphi^t) + H(arphi^t)$$

where

- G(φ^t) is the true expected reward over the first t stages.
- *H*(φ^t) is an *admissible* heuristic: optimistic estimate of the reward for the last τ = h - t stages.
- Expanding a node φ^t , means creating all possible children:

$$\left\{ oldsymbol{arphi}^{t+1} = \left(oldsymbol{arphi}^t, oldsymbol{\delta}^t
ight)
ight\}$$

• Select node to expand next based on *F*-value.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

MAA* search tree:

 $MAA^* - 2$

Improvements to MAA*

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Improvements to the MAA*:

- Lossless clustering of histories.
- Do not fully expand the nodes, but only as required.

Both are based on insights gained by interpreting search tree nodes as a 'Bayesian game'.

 It is also possible to compute an approximate solution by not doing any backtracking (just expanding 1 child). [Emery-Montemerlo et al., 2005]

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs
Dec-(PO)MDPs
Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs

- Backwards Approach
- Forward Approach
- The State of the Art

Summary

Optimal Solutions

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

To give an idea, taken from [Oliehoek et al., 2009].

DEC-TIGER 2 states, 3 actions, 2 observations

h	<i>V</i> *	T _{GMAA*} (s)	<i>T_{cluster}</i> (s)
2	-4.0000	≤ 0.01	≤ 0.01
3	5.1908	0.02	≤ 0.01
4	4.8028	3,069.4	1.50
5	7.0265	_	130.82

BROADCASTCHANNEL 4 states, 3 actions, 2 observations

h	V*	T _{GMAA*} (s)	T _{cluster} (s)
2	2.0000	≤ 0.01	≤ 0.01
3	2.9900	\leq 0.01	≤ 0.01
5	4.7900	—	\leq 0.01
25	22.8815	_	1.67

FIREFIGHTING $\langle n_h = 3, n_f = 3 \rangle$ 27 states, 3 actions, 2 observations

h	V*	T _{GMAA*} (s)	<i>T_{cluster}</i> (s)
2	-4.3825	0.03	0.03
3	-5.7370	0.91	0.70
4	-6.5789	5605.3	5823.5

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

Memory bounded DP (MBDP) is linear in the horizon, so scales to arbitrary horizons.

- solution quality is generally good, but that may be because the problems are too simple.
- Similar for approximate Bayesian game approach by Emery-Montemerlo et al. [2005].
- Recently MBDP was modified into a sampling based approach
 - Works with a simulator.

Approximate Solutions

- Algorithm (but perhaps not simulator itself) scales linear with the number of agents.
- results up to 20 agents and long horizons.
- In my PhD: approximations on value function for factored firefighting: scales to 1000 agents.

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

Outline

Decisions with Multiple Agents

Global Observations: Multiagent MDPs and POMDPs
Recap: Single-agent (PO)MDPs
Multiagent MDPs
Multiagent POMDPs

Local Observations: Dec-MDPs & Dec-POMDPs • Dec-(PO)MDPs • Jacuas When Acting on Local Observations

Issues When Acting on Local Observations

Solution Methods for Dec-POMDPs • Backwards Approach

- Forward Approach
- The State of the Art

Summary

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

- Agents in the team receive global observations.
 - multiagent (PO)MDP is a special cases of normal (PO)MDP.
 - But, requires strong assumptions on observability or communication.
 - Specialized approaches to deal with number of joint actions.
- Agents in the team receive only local observations.
 - decentralized MDP, POMDP: 'Truly' decentralized.
 - Several issues: no Markovian signal, Coordination vs. Exploitation of local information, Complexity.
 - Solving Dec-POMDPs
 - backward approach: dynamic programming.
 - I forward approach: heuristic search.

|4ii

Decision Making for Cooperative Agents

Frans Oliehoek fao@csail...

Intro MASs

Global Observations (PO)MDPs Multiagent MDPs Multiagent POMDPs

Local Observations Dec-(PO)MDPs Issues

Solving Dec-POMDPs Backwards Approach Forward Approach The State of the Art

Summary

References

LIS

<u>References</u>

- D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized control of Markov decision processes. *Mathematics of Operations Research*, 27(4):819–840, 2002.
- R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic control for robot teams. In *Proc. of the IEEE International Conference on Robotics and Automation*, pages 1175–1181, 2005.
- C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In *Advances in Neural Information Processing Systems 14*, pages 1523–1530, 2002a.
- C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In *Proc. of the International Conference on Machine Learning*, pages 227–234, 2002b.
- E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially observable stochastic games. In *Proc. of the National Conference on Artificial Intelligence*, pages 709–715, 2004.
- J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. *Journal of Machine Learning Research*, 7:1789–1828, 2006.
- F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Lossless clustering of histories in decentralized POMDPs. In *Proc. of The International Joint Conference on Autonomous Agents and Multi Agent Systems*, pages 577–584, May 2009.
- D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic search algorithm for solving decentralized POMDPs. In *Proc. of Uncertainty in Artificial Intelligence*, pages 576–583, 2005.